Il concetto di onda -...

24
Capitolo 1 Il concetto di onda 1.1 Introduzione Scopo di questo capitolo ` e quello di introdurre il concetto di onda a prescindere dalla sua natura fisica. Mediante l’ausilio di semplici esempi verranno introdotti i principali parametri che caratterizzano la propagazione delle onde. Si cercher` a inoltre di mettere in evidenza come l’esistenza e la propagazione delle onde sia possibile in virt` u dell’accoppiamento tra dipendenza temporale e dipendenza spaziale delle grandezze fisiche in gioco. 1.2 L’equazione delle onde Tutti i fenomeni di propagazione (acustica, sismica, elettromagnetica, ecc.) sono governati dall’equazione delle onde qui riportata nella sua forma pi` u semplice: 2 u ∂z 2 = 1 v 2 2 u ∂t 2 . (1.1) u ` e una generica grandezza fisica dipendente sia dal tempo t che dallo spazio z . v ha le dimensioni di una velocit` a e come verr` a dimostrato tra poco, rappresenta la velocit` a di propagazione dell’onda. Per risolvere la (1.1) conviene definire una nuova variabile τ = -z/v. Essendo ∂z = ∂τ ∂z ∂τ = - 1 v ∂τ , la (1.1) diventa 2 u ∂τ 2 - 2 u ∂t 2 =0. Formalmente questa equazione pu` o essere riscritta nel seguente modo: ∂τ + ∂t ∂τ - ∂t u =0 4

Transcript of Il concetto di onda -...

Page 1: Il concetto di onda - bioem.diet.uniroma1.itbioem.diet.uniroma1.it/bioem_group/people/apollonio/... · progressiva o diretta e nel secondo di onda regressiva o ri°essa. In generale,

Capitolo 1

Il concetto di onda

1.1 Introduzione

Scopo di questo capitolo e quello di introdurre il concetto di onda a prescindere dalla sua

natura fisica. Mediante l’ausilio di semplici esempi verranno introdotti i principali parametri

che caratterizzano la propagazione delle onde. Si cerchera inoltre di mettere in evidenza

come l’esistenza e la propagazione delle onde sia possibile in virtu dell’accoppiamento tra

dipendenza temporale e dipendenza spaziale delle grandezze fisiche in gioco.

1.2 L’equazione delle onde

Tutti i fenomeni di propagazione (acustica, sismica, elettromagnetica, ecc.) sono governati

dall’equazione delle onde qui riportata nella sua forma piu semplice:

∂2u

∂z2=

1

v2∂2u

∂t2. (1.1)

u e una generica grandezza fisica dipendente sia dal tempo t che dallo spazio z. v ha le

dimensioni di una velocita e come verra dimostrato tra poco, rappresenta la velocita di

propagazione dell’onda. Per risolvere la (1.1) conviene definire una nuova variabile τ =

−z/v. Essendo ∂∂z

= ∂τ∂z

∂∂τ

= −1v∂∂τ

, la (1.1) diventa

∂2u

∂τ2− ∂2u

∂t2= 0.

Formalmente questa equazione puo essere riscritta nel seguente modo:

(

∂τ+

∂t

)(

∂τ− ∂

∂t

)

u = 0

4

Page 2: Il concetto di onda - bioem.diet.uniroma1.itbioem.diet.uniroma1.it/bioem_group/people/apollonio/... · progressiva o diretta e nel secondo di onda regressiva o ri°essa. In generale,

Capitolo 1. Il concetto di onda 5

che, in analogia con quanto accade nella risoluzione delle equazioni algebriche, e soddisfatta

se la e almeno una delle sequenti equazioni:

(

∂τ+

∂t

)

u = 0 (1.2)

(

∂τ− ∂

∂t

)

u = 0. (1.3)

Si consideri inizialmente la prima. Essa e soddisfatta se la derivata di u rispetto a τ e

uguale, ma di segno opposto alla derivata fatta rispetto a t:

∂u

∂τ= −∂u

∂t.

La funzione piu semplice con questa proprieta e u(τ, t) = t−τ , ma piu in generale qualunque

funzione del tipo:

u(τ, t) = f(t− τ),

e soluzione della (1.2). Infatti:

∂f(t− τ)

∂t= f ′(t− τ)

∂(t− τ)

∂t= f ′(t− τ)

e∂f(t− τ)

∂τ= f ′(t− τ)

∂(t− τ)

∂τ= −f ′(t− τ)

con f ′(ξ) =∂f(ξ)∂ξ

. Di seguito sono riportati alcuni esempi di funzioni di questo tipo:

• u(ξ, t) = t− ξ

• u(ξ, t) = (t− ξ)2

• u(ξ, t) = e−(t−ξ)2

• u(ξ, t) = sin(t− ξ).

Con identiche considerazioni si risolve la (1.3) ottenendo in questo caso:

u(ξ, t) = g(t+ ξ).

Sommando le due soluzioni ed esplicitando ξ, si ottiene la soluzione generale della (1.1):

u(z, t) = Af(t− z/v) +Bg(t+ z/v).

