La Metodologia RAMSES 4 - amblav.it · Valutazione del rischio da Atmosfere Esplosive secondo la...

22
Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4 pag. 1 di 22 La Metodologia RAMSES 4 Risk Assessment Methodology for workers Safety against ExplosionS per la valutazione dei rischi per la sicurezza e la salute dei lavoratori che possono essere esposti al rischio di atmosfere esplosive aggiornata al Testo Unico della Sicurezza (D.Lgs. 81/08) (versione del 12/03/2014) Sergio Colombo, Edoardo Galatola, Vera Perugini – Sindar s.r.l. Sindar s.r.l., Corso Archinti, 35 – 26900 Lodi Tel. 0371-549200 Fax: 0371-549201 E-mail: [email protected] Internet http://www.sindar.it Davide Salvagio – Libero Professionista Studio Tecnico Salvagio, Via Dei Cacciatori, 3 – 20832 Desio (MB) Tel. 0362-337130 Fax: 02-73960059 E-mail: [email protected] Internet http://www.studiosalvagio.it INDICE 1. APPROCCIO METODOLOGICO ....................................................................................................................... 2 1.1. INTRODUZIONE ................................................................................................................................................. 2 1.2. LA CLASSIFICAZIONE IN ZONE E LA VALUTAZIONE DEL RISCHIO........................................................................ 2 1.3. L'APPROCCIO BASATO SUGLI INDICI LOGARITMICI ............................................................................................. 3 1.4. CONCLUSIONE .................................................................................................................................................. 5 2. INDICI DI PERICOLO ASSOCIATI AGLI AGENTI CHIMICI ..................................................................... 5 3. INDICI DI RISCHIO PER SORGENTE DI EMISSIONE ................................................................................. 6 3.1. VARIAZIONE DEL RISCHIO DOVUTO ALLA CLASSIFICAZIONE DELLA ZONA......................................................... 7 3.2. VARIAZIONE DEL RISCHIO DOVUTO ALLA PROBABILITÀ DI PRESENZA DI SORGENTI DI ACCENSIONE ................. 7 3.3. VARIAZIONE DEL RISCHIO DOVUTO ALL'ENTITÀ DEI DANNI ............................................................................... 8 4. INDICI DI RISCHIO PER MANSIONE .............................................................................................................. 9 4.1. VARIAZIONE DEL RISCHIO DOVUTO ALLA PROSSIMITÀ DEGLI OPERATORI AL VOLUME POTENZIALMENTE ESPLOSIVO .................................................................................................................................................................... 10 4.2. VARIAZIONE DEL RISCHIO DOVUTO ALLA FREQUENZA DI ESPOSIZIONE DEGLI OPERATORI ............................... 10 4.3. VARIAZIONE DEL RISCHIO DOVUTO AL LIVELLO DI FORMAZIONE DEGLI OPERATORI ........................................ 11 5. ESITI DELLA VALUTAZIONE DEL RISCHIO .............................................................................................. 11 6. VALUTAZIONE DELLA CONFORMITÀ NORMATIVA ............................................................................. 13 ALLEGATO 1 - INDICI DI PERICOLO DEGLI AGENTI....................................................................................... 14 ALLEGATO 2 - STIMA DELLA DISTANZA DI DANNO BASE PROVOCATA DALL’ESPLOSIONE ........... 18 ALLEGATO 3 - FATTORI DI CORREZIONE DELLA DISTANZA DI DANNO ................................................. 22

Transcript of La Metodologia RAMSES 4 - amblav.it · Valutazione del rischio da Atmosfere Esplosive secondo la...

Page 1: La Metodologia RAMSES 4 - amblav.it · Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4 pag. 3 di 22 Ciascuno dei blocchi presenti nello schema richiede

Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4

pag. 1 di 22

La Metodologia RAMSES 4 Risk Assessment Methodology for workers Safety against ExplosionS

per la valutazione dei rischi per la sicurezza e la salute dei lavoratori che possono essere esposti al rischio di atmosfere esplosive

aggiornata al Testo Unico della Sicurezza (D.Lgs. 81/08) (versione del 12/03/2014)

Sergio Colombo, Edoardo Galatola, Vera Perugini – Sindar s.r.l. Sindar s.r.l., Corso Archinti, 35 – 26900 Lodi Tel. 0371-549200 Fax: 0371-549201 E-mail: [email protected] Internet http://www.sindar.it

Davide Salvagio – Libero Professionista Studio Tecnico Salvagio, Via Dei Cacciatori, 3 – 20832 Desio (MB) Tel. 0362-337130 Fax: 02-73960059 E-mail: [email protected] Internet http://www.studiosalvagio.it

INDICE

1. APPROCCIO METODOLOGICO ....................................................................................................................... 2

1.1. INTRODUZIONE ................................................................................................................................................. 2 1.2. LA CLASSIFICAZIONE IN ZONE E LA VALUTAZIONE DEL RISCHIO ........................................................................ 2 1.3. L'APPROCCIO BASATO SUGLI INDICI LOGARITMICI ............................................................................................. 3 1.4. CONCLUSIONE .................................................................................................................................................. 5

2. INDICI DI PERICOLO ASSOCIATI AGLI AGENTI CHIMICI .. ................................................................... 5

3. INDICI DI RISCHIO PER SORGENTE DI EMISSIONE ....... .......................................................................... 6

3.1. VARIAZIONE DEL RISCHIO DOVUTO ALLA CLASSIFICAZIONE DELLA ZONA ......................................................... 7 3.2. VARIAZIONE DEL RISCHIO DOVUTO ALLA PROBABILITÀ DI PRESENZA DI SORGENTI DI ACCENSIONE ................. 7 3.3. VARIAZIONE DEL RISCHIO DOVUTO ALL'ENTITÀ DEI DANNI ............................................................................... 8

4. INDICI DI RISCHIO PER MANSIONE .............................................................................................................. 9

4.1. VARIAZIONE DEL RISCHIO DOVUTO ALLA PROSSIMITÀ DEGLI OPERATORI AL VOLUME POTENZIALMENTE

ESPLOSIVO .................................................................................................................................................................... 10 4.2. VARIAZIONE DEL RISCHIO DOVUTO ALLA FREQUENZA DI ESPOSIZIONE DEGLI OPERATORI ............................... 10 4.3. VARIAZIONE DEL RISCHIO DOVUTO AL LIVELLO DI FORMAZIONE DEGLI OPERATORI ........................................ 11

5. ESITI DELLA VALUTAZIONE DEL RISCHIO ............... ............................................................................... 11

6. VALUTAZIONE DELLA CONFORMITÀ NORMATIVA ............ ................................................................. 13

ALLEGATO 1 - INDICI DI PERICOLO DEGLI AGENTI....... ................................................................................ 14

ALLEGATO 2 - STIMA DELLA DISTANZA DI DANNO BASE PRO VOCATA DALL’ESPLOSIONE ........... 18

ALLEGATO 3 - FATTORI DI CORREZIONE DELLA DISTANZA D I DANNO ................................................. 22

Page 2: La Metodologia RAMSES 4 - amblav.it · Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4 pag. 3 di 22 Ciascuno dei blocchi presenti nello schema richiede

Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4

pag. 2 di 22

1. APPROCCIO METODOLOGICO

1.1. Introduzione

Il presente documento illustra l'approccio Ramses 4 alla valutazione del rischio da atmosfere esplosive ai sensi del Titolo XI del D.Lgs. 81/08. L’art. 290 del D.Lgs. 81/08 prevede infatti che il Datore di lavoro debba valutare i rischi per i lavoratori derivanti da atmosfere esplosive, prendendo in considerazione tutti gli elementi rilevanti, tra cui, almeno:

• la probabilità e la durata della presenza di atmosfere esplosive; • la probabilità che siano presenti e divengano efficaci fonti di accensione; • le caratteristiche dell’impianto, le sostanze utilizzate, i processi e loro possibili interazioni; • l’entità degli effetti prevedibili.

1.2. La Classificazione in zone e la valutazione del rischio

Come è noto, l’art. 293 del D.Lgs. 81/08 richiede al Datore di lavoro che le aree in cui possono formarsi atmosfere esplosive vengano ripartite in Zone secondo l’allegato XLIX. La classificazione in Zone, effettuata secondo la pertinente normativa tecnica CENELEC, in particolare CEI EN 60079-10-1 (CEI 31-87) per fluidi infiammabili e CEI EN 60079-10-2 (CEI 31-88) per polveri combustibili, è conforme a quanto indicato nell’allegato XLIX del D.Lgs. 81/08. La ripartizione in Zone , secondo il suddetto allegato, è riportata nella tabella seguente:

Zona 0 Area in cui è presente in permanenza o per lunghi periodi o frequentemente un’atmosfera esplosiva consistente in una miscela di aria e di sostanze infiammabili sotto forma di gas, vapore o nebbia.