Come si avra modo di vedere in seguito, le costanti A e B e le funzioni f e g, dipendono

dalle condizioni iniziale ed al contorno del problema.

Page 3: Il concetto di onda - bioem.diet.uniroma1.itbioem.diet.uniroma1.it/bioem_group/people/apollonio/... · progressiva o diretta e nel secondo di onda regressiva o ri°essa. In generale,

Capitolo 1. Il concetto di onda 6

1.3 Legame spazio tempo

La caratteristica fondamentale della soluzione dell’equazione (1.1) e la dipendenza del tipo

t− z/v. L’accoppiamento tra variabile temporale e spaziale costituisce la rappresentazione

matematica del concetto di propagazione. Si consideri inizialmente la funzione f(t−z/v) e siindichi con Fa il valore che la funzione f assume quando il suo argomento vale a: Fa = f(a).

La situazione e illustrata in figura 1.1. All’istante t = t0 il valore Fa verra assunto nel punto

Fa

f(t ,z)0

z =(t -a)v0 0z

Fa

f(t ,z)1

z =z + t v1 0 D z

Dt v

Figura 1.1: Concetto di propagazione. Sinistra: andamento spaziale di f(·) all’istante t0.Destra: andamento all’istante t1.

z = z0 tale che t0 − z0/v = a, ovvero z0 = (t0 − a)v. Ad un’istante successivo t1 = t0 +∆t,

il medesimo valore verra assunto in un punto differente z1 = (t1 − a)v = (t0 +∆t − a)v =

z0 + ∆tv. Essendo il punto Fa generico, la proprieta appena vista vale per tutti i punti

della funzione f . Al variare del tempo, la funzione f trasla rigidamente nel verso positivo

dell’asse z. La velocita di spostamento e pari al rapporto tra lo spostamento e l’intervallo

di tempo considerato: z1−z0∆t

= v. In modo analogo si puo verificare che la funzione g(t+zv)

trasla con la stessa velocita, ma nel verso opposto. Spesso nel primo caso si parla di onda

progressiva o diretta e nel secondo di onda regressiva o riflessa. In generale, se spazio e

tempo compaiono nell’argomento della funzione con segno opposto, l’onda si propaga nel

verso positivo dell’asse della coordinata spaziale; se invece i segni sono concordi l’onda si

propaga nel verso negativo.

Esempio

Si consideri un’onda caratterizzata dalla funzione f(z, t) = (t − z/v)2 con v = 5m/s. Al-

l’istante t = t0 = 0, f(z, 0) = 125z

2 e una parabola centrata nell’origine dell’asse spaziale z,

come illustrato in figura 1.2. Nella stessa figura e anche riportato l’andamente all’istante

t = t1 = 3s, in corrispondenza del quale f(z, t1) = (3 − z/5)2 = 125(15 − z). La funzione e

ancora una parabola, con la stessa curvatura, ma con il minimo in z = z1 = 15m. f(z, 0) e

Page 4: Il concetto di onda - bioem.diet.uniroma1.itbioem.diet.uniroma1.it/bioem_group/people/apollonio/... · progressiva o diretta e nel secondo di onda regressiva o ri°essa. In generale,

Capitolo 1. Il concetto di onda 7

un’onda di forma parabolica che trasla rigidamente verso la direzione crescente dell’asse z

ad una velocita v = z1−z0t1−t0

= 15m3s = 5m/s.

15 30 45-15-30-45

t=0t=t1

z [m]15 30 45-15-30-45

t=0t=t1

z [m]

Figura 1.2: Andamento spaziale della funzione f(z, t) = (t−z/5)2 (sinistra) e g(z, t) = (−t−z/5)2 in corrispondenza degli istanti t = 0, linea continua, e t = 3s linea tratteggiata. Lecurve tratteggiate costituiscono delle traslazioni rigide di ∆z = ±15m della curva continua.

Si consideri ora la funzione g(z, t) = (−t − z/v)2. In t + t0 = 0 l’andamento e identico a

quella della funzione f . Al contrario a t = t1 = 3s, g(z, 3) = (−3− z/5)2 = 1(−5)2

(15+ z) =125(15+ z). La nuova parabola assume il minimo in z = −15m. g(z, t) rappresenta un’onda

che si propaga nel verso negativo dell’asse z alla velocita v = 5m/s.

La velocita di spostamento dipende dalle caratteristiche del mezzo in cui l’onda si propaga.

La velocita di propagazione delle onde elettromagnetiche vale:

v =1√µε

;

dove ε e la permittivita dielettrica e µ e la permeabilita magnetica. In particolare nel vuoto:

ε = ε0 = 8.85 10−12 F/m µ = µ0 = 4π 10−7 H/m

da cui

c0 =1

√µ0ε0

= 2.9979 108 m/s ' 3 108 m/s.

Piu in generale se il mezzo in cui il campo elettromagnetico si propaga non e il vuoto:

v =1√µε

=1

√µ0µrε0εr

=c0n,

con n =√µrεr indice di rifrazione del mezzo. Maggiore e l’indice di rifrazione, minore e la

velocita di propagazione.

Page 5: Il concetto di onda - bioem.diet.uniroma1.itbioem.diet.uniroma1.it/bioem_group/people/apollonio/... · progressiva o diretta e nel secondo di onda regressiva o ri°essa. In generale,

Capitolo 1. Il concetto di onda 8

La maggior parte dei materiali di interesse pratico sono materiali non magnetici nei quali

µr ' 1. Nel seguito, salvo dove indicato esplicitamente, si assumera sempre che il mezzo sia

non magnetico e quindi che n =√εr da cui

v = c0/√εr.

La funzione u(z, t) permette di conoscere non solo l’andamento nello spazio al variare del

tempo, ma anche l’andamento temporale in un certo punto dello spazio. In figura 1.3 e

t0

t1

t2

t3

t5

t4

z z

t

u(z,t)

Figura 1.3: Andamento di u(z, t) al variare del tempo e dello spazio. Sono evidenziati ivalori assunti da u in z = z in diversi istanti temporali.

riportato l’andamento spaziale di u in sei istanti differenti: t0, t1, ..., t5. Al variare del tem-

po, la curva trasla rigidamente verso destra ed attraversando il punto z = z determina

l’andamento temporale riportato in figura 1.4. Da questo semplice studio e evidente come

l’estensione spaziale, la velocita di propagazione e la durata temporale siano quantita stret-

tamente legate tra loro.

Le figure 1.3 e 1.4 evidenziano un secondo di aspetto. Se la propagazione avviene nella

direzione positiva, l’andamento temporale e ribaltato rispetto a quello spaziale. Infatti, in

questo caso nella f(·) spazio e tempo hanno segni opposti. Viceversa, se la propagazione

Page 6: Il concetto di onda - bioem.diet.uniroma1.itbioem.diet.uniroma1.it/bioem_group/people/apollonio/... · progressiva o diretta e nel secondo di onda regressiva o ri°essa. In generale,

Capitolo 1. Il concetto di onda 9

t0t1 t2 t3 t4 t5

u( ,t)z

t

Figura 1.4: Andamento temporale di u(z, t) in z = z. Sono evidenziati i valori assunti negliistanti t0, t1, t2, t3, t4, t5.

avviene nella direzione negativa, le variabili hanno lo stesso segno e l’anamento temporale

e identico a quello spazilae.

Esempio

La figura 1.5 mostra l’andamento spaziale di un impulso di estensione ∆z = 30m che si

propaga alla velocita della luce. Se l’impulso si propaga nello spazio vuoto in cui

v

z

u(z,0)

D z z

Figura 1.5: Andamento di u(z, t) a t = 0.

v =1

√ε0µ0

= c0 = 3108m/s

la sua durata vale:

∆T =∆z

v=

30m

3 · 108m/s= 10−7s = 10µs.

Page 7: Il concetto di onda - bioem.diet.uniroma1.itbioem.diet.uniroma1.it/bioem_group/people/apollonio/... · progressiva o diretta e nel secondo di onda regressiva o ri°essa. In generale,

Capitolo 1. Il concetto di onda 10

Se il mezzo in cui si propaga e l’aria la parmettivita dielettrica relativa vale εr = 1.0006 e

quindi la durata dell’impulso vale:

∆T =∆z

v

√εr =

30m

3 · 108m/s· 1.00299 = 10.00299 µs.

La velocita e quindi la durata sono praticamente uguali a quelli del vuoto. Nel seguito, salvo

dove indicato esplicitamente, la velocita di propagazione nell’aria verra assunta identica a

quelle nel vuoto.

Al contrario la permittivita relativa dell’acqua distillata e εr = 81, quindi

v = 3 · 108/9 = 3.33107 m/s,

da cui

∆T =∆z

v

√εr =

30m

3 · 108m/s· 9 = 90 µs.

Nell’acqua un impulso con la stessa estensione spaziale di uno che si propaga in aria ha una

durata circa nove volte maggiore.

In figura 1.6 sono riportati gli andamenti temporali in z nel caso di propagazione nell’acqua

e nell’aria.

t

u(z,t)

90 sm10 sm

Figura 1.6: Andamento di u(z, t) in z nel caso di propagazione in aria ed in acqua.

Esempio

Nei moderni mocroprocessori, la frequenza del segnale di clock e dell’ordine dei GHz. In

figura 1.7 viene riportato il tipoco andamento temporale del clock nel caso di duty cycle

Page 8: Il concetto di onda - bioem.diet.uniroma1.itbioem.diet.uniroma1.it/bioem_group/people/apollonio/... · progressiva o diretta e nel secondo di onda regressiva o ri°essa. In generale,

Capitolo 1. Il concetto di onda 11

uguale a 0.5. Se la frequenza di clock e di 4GHz significa che ci sono 4 ·109 cicli al secondodi durata T = 1 · 0.25 · 10−9 = 250 ps. Gli attuali microprocessori sono costituiti da silicio

cristallino caratterizzato da una permittivita dielettrica εr Si = 11.9, da cui nSi =√εr Si =

3.45. In ogni intervallo l’impulso elettromagnetico si estende per

t2T3/2TTT/2

u(t)

Figura 1.7: Segnale di clock con duty cycle di 0.5.