Zona 1 Area in cui la formazione di un’atmosfera esplosiva, consistente in una miscela di aria e di sostanze infiammabili sotto forma di gas, vapori o nebbia, è probabile che avvenga occasionalmente durante le normali attività.

Zona 2 Area in cui durante le normali attività non è probabile la formazione di un’atmosfera esplosiva consistente in una miscela di aria e di sostanze infiammabili sotto forma di gas, vapore o nebbia o, qualora si verifichi, sia unicamente di breve durata.

Zona 20 Area in cui è presente in permanenza o per lunghi periodi o frequentemente un’atmosfera esplosiva sotto forma di nube di polvere combustibile nell’aria.

Zona 21 Area in cui la formazione di un’atmosfera esplosiva sotto forma di nube di polvere combustibile nell’aria, e' probabile che avvenga occasionalmente durante le normali attività.

Zona 22 Area in cui durante le normali attività non è probabile la formazione di un’atmosfera esplosiva sotto forma di nube di polvere combustibile o, qualora si verifichi, sia unicamente di breve durata.

Ciascuna tipologia di Zona, che definisce qualitativamente la probabilità di formazione di atmosfera esplosiva, è generata da una o più Sorgenti di Emissione (SE) ossia un punto o una parte di impianto/apparecchiatura da cui può essere emesso nell’atmosfera un agente infiammabile o combustibile con modalità tali da generare un’atmosfera esplosiva. Il documento di classificazione in zone ATEX dei luoghi di lavoro rappresenta sicuramente una fonte importantissima e fondamentale di informazioni relative al rischio di esplosione, non di meno, come richiamato dal citato art. 290 del D.Lgs. 81/08, esso è riferito solo ad uno degli aspetti pertinenti per la valutazione del rischio: infatti, se la formazione di una atmosfera esplosiva è condizione necessaria per avere un’esplosione, non è detto che tale esplosione possa verificarsi, né che debba avere necessariamente effetti molto gravi, né, infine, che debbano essere necessariamente coinvolti i lavoratori. In effetti per valutare il rischio per i lavoratori occorre prendere in considerazione l’intera catena di eventi:

Page 3: La Metodologia RAMSES 4 - amblav.it · Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4 pag. 3 di 22 Ciascuno dei blocchi presenti nello schema richiede

Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4

pag. 3 di 22

Ciascuno dei blocchi presenti nello schema richiede una valutazione, e la valutazione del rischio per i lavoratori deriva dall’insieme dei risultati delle stime di probabilità e danno. Occorre quindi tenere sempre ben presente che, ai fini della valutazione del rischio ATEX, non è sufficiente disporre del documento di classificazione in zone e che, per la redazione del “Documento sulla protezione contro le esplosioni” previsto dall’art. 294 del D.Lgs. 81/08, è necessario:

1. valutare la possibilità e probabilità di formazione di atmosfere esplosive (identificazione agenti chimici infiammabili/combustibili, sorgenti di emissione e classificazione in zone);

2. valutare la presenza di sorgenti di accensione e la probabilità che diventino efficaci; 3. valutare l’entità dell’area di danno provocata dall’esplosione; 4. valutare l’impatto dell’esplosione sui lavoratori.

1.3. L'approccio basato sugli indici logaritmici

L’obiettivo di ogni valutazione dei rischi è quello di consentire al Datore di lavoro di individuare i provvedimenti che sono effettivamente necessari per la salvaguardia della sicurezza e della salute dei lavoratori. A questo scopo, specie nei casi in cui si devono analizzare molte diverse situazioni, risulta assai comodo poter fare riferimento ad una scala numerica associando a ciascuna delle situazioni oggetto di valutazione un indice di pericolo e/o un indice di rischio. Attraverso gli indici di rischio è possibile infatti confrontare le diverse situazioni e definire dove eventualmente è necessario intervenire con nuove misure di prevenzione e protezione. Negli approcci strutturati basati su indici numerici si definiscono specifiche funzioni matematiche che associano al pericolo e al rischio valori numerici (in genere crescenti con l’aumentare del livello di pericolo o di rischio). La funzione di pericolo deve essere correlata alle modalità e all’entità della proprietà intrinseca potenzialmente in grado di produrre effetti nocivi sui lavoratori. La funzione di rischio presuppone di definire un modello dell’esposizione dei lavoratori ad un dato pericolo, che consenta di porre in relazione l’entità del danno atteso con la probabilità del suo verificarsi, e questo per ogni condizione operativa all’interno di certe ipotesi al contorno. Per la definizione della funzione di rischio si può procedere sulla base del concetto di rischio introdotto nell’analisi di affidabilità e sicurezza degli impianti chimici alla fine degli anni '70 ed oggi universalmente riconosciuta come quella più adatta a tradurre in termini analitici il concetto di rischio. Secondo questa impostazione, il livello di rischio è esprimibile come il prodotto fra la frequenza attesa (f) di un evento indesiderabile e la grandezza (magnitudo, m) del danno che esso può causare:

rischio = f x m

Nella maggior parte dei casi si procede associando valori numerici discreti (ad esempio 1, 2, 3, 4) al fattore f e al fattore m, passando in maniera diretta dal significato fisico del parametro (ad esempio una frequenza attesa dovrebbe essere espressa in termini di volte/giorno o volte/anno o simili) a valori numerici puramente indicativi (gli indici di frequenza - IF - e gli indici di danno - ID). Ancora, generalmente, si mantiene l’operazione matematica di moltiplicazione tra indice di frequenza ed indice di danno al fine di ottenere l’indice di rischio. Tipicamente si ottengono quindi tabelle come la seguente:

Formazione atmosfera esplosiva

Esplosione con area di danno significativa

Impatto sui lavoratori

Innesco efficace

+

Page 4: La Metodologia RAMSES 4 - amblav.it · Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4 pag. 3 di 22 Ciascuno dei blocchi presenti nello schema richiede

Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4

pag. 4 di 22

Indici di rischio ottenuti come prodotto tra l’indice di frequenza e l’indice di danno

Indice di Frequenza →→→→ Indice di Danno ↓↓↓↓

1 2 3 4

1 1 2 3 4 2 2 4 6 8 3 3 6 9 12 4 4 8 12 16

Tale approccio presenta però una forte incongruenza. Trattando di rischi e pericoli, si viene messi di fronte a situazioni che necessariamente differiscono di diversi ordini di grandezza; si pensi, con riferimento alla probabilità di avere un’atmosfera esplosiva, al caso di una zona 0 confrontato con una zona 2: la Guida CEI 31-35 indica i valori di probabilità che possono essere assunti indicativamente in mancanza di altri validi riferimenti

Zona Probabilità di atmosfera

esplosiva in 365 d (un anno)

Zona 0 P > 10-1

Zona 1 10-1 ≥ P > 10-3

Zona 2 10-3 ≥ P > 10-5

Dalla tabella si deduce che la probabilità di formazione di una Zona 0 è dell’ordine di 10000 volte più grande rispetto ad una Zona 2. Ciò fa comprendere come non sia possibile interpretare gli indici di frequenza e di danno come valori proporzionali alla grandezza che rappresentano dato che, evidentemente, in questo modo si potrebbe descrivere solo una variabilità molto limitata (nell’esempio da 1 a 4 volte). Se non è corretto dire che un indice pari a 2 indica una situazione pari al doppio di una situazione con indice pari a 1, a maggior ragione non avrà senso eseguire il prodotto tra indici di frequenza ed indici di danno per ottenere l’indice di rischio. Inoltre in questo modo si ottengono valori numerici che possono portare fuori strada il Datore di lavoro: che indicazioni dà il fatto che l’indice di rischio 9 (3 per 3) è maggiore di 8 (4 per 2)? Una possibile soluzione del problema del significato da assegnare agli indici di frequenza e di danno e alle modalità di calcolo dell’indice di rischio, è data dall’approccio logaritmico agli indici di rischio. Secondo questa impostazione gli indici si ottengono calcolando il logaritmo in base 10 della frequenza attesa, del danno e del rischio. Per altro, la scelta del valore 10 come base, dettata da ragioni di semplicità, è arbitraria, ma ininfluente: dato che i logaritmi in basi diverse delle stesso numero sono direttamente proporzionali, la scelta di un’altra base porterebbe solo ad una diversa estensione della scala dei valori adottati. In altri termini si applica membro a membro l’operatore logaritmo alla relazione rischio = f x m, ottenendo:

Log(rischio) = Log(f x m)

ossia, per una nota proprietà dei logaritmi:

Log(rischio) = Log(f) + Log(m)

e quindi, passando agli indici di rischio (IR), di frequenza (IF) e di danno (ID):