∆z =c0nT/2 =

3 108m/s

3.45· 125 · 10−12s = 10.87 mm.

1.3.1 Esercizio

f(z, t) rappresenta un’onda che si propaga nel verso positivo dell’asse z ad una velocita

v = 100m/s. In figura 1.8 e riportato l’andamento spaziale della funzione all’istante t = 0.

Rappresentare graficamente:

(a) l’andamento spaziale di f(z, t) all’istante t = 1s;

(b) l’andamento temporale in z = 0 e in z = 300m.

Soluzione

(a)

All’istante t = 1s l’onda sara traslata rigidamente di una quantita

∆z = 100m/s · 1s = 100m

dando luogo all’andamento riportato in figura 1.9.

(b)

Per determinare rapidamente l’andamento temporale e sufficiente osservare che:

Page 9: Il concetto di onda - bioem.diet.uniroma1.itbioem.diet.uniroma1.it/bioem_group/people/apollonio/... · progressiva o diretta e nel secondo di onda regressiva o ri°essa. In generale,

Capitolo 1. Il concetto di onda 12

-100 100 200 300

-1

1

z(m)

f(z,0)

A

B

Figura 1.8: Andamento spaziale di f all’istante t = 0.

-100 100 200 300

-1

1

z(m)

f(z,1)

A

B

400

Figura 1.9: Andamento spaziale di f all’istante t = 1s.

• l’onda si propaga nel verso dell’asse spaziale e quindi l’andamento temporale si ottiene

ribaltando rispetto all’asse delle ordinate l’andamento spaziale;

• essando v = 100m/s un spostamento di ∆z = 100m corrisponde ad un intervallo

temporale di ∆t = 1s;

• all’istante t = 0 in z = 0 e in z = 300m si trovano rispettivamente i punti A e B.

Gli andamenti temporali sono riportati in figura 1.10.

1.4 Onde sinusoidali

Un tipo di onda estremamente utile nello studio dei fenomeni di propagazione e l’onda

sinusoidale:

u(z, t) = A cos(ωt− βz + φf ) +B cos(ωt+ βz + φg)

Page 10: Il concetto di onda - bioem.diet.uniroma1.itbioem.diet.uniroma1.it/bioem_group/people/apollonio/... · progressiva o diretta e nel secondo di onda regressiva o ri°essa. In generale,

Capitolo 1. Il concetto di onda 13

-1 1-3

-1

1

t(s)

f(0,t)

A

2 43

-1

1

t(s)

f(300,t)

B

Figura 1.10: Andamenti temporali di f in z = 0 e z = 300m.

Per fissare le idee si consideri la sola onda che si propaga nel verso positivo dell’asse z:

z

Acos( )ff

A vf

Figura 1.11: Andamento spaziale di un’nda sinusoidale all’istante t = 0.

u(z, t) = A cos(ωt− βz + φf ).

La quantita φ(z, t) = ωt − βz + φf e detta fase istantanea dell’onda ed e misurata in

radianti rad. Piu raramente la fase viene misurata in gradi ◦. In un’onda sinusoidale, la fase

istantanea dipende dallo spazio e dal tempo e non e da confondersi con la fase iniziale φf che

al contrario e una quantita costante. ω e β sono rispettivamente la pulsazione e la costante

di fase dell’onda e sono misurate in rad/s e rad/m. A e l’ampiezza dell’onda e determina

il valore di picco che viene assunto periodicamente nello spazio e nel tempo. L’andamento

spaziale all’istante t = 0 e riportato in figura 1.11. Nell’origine del sistema di riferimento,

il valore dell’onda dipende dall’ampiezza e dalla fase iniziale. Nell’espressione della fase

Page 11: Il concetto di onda - bioem.diet.uniroma1.itbioem.diet.uniroma1.it/bioem_group/people/apollonio/... · progressiva o diretta e nel secondo di onda regressiva o ri°essa. In generale,

Capitolo 1. Il concetto di onda 14

istantanea dell’onda progressiva, z e φf hanno segni discordi; consegentemente a valori

positivi di φf corrispondono delle funzioni crescenti in z = 0 e a valori negativi corrispondono

delle funzioni decresenti. Ovviamente nell’onda regressiva accade l’opposto. La distanza

spaziale tra due punti aventi una fase istantanea che differisce di 2π e detta lunghezza d’onda

e viene indicata con λ. Imponendo che φ(z, t1) − φ(z + λ, t1) = (ωt1 − βz + arg(A)) −(ωt1 − β(z + λ) + arg(A)) = 2π segue:

λ =2π

β. (1.4)

Questa definizione di lunghezza d’onda e sempre valida e permette di determinare la lunghez-

za d’onda anche quando l’ampiezza non e costante, come nel caso di propagazione in mezzi

con perdite come illustrato in figura 1.12.

l

l

l

z

l

l

l

z

Figura 1.12: Concetto di lunghezza d’onda. Sinistra: onda con ampiezza costante. Destraonda con ampiezza variabile.

La figura 1.13 mostra l’evoluzione temporale dell’onda. La sinusoide trasla nello spazio

alla velocita

vf =ω

β

detta velocita di fase. Il nome deriva dal fatto che vf e la velocita con cui si deve spostare

un osservatore per vedere sempre la stessa fase della sinusoide. Nella figura il trattino

rappresenta il punto a fase nulla che appunto trasla nello spazio alla velocita vf . Fissato

un punto dello spazio z = z, la grandezza u(z, t) segue un andamento periodico sinusoidale

con una frequenza f = ω/2π.

Nei mezzi con perdite parte dell’energia trasportata dall’onda viene assorbita dal mezzo

stesso causandone una attenuazione durante la propagazione. E possibile dimostrare che in

questo caso la soluzione e del tipo:

u(z, t) = Ae−αz cos(ωt− βz + φf ).

La figura 1.14 riporta l’andamento spaziale in diversi istanti. E evidente la progressiva

attenuazione durante la propagazione. Il valore di picco vale Ae−αz e tende a zero per z

Page 12: Il concetto di onda - bioem.diet.uniroma1.itbioem.diet.uniroma1.it/bioem_group/people/apollonio/... · progressiva o diretta e nel secondo di onda regressiva o ri°essa. In generale,

Capitolo 1. Il concetto di onda 15

z

Acos(0)=Av

f

Acos( t )w 2v

f

A

z

A

z

vf

Acos( t )w 3

Av

f

z

Acos( t )w 4

A

z

vf

Acos( t )w 5

Figura 1.13: Onda sinusoidale con fase iniziale nulla (φf = 0) che si propaga nel verso

dell’asse z. E riportato l’andamente negli istanti t1 = 0, t2 = π/4ω, t3 = π/2ω, t4 = 3/4πωe t5 = π/ω. Il trattino rappresenta un punto a fase costante che trasla nel verso positivoalla velocita di fase vf e con ampiezza costante. Il punto evidenzia il valore della grandezzain z = z = 0 che nel tempo segue un andamento del tipo A cos(ωt).

tendente all’infinito. La lunghezza d’onda e sempre definita in base alla (1.4) anche se ora,

come illustra la figura 1.12, i punti distanti λ o suoi multipli hanno la stessa fase (a meno

di multipli di 2π), ma non piu la stessa ampiezza.

Per poter esprimere la lunghezza d’onda in funzione dei parametri caratteristici del materiale

e della frequenza e necessario esplicitare il legame tra β e ω. Questo legame, noto con il nome

di curva di dispersione, dipende fortemente dalla modalita con cui avviene la propagazione

[1] e quindi in questa fase viene mantenuto implicito. Particolarmente semplice, ma anche

estremamente diffuso, e il caso di propagazione in un mezzo omogeneo, dielettrico, non

Page 13: Il concetto di onda - bioem.diet.uniroma1.itbioem.diet.uniroma1.it/bioem_group/people/apollonio/... · progressiva o diretta e nel secondo di onda regressiva o ri°essa. In generale,

Capitolo 1. Il concetto di onda 16

z

vf

e- za

-e- za

A

Acos( t )w 4

z

Acos( t )w 2

Av

f e- za

-e- za

zAcos( t )w 3

Av

f e- za

-e- za

Av

f

z

Acos( t )w 4

e- za

-e- za

Av

f

z

Acos( t )w 5

e- za

-e- za

Figura 1.14: Onda sinusoidale smorzata con fase iniziale nulla (φf = 0) che si propaga

nel verso dell’asse z. E riportato l’andamente negli istanti t1 = 0, t2 = π/4ω, t3 = π/2ω,t4 = 3/4πω e t5 = π/ω. Il trattino rappresenta un punto a fase costante che trasla nel versopositivo alla velocita di fase vf e si smorza con legge esponenziale: e−αz..

dispersivo. In questo caso la legge di dispersione vale:

β = ω/c

da cui segue che

vf = c

e

fλ = c (1.5)

ovvero:

fλ =1√µε.

Page 14: Il concetto di onda - bioem.diet.uniroma1.itbioem.diet.uniroma1.it/bioem_group/people/apollonio/... · progressiva o diretta e nel secondo di onda regressiva o ri°essa. In generale,

Capitolo 1. Il concetto di onda 17

1.5 Bande di trasmissione dello spettro radio

La (1.5) mostra come la lunghezza d’onda e la frequenza non siano grandezze indipendenti.

Cio non deve sorprendere in quanto la prima determina la periodicita nello spazio, la secon-

da determina la periodicita nel tempo e, come gia evidenziato piu volte, in un’onda lo spazio

ed il tempo sono legati dalla velocita di propagazione. La lunghezza d’onda viene utilizzata

per suddividere lo spettro delle onde radio in varie bande. Il comportamento del campo elet-

tromagnetico puo dipendere in maniera sensibile dal valore della propria lunghezza d’onda.

Le perdite introdotte da un conduttore o l’influenza che gli oggetti hanno sulla propagazione

delle onde elettromagnetiche sono solo due esempi in cui cio accade. E allora evidente che

per alcune applicazioni e piu conveniente lavorare a determinate lunghezze d’onda piuttosto

che ad altre. Nella tabella seguente vengono riportate le principali bande in cui lo spettro

delle onde radio viene suddivisto. Vengono riportati i valori delle frequenze che delimitano

ogni banda e quelli delle corrispondenti lunghezze d’onda nell’ipotesi di propagazione nel

vuoto.