IR = IF + ID Si noti come il corretto modo di aggregare indice di frequenza e indice di danno sia l’addizione e non, come adottato nella maggior parte dei casi, la moltiplicazione. In questo modo l’estensione della scala di variabilità del rischio è limitata a numeri piccoli (ad esempio, il logaritmo in base 10 di 10 è 1 e il logaritmo in base 10 di 1.000.000 è 6), ma non si incorre nelle incongruenze descritte al paragrafo precedente. Ciò consente una serie di vantaggi:

• eseguendo il logaritmo, l'intero prodotto dei fattori da considerare viene trasformato in una sommatoria: ciò consente di considerare i vari parametri rilevanti in modo indipendente, sommando il contributo di ciascuno e rendendo l’approccio al contempo solido e trasparente. Va fatto rilevare che alcuni dei termini presenti tra i fattori

Page 5: La Metodologia RAMSES 4 - amblav.it · Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4 pag. 3 di 22 Ciascuno dei blocchi presenti nello schema richiede

Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4

pag. 5 di 22

possono essere calcolati come somma di diversi contributi (ad esempio se si considera la frequenza attesa della presenza di un innesco sul luogo di lavoro, è necessario sommare tra loro la frequenza relativa a fiamme libere, a saldature, a scintille elettriche, a cariche elettrostatiche etc.). E' chiaro che la proprietà di trasformare la produttoria in sommatoria si applica in questo caso al solo fattore risultante e non ai singoli addendi che lo compongono;

• è possibile “sommare” tra loro anche pericoli/rischi di tipo diverso: se ad esempio si è definito un indice di rischio di esplosione e un indice di rischio di intossicazione a causa di prodotti tossici di combustione, ed una data sorgente di emissione presenta indice di rischio esplosione uguale a 3 ed indice di rischio tossico uguale a 2 si può facilmente e correttamente sommare i rischi ricordando la loro natura logaritmica:

3 � 103 = 1000

2 � 102 = 100

1000 + 100 = 1100

Log(1100)= 3,04

Come si nota, l’indice di rischio complessivo è di poco superiore al valore 3, come è corretto che sia visto che si stanno “sommando” situazioni diverse di un ordine di grandezza (sarebbe invece errato procedere con una semplice somma: 2 + 3 = 5)

• è possibile (con il metodo della “somma logaritmica” descritto al punto precedente) costruire degli indici di rischio aggregati riferiti, ad esempio, ai rischi di esplosione di un intero reparto;

• è possibile ottenere facilmente un Indice di rischio mansionale, ossia combinare tra loro tutti gli effetti sui lavoratori nel caso di attività lavorative che comportano l’esposizione al rischio esplosione a causa di diverse sorgenti di emissione.

1.4. Conclusione

L'approccio alla valutazione del rischio da atmosfere esplosive del software Ramses 4 prevede quindi:

1. l'uso di indici di tipo logaritmico; 2. l'uso dei risultati della Classificazione in zone ATEX ai fini della valutazione della possibilità e della probabilità di

formazione di atmosfere esplosive; 3. la valutazione della presenza di sorgenti di accensione (SA) e della probabilità che diventino efficaci; 4. la valutazione dell’entità dell’area di danno provocata dall’esplosione; 5. la valutazione dell’impatto dell’esplosione sui lavoratori.

A tal fine risulta utile definire indici di livelli diversi:

• Indici di Pericolo associati agli Agenti Chimici in grado di generare Sorgenti di Emissione che possono portare alla formazione di atmosfere infiammabili

• Indici di Rischio per Sorgente di Emissione, ossia indici di rischio associati al rischio di esplosione, che tiene conto di probabilità di formazione dell'atmosfera esplosiva, della probabilità della presenza di un innesco e dell'estensione dei danni, ma prescindendo dall'impatto sui lavoratori

• Indici di Rischio per Mansione, indicativi dell'effettivo rischio per le persone a causa della potenziale presenza di atmosfere esplosive

Nei paragrafi seguenti si descrive nel dettaglio l'approccio adottato.

2. INDICI DI PERICOLO ASSOCIATI AGLI AGENTI CHIMICI Si definisce “«atmosfera esplosiva” una miscela di aria, in condizioni atmosferiche, e sostanze infiammabili allo stato di gas, vapori, nebbie o polveri in cui, dopo accensione, la combustione si propaga all'insieme della miscela incombusta. Ovviamente gli effetti dannosi derivanti da atmosfere esplosive si presentano solo nel momento in cui effettivamente si verifica un'esplosione; nell'ambito della valutazione dei rischi dovuti alla presenza sul luogo di lavoro di atmosfere esplosive, occorre distinguere tra1:

• danni dovuti alle conseguenze meccaniche dell'esplosione;

1 Si veda il punto (8) dei "considerando" nella Direttiva CEE/CEEA/CE n° 92 del 16/12/1999, recepita nell'ordinamento italiano dal D.Lgs 233/03 successivamente inserito nel D.Lgs. 81/08.

Page 6: La Metodologia RAMSES 4 - amblav.it · Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4 pag. 3 di 22 Ciascuno dei blocchi presenti nello schema richiede

Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4

pag. 6 di 22

• effetti indiretti per possibile inalazione dei prodotti di combustione nocivi e/o possibile asfissia da consumo di ossigeno.

Conseguentemente risulta opportuno definire due indici di rischio:

IRE = Indice di rischio per irraggiamento/onda di pressione e proiezione di frammenti (esplosione)

IRT = Indice di rischio per inalazione a seguito di esplosione

Trattando il rischio da atmosfere esplosive è chiaro che buona parte dell'indice IR debba essere ascritta alle caratteristiche intrinseche di esplosività della sostanza infiammabile/combustibile2; per questo motivo si è associato a ciascun agente chimico una coppia di indici di pericolo:

IPE = Indice di pericolo per irraggiamento/onda di pressione (esplosione)

IPT = Indice di pericolo per inalazione a seguito di esplosione

Il valore assegnato agli IP dipende dalle caratteristiche chimico-fisiche della sostanza combustibile e può essere ricavato

come illustrato in ALLEGATO 1 - INDICI DI PERICOLO DEGLI AGENTI. Ne risulta che il campo di variabilità degli indici di pericolo è il seguente:

Indice di pericolo

In base alle caratteristiche chimico-fisiche

In base alla qualità delle fonti informative

Totale

IPE 3,5 ÷ 6,5 0 ÷ +1 3,5 ÷ 7,5 IPT 5 0 ÷ +1 5 ÷ 6

3. INDICI DI RISCHIO PER SORGENTE DI EMISSIONE Per la determinazione degli Indici di Rischio per Sorgente di Emissione, che dipendono dalla probabilità di formazione dell'atmosfera esplosiva, dalla probabilità della presenza di un innesco e dall'estensione dei danni, ma prescindono dall'impatto sui lavoratori, si utilizzano le seguenti formule:

IRE-SE = IPE + ∆∆∆∆zona + ∆∆∆∆inneschi + ∆∆∆∆danni esplosione + KSE-E

IRT-SE = IPT + ∆∆∆∆zona + ∆∆∆∆inneschi + ∆∆∆∆danni tossicità + KSE-T

dove:

Parametro Descrizione Valore assunto IRE-SE Indice di Rischio da Esplosione per Sorgente di Emissione Risultato del calcolo IRT-SE Indice di Rischio da Tossicità per Sorgente di Emissione Risultato del calcolo IPE Indice di Pericolo da Esplosione riferito all'agente chimico

che genera la Sorgente di Emissione Si veda in ALLEGATO 1 - INDICI

DI PERICOLO DEGLI AGENTI

IPT Indice di Pericolo da Tossicità riferito all'agente chimico che genera la Sorgente di Emissione

Si veda in ALLEGATO 1 - INDICI DI PERICOLO DEGLI

AGENTI ∆zona Variazione del rischio dovuto alla classificazione della Zona

generata dalla Sorgente di Emissione Si veda al paragrafo 3.1

∆inneschi Variazione del rischio dovuto alla probabilità di presenza di Sorgenti di Accensione

Si veda al paragrafo 3.2

∆danni esplosione Variazione del rischio dovuto all'entità dei danni diretti da esplosione

Si veda al paragrafo 3.3

2 Tutte le sostanze infiammabili e combustibili sono da considerare come sostanze che possono formare un'atmosfera esplosiva a meno che l'esame delle loro caratteristiche non abbia evidenziato che esse, in miscela con l'aria, non sono in grado di propagare autonomamente un'esplosione.

Page 7: La Metodologia RAMSES 4 - amblav.it · Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4 pag. 3 di 22 Ciascuno dei blocchi presenti nello schema richiede

Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4

pag. 7 di 22

Parametro Descrizione Valore assunto ∆danni tossicità Variazione del rischio dovuto all'entità dei danni indiretti da

tossicità dei prodotti di combustione KSE-E Costante per Sorgente di Emissione rischio esplosione 3 KSE-T Costante per Sorgente di Emissione rischio tossico 3

Di seguito sono analizzati nel dettaglio gli algoritmi di calcolo delle variazioni da prendere in considerazione.

3.1. Variazione del rischio dovuto alla classificazione della Zona

Come detto sopra, ciascuna Sorgente di Emissione è assegnata ad una Zona Classificata in base alla frequenza e alla durata della presenza di atmosfere esplosive. Tenuto conto dell'approccio logaritmico adottato e di quanto stabilito dalle norme tecniche (si veda la tabella seguente), il termine ∆zona è stato definito come:

∆∆∆∆zona = Log (Pesozona)

Probabilità di atmosfera esplosiva in 365 d (un anno)

Durata D compl. in ore Atm. Esplosiva in un anno

Zona Da A Da A Peso assegnato

20 0 1 10-1 876,00 1 10-1 21 1 1 10-3 1 10-1 8,76 876,00 1 10-3 22 2 1 10-5 1 10-3 0,09 8,76 1 10-5

In pratica:

Zona ∆∆∆∆zona 20 0 -1 21 1 -3 22 2 -5

3.2. Variazione del rischio dovuto alla probabilità di presenza di Sorgenti di Accensione

La valutazione della probabilità che le sorgenti d’accensione divengano efficaci può essere effettuata applicando la Norma generale UNI EN 1127-1, che identifica le seguenti tipologie generali di innesco:

• Superfici calde;

• Scintille di saldatura, fiamme e gas caldi di altra origine;

• Superfici calde di origine meccanica;

• Scintille di origine meccanica;

• Materiale elettrico;

• Correnti vaganti;

• Cariche elettrostatiche;

• Onde elettromagnetiche a radiofrequenza (RF) da 104 Hz a 3⋅1012 Hz.;

• Onde elettromagnetiche da 3⋅1011 Hz a 3⋅1015 Hz;

• Radiazioni ionizzanti;

• Ultrasuoni;

• Compressione adiabatica e onde d’urto;

• Aumenti di temperatura dovuti a reazioni chimiche o a materiali instabili;

• Combustione di uno strato di polveri o di altro materiale combustibile;

• Fulmini.

Page 8: La Metodologia RAMSES 4 - amblav.it · Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4 pag. 3 di 22 Ciascuno dei blocchi presenti nello schema richiede

Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4

pag. 8 di 22

Tenuto conto dell'approccio logaritmico adottato e di quanto stabilito dalle norme tecniche per quanto riguarda le classi di probabilità di presenza delle sorgenti di emissione (si veda la tabella seguente), il termine ∆inneschi è stato definito come:

∆∆∆∆inneschi = Log (ΣΣΣΣProbinneschi)

dove con ΣProbinneschi si intende la somma delle probabilità di innesco di tutte le sorgenti di emissioni presenti all'interno del volume in condizioni di esplosività generato dalla Sorgente di Emissione. Probabilità di presenza

in 365 d (un anno) Persistenza

in ore in un anno

Singola sorgente di innesco Da A Da A Probabilità assegnata

Durante il normale funzionamento 1 10-1 1 876 8760 1 10-1 Durante guasti prevedibili 1 10-3 1 10-1 8,76 876 1 10-3 Durante guasti rari 1 10-5 1 10-3 0,09 8,76 1 10-5 Non considerata 1 10-7 1 10-5 0,0009 0,09 1 10-7

In pratica, a titolo di esempio3, :

Presenza di 1 solo innesco ∆∆∆∆inneschi Durante il normale funzionamento -1 Durante guasti prevedibili -3 Durante guasti rari -5 Non considerata -7

Copresenza di più inneschi N. di inneschi

Probabilità di presenza in 365 d (un anno)

Durante il normale funzionamento 0 0 Durante guasti prevedibili 2 2 10-3 Durante guasti rari 8 8 10-5 Non considerata 15 15 10-7 ∆∆∆∆inneschi

Complessivo 25 2,08 10-3 -2,68

3.3. Variazione del rischio dovuto all'entità dei danni

L’interfaccia tra l’attività di classificazione in zone e la valutazione del rischio d’esplosione per i lavoratori è la stima dell’entità del danno. La procedura di classificazione in zone, come proposta dalle pertinenti norme CEI EN, termina con la stima della forma e dimensioni del volume esplosivo nonchè la relativa probabilità di presenza. È noto che il danno a persone e cose, a seguito di un’esplosione, è provocato dagli effetti della sovrappressione. Se gli effetti della sovrappressione d’esplosione non sono significativi (magnitudo del danno trascurabile), la zona si identifica come NE (Negligible Extent) di fatto non pericolosa (es. Zona 1NE). Di conseguenza la valutazione del rischio d’esplosione, in queste circostanze, termina qui poichè non avrebbe più senso procedere con l’analisi degli inneschi. Questo aspetto decisionale, di competenza del tecnico classificatore, è tuttavia di difficile valutazione. Nel caso invece di effetti di sovrapressione significativi, la conoscenza dell’area geometrica entro la quale essi si presentano è di grande interesse al fine di valutare il possibile impatto dell’esplosione sui lavoratori. Si comprende dunque come poter disporre di un algoritmo per la stima quantitativa della “distanza di danno” possa essere di grande interesse al fine di rispondere ad entrambe le esigenze descritte sopra. L'algoritmo adottato è il seguente:

∆∆∆∆danni esplosione = Log (Dcorretta E)

3 Nella tabella seguente si riportano due esempi di calcolo. Nel primo viene illustrato il valore di ∆inneschi per ciascuna classe di probabilità nel caso in cui sia presente una sola sorgente di accensione. Nel secondo esempio si è in presenza di più sorgenti di accensione.

Page 9: La Metodologia RAMSES 4 - amblav.it · Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4 pag. 3 di 22 Ciascuno dei blocchi presenti nello schema richiede

Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4

pag. 9 di 22

∆∆∆∆danni tossicità = Log (Dcorretta T) dove

Dcorretta E = Dbase E . ΠΠΠΠ Fattori di correzioneE

Dcorretta T = Dbase T . ΠΠΠΠ Fattori di correzioneT

Dbase T = 5 . Dbase E dove Dbase E viene calcolata come descritto in ALLEGATO 2 - STIMA DELLA DISTANZA DI DANNO BASE

PROVOCATA DALL’ESPLOSIONE e con il simbolo ΠΠΠΠ si è indicata la produttoria dei fattori elencati in ALLEGATO 3 - FATTORI DI CORREZIONE DELLA DISTANZA DI DANNO.

Nota: dato che l'innesco del volume in condizioni esplosive si può verificare in diversi punti della volume classificato come Zona, e - al limite - nei pressi del suo confine esterno, la distanza di danno determinata come descritto sopra va cautelativamente applicata non in corrispondenza della Sorgente di emissione, ma a partire dal confine del volume classificato.

4. INDICI DI RISCHIO PER MANSIONE Per la determinazione degli Indici di Rischio per Mansione, che, come definito al paragrafo 1.4, sono indicativi dell'effettivo rischio per le persone a causa della potenziale presenza di atmosfere esplosive, si utilizzano le seguenti formule:

IRE-M = IPE-SE + ∆∆∆∆prossimità-E + ∆∆∆∆frequenza + ∆∆∆∆formazione + KM-E

IRT-M = IPT-SE + ∆∆∆∆prossimità-T + ∆∆∆∆ frequenza + ∆∆∆∆ formazione + KM-T

dove:

Parametro Descrizione Valore assunto IRE-M Indice di Rischio da Esplosione per Mansione Risultato del calcolo IRE-T Indice di Rischio da Tossicità per Mansione Risultato del calcolo IPE-SE Indice di Rischio da Esplosione per Sorgente di Emissione Si veda al paragrafo 3 IPT-SE Indice di Rischio da Tossicità per Sorgente di Emissione Si veda al paragrafo 3

∆prossimità-E Variazione del rischio dovuto alla posizione della mansione all'interno dell'area dei danni diretti da esplosione

Si veda al paragrafo 4.1

Page 10: La Metodologia RAMSES 4 - amblav.it · Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4 pag. 3 di 22 Ciascuno dei blocchi presenti nello schema richiede

Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4

pag. 10 di 22

Parametro Descrizione Valore assunto ∆prossimità-T Variazione del rischio dovuto alla posizione della mansione all'interno

dell'area dei danni indiretti da tossicità dei prodotti di combustione ∆frequenza Variazione del rischio dovuto frequenza della presenza della mansione Si veda al paragrafo 4.2

∆formazione Variazione del rischio dovuto al livello di formazione della mansione Si veda al paragrafo 4.3 KM-E Costante per Mansione rischio esplosione 2 KM-T Costante per Mansione rischio tossico 2

Di seguito sono analizzati nel dettaglio gli algoritmi di calcolo delle variazioni da prendere in considerazione.