Page 15: Il concetto di onda - bioem.diet.uniroma1.itbioem.diet.uniroma1.it/bioem_group/people/apollonio/... · progressiva o diretta e nel secondo di onda regressiva o ri°essa. In generale,

Capitolo 1. Il concetto di onda 18

Spettro Radio

Banda Applicazioni frequenze lunghezze d’onda

ELF (Extremely Low Frequency) individuazione di 3÷ 30 Hz 105÷ 104

Km

oggetti sepolti

SLF (Super Low Frequency) comunicazioni 30÷ 300 Hz 10000÷ 1000 Km

sottomarine

ULF (Ultra Low Frequency) telefono,audio 300 Hz ÷ 3 kHz 1000÷ 100 Km

VLF (Very Low Frequency) radionavigazione, 3÷ 30 kHz 100÷ 10 Km

sistema OMEGA

LF (Low Frequency) o radio fari, 30÷ 300 kHz 10÷ 1 Km

onde lunghe LORAN C

MF (Medium Frequency) o radio diffusione 300 kHz ÷ 3 MHz 1 Km÷ 100 m

onde medie modulaz. di amp. AM

HF (High Frequency) o Citizen Band CB, 3÷ 30 MHz 100 m÷ 10 m

onde corte segnali di emergenza

VHF (Very High Frequency) TV, radio diff. FM, 30÷ 300 MHz 10 m÷ 1 m

ILS

UHF (Ultra High Frequency) TV, telef. cellulare 300 MHz ÷ 3 GHz 1 m÷ 10 cm

SHF (Super High Frequency) Radar,comm. satellite 3÷ 30 GHz 10 cm÷ 1 cm

microonde

EHF (Extremly High Frequency) Radar, ponti radio 30÷ 300 GHz 1 cm÷ 1 mm

onde millimetriche

1.6 Sovrapposizione di onde

In virtu della linearita dell’equazione delle onde, piu onde che si propagano possono co-

esistere senza che una altri le caratteristiche delle altre e viceversa. Ovviamente l’evoluzione

spazio-temporale della grandezza fisica u(z, t) sara data dal contributo di tutte le onde es-

istenti. In figura 1.15 e riportato il caso di due impulsi indentici nella forma e nel segno

che si propagano in direzione opposta. E evidente come la forma e l’ampiezza degli impulsi

prima e dopo il reciproco attraversamento siano le stesse. Durante la sovrapposizione i due

contributi si sommano. In questo caso si parla di interferenza costruttiva o positiva

La figura 1.16 evidenzia un secondo aspetto fondamentale della sovrapposizione delle onde.

Page 16: Il concetto di onda - bioem.diet.uniroma1.itbioem.diet.uniroma1.it/bioem_group/people/apollonio/... · progressiva o diretta e nel secondo di onda regressiva o ri°essa. In generale,

Capitolo 1. Il concetto di onda 19

Figura 1.15: Sovrapposizione di onde aventi stesso segno.

La situazione e identica alla precedente salvo il fatto che ora i due impulsi hanno segno op-

posto. La somma delle onde e una somma algebrica e non aritmetica e cio causa la cosidetta

interferenza distruttiva o negativa: in determinati istanti pur essendo presenti due onde la

loro risultante risulta nulla. Questa proprieta e di fondamentale importanza. Infatti, la

Figura 1.16: Sovrapposizione di onde aventi segno opposto.

maggior parte delle proprieta dei campi elettromagnetici e riconducibile, in ultima analisi,

Page 17: Il concetto di onda - bioem.diet.uniroma1.itbioem.diet.uniroma1.it/bioem_group/people/apollonio/... · progressiva o diretta e nel secondo di onda regressiva o ri°essa. In generale,

Capitolo 1. Il concetto di onda 20

ad un’opportuno gioco di interferenze tra piu onde.

1.6.1 Esercizio

Due impulsi f(z, t) e g(z, t) si propagano rispettivamente nel verso positivo e negativo del-

l’asse z alla velocita vp. A t = 0 i fronti dei due impulsi sono posti ad una distanza d uno

dall’altro come riportato in figura 1.17. La forma di f(z, t) e‘ nota, mentre quella di g(z, t)

z

?dl l

f g

t=0A

Figura 1.17: Andamento spaziale degli impulsi all’istante t = 0.

e‘ incognita.

Un osservatore posizionato a meta‘ distanza tra i due impulsi misura al variare del tempo

il valore totale u = f + g il cui andamento e mostrato in figura 1.18. Si rappresenti grafi-

td/(2v )p

u(0,t)

A

2A

(d+l)/(2v )p (d/2+l)/(v )p

Figura 1.18: Andamento temporale della somma degli impulsi nel punto z = 0.

camente la forma dell’impulso g(z, t) a t = 0.