4.1. Variazione del rischio dovuto alla prossimità degli operatori al volume potenzialmente esplosivo

Dato che gli effetti dell'esplosione variano con la distanza, al fine di valutare il rischio per l'operatore è necessario tenere conto della sua posizione relativa al volume in condizioni di esplosività. Più precisamente, tenuto conto di quanto detto nella nota finale al paragrafo 3.3 e adottando un approccio conservativo, si deve fare riferimento al rapporto tra la distanza minima dell'operatore dal confine del volume classificato come potenzialmente esplosivo e la distanza di danno precedentemente calcolata (per i danni diretti da esplosione oppure per danni indiretti da tossicità dei prodotti di combustione). La tabella seguente riporta i valori di ∆prossimità in corrispondenza delle fasce di rapporto Distanza minima operatore/Distanza di danno.

Posizione all’interno dell’area di danno

Rapporto Distanza minima

operatore/Distanza di danno

∆prossimità-E

∆prossimità-T

Da A

Oltre la distanza di danno 10

-6,00

5 10 -4,00 1,2 5 -2,00

In prossimità della distanza di danno 0,8 1,2 0,00 In posizione mediana tra il confine del volume esplosivo e la distanza di danno

0,4 0,8 +0,48

In prossimità del confine del volume esplosivo

0,0 0,4 +1,00

4.2. Variazione del rischio dovuto alla frequenza di esposizione degli operatori

Ai fini della valutazione di rischio per gli operatori, è necessario tenere conto anche della frequenza con la quale essi si possono trovare nella zona di possibile impatto dell'eventuale esplosione. Al solito si è adottato un approccio di tipo logaritmico:

∆∆∆∆frequenza = Log (N. ore presenza a settimana/(40*50)) A titolo di esempio si riportano nella tabella seguente i valori di ∆frequenza corrispondenti ad alcune frequenze di esposizione.

Page 11: La Metodologia RAMSES 4 - amblav.it · Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4 pag. 3 di 22 Ciascuno dei blocchi presenti nello schema richiede

Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4

pag. 11 di 22

Frequenza esposizione Tempo medio di permanenza in ore/settimana

Probabilità di presenza in 365 d

(un anno) ∆∆∆∆frequenza

Costante, per lunghi periodi o frequente

40 2 10-2 -1,70 20 1 10-2 -2,00 10 5 10-3 -2,30

Occasionale o periodica 8 4 10-3 -2,40 4 2 10-3 -2,70 1 5 10-4 -3,30

Rara o poco frequente e per breve periodo

0,5 2,5 10-4 -3,60 0,2 1 10-4 -4,00 0,01 5 10-6 -5,30

4.3. Variazione del rischio dovuto al livello di formazione degli operatori

Ovviamente anche il livello di formazione degli operatori ha un impatto sulla stima del rischio, in quanto condiziona da una parte il controllo delle sorgenti di accensione e dall'altro la capacità dell'operatore di adottare adeguate misure di protezione. I valori di ∆formazione adottati sono i seguenti

Livello di formazione ∆∆∆∆formazione Insufficiente informazione sui rischi da

atmosfere esplosive +1,00

Adeguata informazione sugli specifici rischi da atmosfere esplosive

0,00

Adeguata formazione sulle corrette modalità operative da adottare

-0,30

Adeguata formazione e addestramento -1,00 Procedure di lavoro scritte che contengono

anche chiare indicazioni di sicurezza -1,30

5. ESITI DELLA VALUTAZIONE DEL RISCHIO Il metodo sin qui esposto consente di calcolare:

• un Indice di pericolo associato a ciascun agente in grado di generare un'atmosfera potenzialmente esplosiva

• un Indice di rischio per ogni Sorgente di emissione presente in una Zona classificata a rischio di esplosione

• un Indice di rischio per ogni Mansione potenzialmente esposta agli effetti di un'esplosione L'approccio adottato è basato sull'utilizzo di indici di tipo logaritmico parametrati sulla stessa scala di valori già definita per il software Moses 44, appartenente allo stesso pacchetto software di Ramses. Questa scelta consente di avere indici di rischio direttamente paragonabili a quelli ottenuti per altri pericoli presenti negli ambienti di lavoro per gli stessi operatori e quindi rende possibile con semplicità sia la comparazione sia la “somma” dei rischi a livello mansionale.

4 MOSES 4 -Multi-factor Occupational riSk Evaluation. Software per la valutazione dei rischi per la sicurezza e la salute dei lavoratori

Page 12: La Metodologia RAMSES 4 - amblav.it · Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4 pag. 3 di 22 Ciascuno dei blocchi presenti nello schema richiede

Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4

pag. 12 di 22

La scala adottata, e la conseguente definizione del programma degli eventuali interventi di miglioramento, è la seguente: Indice di rischio Livello di rischio

Programma interventi Dettaglio sulle modalità di attuazione

4÷6: alto Effettuare azioni correttive indilazionabili

• Intervento tecnico/manutentivo immediato • Attività addestrative effettuate e ripetute periodicamente sul personale • Sorveglianza continuativa da parte dei preposti sulla attività a rischio • Manutenzione preventiva dispositivi critici per la sicurezza • Verifica SPP aziendale sulla necessità di sospendere l’attività sino al

ripristino delle condizioni di sicurezza 3÷4: medio Programmare interventi

di miglioramento urgenti • Intervento tecnico/manutentivo nel breve o brevissimo periodo • Attività addestrative prioritarie sul personale • Sorveglianza continuativa da parte dei preposti • Manutenzione preventiva dispositivi critici per la sicurezza • Controlli sanitari e di esposizione dei lavoratori • Verifica SPP aziendale sulla necessità di istituire specifiche restrizioni /

forme di controllo 2÷3: basso

Programmare interventi

di miglioramento nel medio termine

• Intervento tecnico/manutentivo nel medio periodo • Attività addestrative sul personale • Sorveglianza continuativa da parte dei preposti sulle attività in oggetto • Controlli sanitari e di esposizione dei lavoratori • Manutenzione (preventiva/su chiamata) apparecchiature ed impianti

critici per la sicurezza 1÷2: accettabile Non è strettamente

necessario programmare interventi di

miglioramento

• Intervento da programmarsi secondo fattibilità tecnico-economica • Mantenimento delle condizioni di sicurezza e del rispetto degli

adempimenti generali in ottemperanza al D.Lgs. 81/08 e succ. int. e mod.

0÷1: trascurabile Non è necessario programmare interventi

di miglioramento

• Mantenimento delle condizioni di sicurezza e del rispetto degli adempimenti generali in ottemperanza al D.Lgs. 81/08 e succ. int. e mod.

Page 13: La Metodologia RAMSES 4 - amblav.it · Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4 pag. 3 di 22 Ciascuno dei blocchi presenti nello schema richiede

Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4

pag. 13 di 22

6. VALUTAZIONE DELLA CONFORMITÀ NORMATIVA Per conformità normativa si intende il soddisfacimento dei requisiti di protezione di impianti e apparecchiature a specifiche norme tecniche, in accordo alla Direttiva 94/9/CE. Ramses 4 consente di valutare, in modo qualitativo e parallelamente al calcolo degli indici di rischio, il livello equivalente di sicurezza di ogni singola sorgente d’accensione correlandola alla tipologia di zona pericolosa, restituendo come risultato l’equivalente categoria ATEX della coppia Sorgente-Zona. L’approccio, tipicamente utilizzato per la certificazione di componenti e macchinari, può essere facilmente esteso anche agli ambienti di lavoro. La Norma UNI EN 13463-1, in luogo del calcolo delle probabilità di accadimento di un evento sfavorevole, richiede l’individuazione del numero di guasti dopo i quali si ha l’evento d’esplosione indesiderato. Se si associa ad ogni guasto/disfunzione una barriera di sicurezza, si potranno identificare il numero di barriere complessive da non superare affinché il sistema in esame sia conforme. Poiché nella tecnica della sicurezza contro le esplosioni le barriere contro un evento sfavorevole sono tipicamente tre, l’analisi dei rischi di accensione verterà nel verificare il sistema affinché la sommatoria delle barriere associate alla formazione di atmosfera esplosiva e all’efficacia delle sorgenti d’innesco sia uguale o superiore a tre, secondo le seguenti corrispondenze:

Numero di Barriere

Presenza di Atmosfera Esplosiva P

ossi

bile

eve

nto

d’e

splo

sion

e (s

omm

ator

ia b

arri

ere

<3)

Innesco Efficace ammesso

Numero di Barriere

0 Continua o frequente

(Zona 0 o 20)

Dopo tre o più disfunzioni/guasti

3

1

Dopo una alterazione del sistema di contenimento o per emissioni non continue, ma previste nel normale

funzionamento (Zona 1 o 21)

Dopo due disfunzioni/guasti

2

2 Dopo due alterazioni del sistema di contenimento o in condizioni rare

(Zona 2 o 22) Dopo una disfunzione/guasto 1

3 Dopo tre o più alterazioni del sistema

di contenimento o in casi rarissimi (Zona non classificata)

In condizioni ordinarie (apparecchio scintillante)

0

Il “doppio guasto” (due disfunzioni) nella terminologia delle norme europee corrisponde a “rara disfunzione”.

Naturalmente l’indagine dovrà essere svolta per ogni potenziale sorgente d’accensione individuata.

Tabella di conformità normativa

Zona Categoria ATEX (EPL)

1G (Ga)

1D

(Da) 2G (Gb) 2D (Db) 3G (Gc) 3D (Dc)

0

20

1

21

2

22

Verde=Conforme Rosso=Non conforme

Page 14: La Metodologia RAMSES 4 - amblav.it · Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4 pag. 3 di 22 Ciascuno dei blocchi presenti nello schema richiede

Allegati

ALLEGATO 1 - INDICI DI PERICOLO DEGLI AGENTI Nel presente Allegato viene definita la modalità adottata per determinare l’indice di pericolo IPEX associato agli agenti in grado di formare atmosfere potenzialmente esplosive: Il pericolo di esplosione Al fine di giungere ad una definizione di un indice di pericolo da esplosione per un dato agente chimico è utile ricordare che per esplosione si intende, in generale, un rilascio di energia in un tempo relativamente breve e in uno spazio relativamente ristretto, capace di generare un'onda di pressione che si propaga nello spazio circostante. Affinché ci sia un’esplosione è necessario che siano presenti una miscela infiammabile (costituita da una sostanza combustibile e dall’ossigeno dell’aria in quantità sufficienti), una sorgente di ignizione efficace (ossia capace di trasferire una sufficiente quantità di energia ad un volume, anche molto piccolo, di miscela infiammabile) e un sistema che limiti in qualche modo il volume disponibile per la miscela stessa5. Visto che l’obiettivo è la costruzione di un indice relativo al solo agente chimico, risulta necessario escludere tutti i parametri che si riferiscono ad altro ossia: la presenza dell’ossigeno dell’aria, la presenza di un innesco e la limitazione del volume disponibile. Un’esplosione è in realtà un fenomeno di grande complessità che difficilmente po’ essere descritto dettagliatamente in termini teorici e sperimentali. Infatti, se da una parte la natura del fenomeno è chiara (reazione chimica veloce), dall’altra una serie di condizioni particolari, come la pressione e la temperatura di partenza, l’omogeneità o meno della nube, la posizione e l’energia di innesco, la forma della nube in condizioni esplosive e la presenza di eventuale turbolenza, sono in grado di modificare il risultato dell’esplosione. E’ dunque del tutto normale un certo grado di variabilità nelle misure di grandezze relative alle esplosioni, variabilità che solitamente viene limitata adottando condizioni di misura specificate e standardizzate. Risulta comunque possibile fare riferimento ad alcuni parametri, scelti all’interno del gran numero di variabili disponibili, ritenuti maggiormente indicativi e descritti di seguito.

• Energia minima di accensione: è la minima quantità di energia che rilasciata in un punto, è sufficiente per provocare l’accensione dell’atmosfera più infiammabile in condizioni di prova specificate

• Temperatura di autoignizione (per liquidi e gas): minima temperatura alla quale si verifica l’accensione spontanea della sostanza a contatto con l’atmosfera.

• Temperatura di accensione dello strato (per polveri): temperatura più bassa di una superficie calda alla quale si verifica l’accensione in uno strato di polveri in condizioni di prova specificate

• Punto di infiammabilità (per liquidi e gas): temperatura minima alla quale, in condizioni di prova specificate, un liquido emette una quantità sufficiente di gas o vapore combustibile in grado di accendersi all’applicazione di una sorgente di accensione efficace vicino alla superficie liquida. Facilità all’accensione descritta dalle Frasi R secondo la classificazione delle sostanze e dei preparati:

• Temperatura di accensione della nube (per polveri): temperatura più bassa di una superficie calda su cui la miscela più infiammabile delle polveri con l’aria si accende in condizioni di prova specificate.

• Ampiezza del campo esplosività (per liquidi e gas): il campo di esplosività è l’intervallo di concentrazioni di una sostanza infiammabile nell’aria, all’interno del quale può verificarsi un’esplosione. L’intervallo è compreso tra il LEL, limite inferiore, ossia concentrazione in aria di una sostanza infiammabile al di sotto della quale l'atmosfera non è esplosiva e l’UEL, limite superiore, ossia concentrazione in aria di una sostanza infiammabile al di sopra della quale l'atmosfera non è esplosiva.

• Minima concentrazione esplosiva (per polveri): concentrazione in aria della polvere infiammabile finemente suddivisa al di sotto della quale non si verifica esplosione in presenza di innesco

• Energia di combustione della miscela combustibile-aria: massima quantità di energia sviluppata dalla combustione di un volume prefissato di miscela infiammabile dell’agente considerato.

• Massima pressione di esplosione: pressione massima sviluppata in un recipiente chiuso durante l’esplosione di un’atmosfera esplosiva determinata in condizioni di prova specificate.

• Velocità di fiamma: velocità di propagazione della fiamma relativamente ad un punto fisso definito

• KG (per liquidi e gas): indice di deflagrazione di una nube gassosa. E’ dato da:

31

max

Vdt

dP

• KST (per polveri): Indice di deflagrazione di nube di polvere. E’ dato da

31

max

Vdt

dP.Classe di esplosività (St)

5 Miscele infiammabili che non siano confinate non danno luogo ad esplosioni, ma a combustioni veloci che non generano significative onde di pressione, ma solo radiazione termica istantanea, e che vengono chiamate flash fire

Page 15: La Metodologia RAMSES 4 - amblav.it · Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4 pag. 3 di 22 Ciascuno dei blocchi presenti nello schema richiede

Allegati

Il valore assegnato all’indice di pericolo IPT6, ove pertinente, è stato assegnato pari a 5. Il valore assegnato all’indice di pericolo IPE7 dipende dalle caratteristiche chimico-fisiche dell'agente. Le proprietà pertinenti8 sono state suddivise in gruppi, ciascuno dei quali dà un contributo all’indice di pericolo9: Energia di innesco IPI Concentrazione del combustibile

Facilità di ingresso nel campo di esplosività in base alla temperatura IPC1 Ampiezza del campo di esplosività IPC2

Caratteristiche dell'esplosione Intensità dell’esplosione IPE1 Velocità massima di aumento della pressione nel tempo IPE2

Si ha dunque:

IPE = 2,5 + IPI + IPC1 + IPC2 + IPE1 + IPE2 dove il termine 2,5 è un valore costante adottato per la normalizzazione del campo di variabilità di IPEX entro un intervallo prefissato. Le tabelle seguenti illustrano la parametrizzazione dell’indice per le proprietà prese in considerazione, separatamente per i gas/vapori/nebbie di liquidi e per le polveri.