Soluzione

La figura 1.18 riporta l’andamento di u(z, t) = f(t− z/v) + g(t+ z/v) in z = 0:

u(0, t) = f(t) + g(t)

Page 18: Il concetto di onda - bioem.diet.uniroma1.itbioem.diet.uniroma1.it/bioem_group/people/apollonio/... · progressiva o diretta e nel secondo di onda regressiva o ri°essa. In generale,

Capitolo 1. Il concetto di onda 21

da cui

g(t) = u(0, t)− f(t).

L’andamento di u(0, t) e noto dalla figura 1.18, quello di f(t) si ricava immediatamente

td/(2v )p

u(0,t)

A

2A

(d+l)/(2v )p (d/2+l)/(v )p

f(0,t)

A/2

A

td/(2v )p

g(0,t)

A

(d+l)/(2v )p (d/2+l)/(v )p

A/2

Figura 1.19: Andamento temporale di u, f e g nel punto z = 0.

dalla figure 1.17, osservando che l’impulso si propaga nel verso positivo e quindi l’andamento

temporale e ribaltato rispetto a quello spaziale. Inoltre l’istante in cui il fronte di salita di

f(t) giunge in z = 0 e pari alla distanza percorsa (d/2) fratto la velocita di propagazione v.

In figura 1.19 gli andamenti temporali di u e f sono disegnati sovrapposti. L’andamento

temporale di g si trova facendo una differenza punto per punto. Infine per determinare

zdl l

fg

t=0A

l/2

Figura 1.20: Andamento spaziale di f e g all’istante t = 0.

l’andamento spaziale basta osservare che:

• l’impulso si propaga nel verso negativo e quindi l’andamento spaziale e identico a

quello temporale;

Page 19: Il concetto di onda - bioem.diet.uniroma1.itbioem.diet.uniroma1.it/bioem_group/people/apollonio/... · progressiva o diretta e nel secondo di onda regressiva o ri°essa. In generale,

Capitolo 1. Il concetto di onda 22

• la posizione dei fronti all’istante t = 0 si determina moltiplicando l’istante di arrivo

per la velocita di propagazione.

Il risultato e riportato in figura 1.20.

Particolarmente interessante e il caso di sovrapposizione di due onde sinusoidali aventi

la stessa ampiezza e opposte direzioni di propagazione. Per semplicita si supporra che

entrambe le fasi iniziali siano nulle:

u(z, t) = A cos(ωt− βz) +A cos(ωt+ βz).

Utilizzando la relazione cos(α) · cos(β) = 12(cos(α−β)+ cos(α+β)) si puo dimostrare che:

u(z, t) = A cos(ωt) · cos(βz). (1.6)

La funzione dipende ancora dallo spazio e dal tempo, ma in modo separato, ovvero non e

piu del tipo f(t − z/c). Questo significa che l’onda descritta dalla (1.6) non si propaga.

L’evoluzione dell’andamento spaziale al variare del tempo e illustrato in figura 1.21. L’an-

damento e ancora sinusoidale con periodo 2π/β, ma al variare del tempo, la posizione dei

massimi, dei minimi, detti ventri, e degli zeri, detti nodi, lungo z non cambia. Un’onda con

queste caratteristiche e detta onda stazionaria. I ventri si trovano nei punti in cui le due

onde, diretta e riflessa, interferiscono costruttivamente, i nodi nei punti in cui le onde inter-

feriscono distruttivamente. Al variare del tempo e l’ampiezza dei ventri che segue sempre

un andamento periodico sinusoidale con frequenza f = ω/2π.

1.7 Esempio degli effetti delle condizioni al contorno

Nelle equazioni differenziali, le condizioni al contorno giocano un ruolo importante quanto

l’equazione stessa. Come si avra modo di vedere nel corso, partendo sempre e comunque

dalle equazioni di Maxwell, si ottengono soluzioni con caratteristiche significativamente

diverse, semplicemente cambiando le condizioni al contorno. Nello specifico si analizzera

ora l’effetto che ha sulla propagazione una condizione al contorno del tipo:

u(z, t) ≡ 0 ∀t (1.7)

cioe che impone l’annullamento della funzione nel punto z = z in ogni istante. Prima

di sviluppare la trattazione matematica, puo risultare istruttivo analizzare la situazione

attraverso delle considerazioni di carattere intuitivo. Quando un generico impulso giunge

sul punto z, il campo deve soddisfare due condizioni tra loro contrastanti: un valore non

nullo imposto dall’impulso ed un valore nullo imposto dalla condizione al contorno. Affinche

cio sia possibile deve nascere un impulso riflesso che sommato a quello incidente dia un valore

Page 20: Il concetto di onda - bioem.diet.uniroma1.itbioem.diet.uniroma1.it/bioem_group/people/apollonio/... · progressiva o diretta e nel secondo di onda regressiva o ri°essa. In generale,

Capitolo 1. Il concetto di onda 23

nodo

ventre

ventre

Figura 1.21: Esempio di onda stazionaria. Con le linee tratteggiate blu e verde sono rapp-resentate rispettivamente l’onda diretta e quella riflessa; con la linea continua rossa l’ondastazionaria. I cinque grafici si riferiscono agli istanti t = 0, t = π/4ω, t = 3π/8ω, t = π/2ω,t = 5π/8ω, t = π/ω

Page 21: Il concetto di onda - bioem.diet.uniroma1.itbioem.diet.uniroma1.it/bioem_group/people/apollonio/... · progressiva o diretta e nel secondo di onda regressiva o ri°essa. In generale,

Capitolo 1. Il concetto di onda 24

Sup. R

ifle

tten

te

Sup. R

ifle

tten

te

Sup. R

ifle

tten

te

Su

p.