6 Indice di pericolo per inalazione a seguito di esplosione 7 Indice di pericolo per irraggiamento/onda di pressione (esplosione) 8 Si sono selezionati i parametri ritenuti maggiormente indicativi, all’interno del gran numero di variabili disponibili 9 Per maggiori dettagli sulla definizione dei parametri citati si rimanda alla letteratura specializzata ed alle norme tecniche vigenti

Page 16: La Metodologia RAMSES 4 - amblav.it · Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4 pag. 3 di 22 Ciascuno dei blocchi presenti nello schema richiede

Allegati

Per gas o vapori e nebbie di liquidi10

Energia di innesco

IPI

Energia minima di accensione (mJ) <1 1-10 10-50 50-100 100-500 >500 1 0,8 0,6 0,5 0,3 0,1

Temperatura di autoignizione (°C) <100 100-135 135-200 200-300 300-450 >450 0,9 0,8 0,6 0,4 0,2 0,1

Concentrazione del combustibile

IPC1

Frasi R Solo combustib. R10 R11 R12 0,2 0,4 0,6 0,8

Frasi H Solo combustib. H226 H221, 223, 225

H220, 222, 224

0,2 0,4 0,6 0,8 Punto di infiammabilità (°C) >55 ≥21 - ≤55 >0 - <21 ≤0

0,2 0,4 0,6 0,8

IPC2

Limite inferiore di esplosività – LEL (%) <5 5-10 10-20 >20 0,8 0,6 0,4 0,2

Ampiezza campo esplosività = UEL – LEL (%)

< 5 5-20 20-50 >50 0,2 0,4 0,6 0,8

Caratteristiche dell'esplosione

IPE1

Energia di combustione della miscela combustibile -aria (MJ/m3)

<0,1 0,1-3 3-10 >10 0,2 0,4 0,6 0,8

Massima pressione di esplosione (bar) <5 5-7 7-10 >10 0,2 0,4 0,6 0,8

IPE2

Velocità di fiamma (m/s) <0,2 0,2-1 1-2,5 2,5 0,2 0,4 0,6 0,8

KG (bar m /s) <100 100-500 500-1000 >1000 0,2 0,4 0,6 0,8

Per le polveri11,12

Energia di innesco

IPI

Energia minima di accensione (mJ) <1 1-10 10-50 50-100 100-500 >500 1 0,8 0,6 0,5 0,3 0,1

Temperatura di accensione della nube (°C) <100 100-135 135-200 200-300 300-450 >450 0,9 0,8 0,6 0,4 0,2 0,1

Temperatura di accensione dello strato (°C) <150 150-200 200-300 >300 0,8 0,6 0,4 0,2

Concentrazione del combustibile

IPC1

Frasi R solo combustib. R10 R11 R12 0,2 0,4 0,6 0,8

Frasi H Solo combustib. H228 0,2 0,6

IPC2 Minima concentrazione esplosiva (g/m3) < 10 10-50 50-100 >100

0,8 0,6 0,4 0,2 Caratteristiche dell'esplosione

IPE1

Energia di combustione della miscela combustibile – aria (MJ/m3)

<0,1 0,1-3 3-10 >10 0,2 0,4 0,6 0,8

Massima pressione di esplosione (bar) <5 5-7 7-10 >10 0,2 0,4 0,6 0,8

IPE2

KST (bar m /s) 0 >0-≤200 200≤300 >300 0,2 0,4 0,6 0,8

Classe di esplosività (St) 0 1 2 3 0 0,4 0,6 0,8

10 Per ciascun contributo all’indice si prende in considerazione il dato a cui corrisponde il valore massimo tra quelli riportati; in caso di assenza di dati si assume il valore massimo del contributo all’indice di pericolo 11 Per ciascun contributo all’indice si prende in considerazione il dato a cui corrisponde il valore massimo tra quelli riportati; in caso di assenza di dati si assume il valore massimo del contributo all’indice di pericolo 12 Si vedano anche più sotto gli aspetti "Condizioni particolari dell’agente" e "Granulometria" che vengono presi in considerazione al momento della valutazione del rischio

Page 17: La Metodologia RAMSES 4 - amblav.it · Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4 pag. 3 di 22 Ciascuno dei blocchi presenti nello schema richiede

Allegati

Per le polveri un'ulteriore correzione viene effettuata a livello di valutazione dei rischi13 per tenere conto di:

condizioni particolari dell’agente (diverse da quelle definite nella scheda di assegnazione dell'indice di pericolo) come da tabella seguente:

• Polvere ad umidità molto aumentata rispetto al normale (min 30%) � si sottrae 3 agli IP • Polvere con aggiunta di un solido inerte (minimo 50%) � si sottrae 3 agli IP • Polvere molto secca rispetto al normale � si aggiunge 1 agli IP • Miscela ibrida (polvere + gas/vapori infiammabili) � si aggiunge 1 agli IP • Nessuna condizione particolare � il valore degli IP resta invariato

granulometria:

• granulometria >1000 µm � si sottrae 3 agli IP

• granulometria 500-1000 µm � si sottrae 2 agli IP • granulometria 200-500 µm � si sottrae 1 agli IP • granulometria 100-200 µm � si sottrae 0,5 agli IP • granulometria 20-100 µm � si sottrae 0,25 agli IP • granulometria <20 µm � il valore degli IP resta invariato

Per tutti gli indici di pericolo si è infine considerata la qualità delle fonti informative utilizzate, modificando il valore degli indici secondo il seguente schema14:

Per l’aggiornamento delle fonti utilizzate: • Non è stato verificato l'aggiornamento delle fonti informative � si aggiunge 0,25

• I dati utilizzati derivano da fonti non aggiornate (oltre 5 anni) � si aggiunge 0,25

• Almeno alcuni dei dati utilizzati derivano da fonti aggiornate (ultimi 5 anni) � si aggiunge 0,125

• Quasi tutti i dati utilizzati derivano da fonti aggiornate (ultimi 5 anni) � il valore resta invariato

Per l’estensione delle fonti di dati utilizzate: • Dati ricavati da fonti diverse, senza possibilità di confronto dei singoli dati � si aggiunge 0,5

• Dati ricavati da un'unica fonte � si aggiunge 0,25

• Dati ricavati dal confronto di diverse fonti disponibili (dati discordi) � si aggiunge 0,25

• Dati ricavati dal confronto di diverse fonti disponibili (dati discordi, scelte sempre conservative)

� il valore resta invariato

• Dati ricavati dal confronto di diverse fonti disponibili (dati sostanzialmente concordi)

� il valore resta invariato

Per il ricorso a misure sperimentali:

• Dati ricavati solamente dalla letteratura � si aggiunge 0,25

• Almeno alcuni dei dati utilizzati derivano da misure sperimentali sull'agente considerato

� si aggiunge 0,125

• Quasi tutti i dati utilizzati derivano da misure sperimentali sull'agente considerato

� il valore resta invariato

Il campo di variabilità degli indici di pericolo risulta quindi essere il seguente15:

Indice di pericolo Caratteristiche chimico-fisiche

Qualità delle fonti informative

Totale

IPE 3,5 ÷ 6,5 0 ÷ +1 3,5 ÷ 7,5 IPT 5 0 ÷ +1 5 ÷ 6

13 Tale scelta dipende dal fatto che gli aspetti considerati non si riferiscono alle caratteristiche specifiche della polvere considerata, ma alle effettive condizioni d'uso, che possono essere diverse nei diversi contesti in cui la povere viene utilizzata all'interno dell'azienda 14 Si tenga presente inoltre che la mancanza di dati può provocare un aumento degli indici determinati in base alle caratteristiche chimico fisiche 15 Per le polveri si vedano anche, più sopra, gli aspetti "Condizioni particolari dell’agente" e "Granulometria" che a loro volta possono comportare una variazione degli indici di pericolo

Page 18: La Metodologia RAMSES 4 - amblav.it · Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4 pag. 3 di 22 Ciascuno dei blocchi presenti nello schema richiede

Allegati

ALLEGATO 2 - STIMA DELLA DISTANZA DI DANNO BASE PROVOCATA DALL’ESPLOSIONE

Introduzione

Quando si verifica un'esplosione, si possono presentare diverse tipologie di effetti negativi sulle persone eventualmente presenti:

- fiamme;

- radiazione termica;

- onde di pressione;

- proiezioni di frammenti;

- formazione di prodotti nocivi di combustione;

- formazione di atmosfere con scarsità di ossigeno.

Per ciascuna tipologia di effetti, l'entità delle conseguenze è correlata ad un elevato numero di parametri relativi alle condizioni nelle quali si sviluppa l'esplosione. Tra questi parametri vi sono:

- le proprietà chimiche e fisiche delle sostanze infiammabili;

- la quantità di atmosfera esplosiva coinvolta;

- il grado di confinamento dell’atmosfera esplosiva;

- la geometria dell’ambiente circostante;

- la resistenza dell’eventuale involucro e delle relative strutture di supporto;

- le proprietà fisiche degli oggetti esposti al pericolo;

- la tipologia dei dispositivi di protezione indossati dal personale esposto al pericolo.

Nota Bene: una valutazione accurata delle possibili lesioni a cose e/o persone in funzione della distanza dal baricentro dell'esplosione può essere effettuata solo caso per caso e mediante l'uso di metodologie di calcolo specifiche.

Ai fini dell'analisi preliminare del rischio dovuto a formazione di atmosfere esplosive può essere sufficiente disporre di una stima di massima del livello degli effetti conseguenti ad un'esplosione ed è altamente raccomandabile disporre di uno strumento di calcolo unitario e sufficientemente semplice. Infatti, un indicatore del rischio complessivo definito come al Cap. 1 è per sua natura affetto da grosse incertezze legate principalmente alla disponibilità di informazioni di base (classificazione delle aree, probabilità di innesco, numero di persone esposte, etc.) così che, più che una valutazione accurata e specificamente rivolta ad una data tipologia di effetti negativi, risulta utile un'indicazione di massima onnicomprensiva. Inoltre l'utilizzo di un unico metodo di calcolo consente ripetibilità e confrontabilità dei risultati ottenuti e quindi assicura l'aspetto di maggior importanza: l'ordinamento relativo degli eventi in termini di gravità delle conseguenze16.