Rif

lett

ente

Su

p.

Rif

lett

ente

Figura 1.22: Da sinistra verso destra e dall’alto verso il basso: andamento spaziale di unimpulso che incide su un contorno che forza a zero la funzione. Oltre al valore complessivosono riportati gli andamenti dell’onda diretta e di quella riflessa.

nullo sul contorno. L’andamento spazio-temporale dell’impulso incidente, di quello riflesso

e quello complessivo sono riportati in figura 1.22. Man mano che l’impulso incidente si

esaurisce contro la parete, quello riflesso esce da essa, in modo da soddisfare la (1.7) in ogni

istante.

Per formalizzare matematicamente quanto appena detto, si consideri l’espressione generale

della soluzione dell’equazione delle onde:

u(z, t) = Af(t− z/v) +Bg(t+ z/v). (1.8)

Page 22: Il concetto di onda - bioem.diet.uniroma1.itbioem.diet.uniroma1.it/bioem_group/people/apollonio/... · progressiva o diretta e nel secondo di onda regressiva o ri°essa. In generale,

Capitolo 1. Il concetto di onda 25

1

D

f( )x

x

Figura 1.23: Andamento della funzione f(ξ).

In z = z e posizionato il punto che forza a zero la soluzione, quindi in base alle (1.7) e (1.8)

segue:

Af(t− z/v) +Bg(t+ z/v) = 0 ∀ t

da cui

Af(t− z/v) = −Bg(t+ z/v) ∀ t.

Affinche la condizione sopra sia verificata per ogni t e necessario che:

g(t+ z/v) = −ABf(t− z/v)∀ t =⇒ g(ξ) = −A

Bf(ξ − 2z/v)

e quindi

u(z, t) = Af(t− z√µε/c)−Af(t+ z/c− 2z/c) ∀z ≤ z.

Il significato del ritardo 2z/c e chiarito dalla figura 1.24, in cui viene riportato l’andamento

di u nell’ipotesi che l’andamento di f(ξ) sia quello riportato in figura 1.23. L’andamento

dell’impulso riflesso puo essere facilmente determinato osservando che esiste una simmetria

speculare rispetto al punto z = z. La parte di soluzione con z > z deve essere scartata, il

che significa che l’impulso riflesso si genera istante per istante in corrispondenza del punto

z = z e, una volta generato, si propaga in direzione opposta rispetto a quello incidente.

Viceversa l’ipulso incidente si esaurisce progressivamente nel punto z = z. Dal punto di

vista energetico, l’energia trasportata dall’impulso incidente viene utilizzata per generare

quello riflesso.

Se l’onda incidente e sinusoidale, le condizioni al contorno richiedono la presenza di un’on-

da riflessa tale da generare un’onda stazionaria avente un nodo in z. In questo modo la

condizione u(z, t) = 0 e soddisfatta per ongi t come mostrato in figura 1.25.

Page 23: Il concetto di onda - bioem.diet.uniroma1.itbioem.diet.uniroma1.it/bioem_group/people/apollonio/... · progressiva o diretta e nel secondo di onda regressiva o ri°essa. In generale,

Capitolo 1. Il concetto di onda 26

z

2z

A

- cD

2 + cz D

z

-A

z

2 -ctz 1

A

c(t -1 D)

2 -c(t - )z 1 D

z

-A

ct1

A

c(t -2 D)

2 -c(t - )z 2 D

z

-A 2 -ctz 2

A

c(t -3 D)

2 -c(t - )z 3 Dz

-A2 -ctz 3

A

2 -c(t - )z 4 D

z

-A

2 -ctz 4

Figura 1.24: Con la linea grigia e riportato l’andamento di u(z, t) in cinque istanti di tempodifferenti. Con le linee nere sono riportati i contributi dell’impulso incidente e riflesso. Siaper l’impulso incidente che per quello trasmesso, la parte di soluzione con z > L, evidenziatanella figura dalle linee tratteggiate, deve essere scartata essendo priva di significato fisico.

Page 24: Il concetto di onda - bioem.diet.uniroma1.itbioem.diet.uniroma1.it/bioem_group/people/apollonio/... · progressiva o diretta e nel secondo di onda regressiva o ri°essa. In generale,

Capitolo 1. Il concetto di onda 27

Sup.

Rifle

ttent

eSu

p. Ri

flette

nte

Sup.

Rifle

ttent

eSu

p. Ri

flette

nte

Figura 1.25: Esempio di onda stazionaria. Con le linee tratteggiate blu e verde sono rapp-resentate rispettivamente l’onda diretta e quella riflessa; con la linea continua rossa l’ondastazionaria. I cinque grafici si riferiscono agli istanti t = 0, t = π/4ω, t = π/2ω, t = π/ω.