La metodologia che è stata adottata e che è descritta di seguito è stata sviluppata a partire da uno studio di alcuni tra i metodi di calcolo più diffusi e riconosciuti:

- TNT equivalente

- Baker ed altri

- UVCE - TNO (modello a pistone)

- Multi-Energy

- Formule empiriche per la valutazione della sovrapressione sviluppata in esplosioni semiconfinate

16 In caso di Indice di rischio elevato, a valle della presente valutazione del rischio, si raccomanda comunque di approfondire la stima delle conseguenze con metodiche specifiche mutuate dalla valutazione ex D.Lgs. 334/99

Page 19: La Metodologia RAMSES 4 - amblav.it · Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4 pag. 3 di 22 Ciascuno dei blocchi presenti nello schema richiede

Allegati

Il criterio di fondo sul quale si basa il metodo è quello di assumere come distanza rappresentativa di danno per le persone quella che corrisponde ad una sovrapressione di picco di 0,07 bar17.

Descrizione del metodo

Scopo del metodo è quello di stabilire, con un sufficiente grado di accuratezza, se un'esplosione che avvenga in condizioni definite in un determinato ambiente di lavoro possa provocare effetti negativi (per convenzione assunti come il superamento della soglia di sovrapressione di 0,07 bar)

L'analisi delle formule di calcolo proposte in letteratura e degli intervalli di variabilità dei parametri ha portato a individuare la seguente relazione generale per la stima della distanza di danno diretto da esplosione:

d = f * V1/3

dove:

• d è la distanza di danno stimata (m);

• f è un coefficiente che dipende dalle condizioni ambientali al contorno (si veda sotto);

• V è il volume in condizioni di esplosività (bar)

Il valore di V è generalmente noto per ciascuna sorgente di emissione individuata mediante le procedure stabilite dalla normativa tecnica relativa alla classificazione in zone degli ambienti a rischio di esplosione; negli altri casi può essere stimato mediante un'analisi delle condizioni di lavoro e dei termini di rilascio che portano alla formazione di un'atmosfera esplosiva.

Il valore del fattore f dipende dai seguenti parametri:

1. Il valore della pressione massima di esplosione (Pmax) raggiungibile a seguito dell'innesco della miscela infiammabile (si tratta di un parametro legato all’agente che provoca la formazione dell’atmosfera esplosiva)

2. il livello di ostruzione/confinamento della nube, codificato in:

- Nube completamente confinata: nube in apparecchiatura o ambiente chiuso oppure presenza nella nube di ostacoli ravvicinati, ossia con una frazione di ingombro (intesa come rapporto tra il volume occupato dagli ostacoli e il volume totale dell'area in condizioni di esplosività) superiore al 30% e una distanza tra gli ostacoli inferiore ai 3 m

- Nube parzialmente confinata: nube a contatto con 2 o più pareti/barriere oppure presenza di ostacoli all'interno della nube, ma con una frazione di ingombro inferiore al 30% e/o una distanza tra gli ostacoli superiore ai 3 m

- Nube non confinata: assenza di pareti (tranne il terreno) e di ostacoli

Più in particolare le relazioni che definiscono i valori di f sono:

Nube completamente confinata f = 10(Log (Pmax)/1,19 + 0,33)

Nube parzialmente confinata f = 10(Log (Pmax)/1,09 - 0,33)

Nube non confinata f = 10(Log (Pmax)/0,98 –1,48)

(nelle relazioni Pmax va espresso in bar)

Per la determinazione della fascia di distanza di danno stimata si procede dunque come illustrato negli esempi seguenti.

Pmax dell’agente = 8 bar

Volume della miscela esplosiva = 3 m3

Nube completamente confinata

� f = 10(Log 8/1,19 + 0,33) = 12,3

� d = f * V1/3 = 12,3 * 31/3 = 17,7 m

� fascia della distanza di danno = 10-50 m

17 Questa soglia corrisponde al valore di danni gravi alla popolazione sana (lesioni irreversibili) come definito dalle Linee Guida Nazionali per la pianificazione dell’emergenza esterna (Presidenza Consiglio Ministri, Dipartimento della Protezione Civile – Gennaio 1994), dal D.M. 15 maggio 1996 e dal D.M. 9 maggio 2001.

Page 20: La Metodologia RAMSES 4 - amblav.it · Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4 pag. 3 di 22 Ciascuno dei blocchi presenti nello schema richiede

Allegati

Pmax dell’agente = 8 bar

Volume della miscela esplosiva = 3 m3

Nube parzialmente confinata

� f = 10(Log 8/1,09 - 0,33) = 3,1

� d = f * V1/3 = 3,1 * 31/3 = 4,5 m

� fascia della distanza di danno = 2-10 m

Pmax dell’agente = 8 bar

Volume della miscela esplosiva = 3 m3

Nube non confinata

� f = 10(Log 8/0,98 –1,48) = 0,27

� d = f * V1/3 = 0,27 * 31/3 = 0,4 m

� fascia della distanza di danno = 0-2 m

Alla pagina seguente si riportano i grafici delle distanze di danno calcolate con le relazioni sopra descritte per nubi del volume di 1 – 10 - 100 m3.

Page 21: La Metodologia RAMSES 4 - amblav.it · Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4 pag. 3 di 22 Ciascuno dei blocchi presenti nello schema richiede

Allegati

Distanze di danno stimate contro Pmax - Nube di volume 1 m3

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00

0 2 4 6 8 10 12Pmax (bar)

d (

m)

Confinata

Parz. Confin./ostruz.

Non confinata

Distanze di danno stimate contro Pmax - Nube di volume 10 m3

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

0 2 4 6 8 10 12Pmax (bar)

d (

m)

Confinata

Parz. Confin./ostruz.

Non confinata

Distanze di danno stimate contro Pmax - Nube di volume 100 m3

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

0 2 4 6 8 10 12Pmax (bar)

d (

m)

Confinata

Parz. Confin./ostruz.

Non confinata

Page 22: La Metodologia RAMSES 4 - amblav.it · Valutazione del rischio da Atmosfere Esplosive secondo la metodologia Ramses 4 pag. 3 di 22 Ciascuno dei blocchi presenti nello schema richiede

Allegati

ALLEGATO 3 - FATTORI DI CORREZIONE DELLA DISTANZA DI DANNO

Descrizione Specifiche Fattore

adottato Condizioni di danno aumentato

Possibilità di ignizione ad alta intensità Selezionare questa voce se è possibile che l'esplosione sia innescata da una fonte ad alta intensità, come accade per esempio nel caso di un'esplosione in ambiente aperto causata da una precedente esplosione avvenuta in uno spazio confinato

2

Possibilità di transizione da deflagrazione a detonazione

In apparecchiature allungate o raccordate tra loro, soprattutto in presenza di ostacoli che aumentano la turbolenza, è possibile che un’esplosione si propaghi con un’accelerazione del fronte di fiamma con passaggio da deflagrazione a detonazione

2

Possibile effetto domino Si consideri la possibilità che l'esplosione iniziale generi esplosioni successive o causi altri eventi negativi (ad esempio incendi estesi) che aumentano il livello di danno

5

Mitigazione del danno diretto da esplosione L'esplosione è contenuta da pareti

resistenti alla pressione di esplosione Le pareti devono resistere all'esplosione senza subire deformazioni permanenti 0,01

L'esplosione è contenuta da pareti resistenti all'urto di esplosione

Le pareti devono resistere all'esplosione, ma possono subire deformazioni permanenti. In seguito ad un'esplosione deve essere previsto il controllo strutturale per la verifica della sicurezza del sistema

0,05

Sono presenti sistemi di sfogo dell'esplosione

Devono essere considerati solo sistemi (quali dischi di sicurezza, pannelli, sportelli di esplosione) adeguatamente dimensionati e installati in modo da non poter causare danni a persone in caso di intervento. Le valvole di sicurezza non vanno considerate

0,1

Sono presenti sistemi di soppressione dell'esplosione

I sistemi devono essere correttamente dimensionati e mantenuti attivi 0,05

Sono adottate misure contro la propagazione dell'esplosione

Si considerino per esempio l'iniezione di agenti estinguenti, e la presenza di filtri tagliafiamma, sifoni, deviatori di esplosione, valvole e cerniere ad azione rapida, valvole doppie, sistemi di strozzatura, ecc.

0,5

Sono presenti sistemi antincendio ad intervento automatico

0,9

Gestione dell'emergenza Presenza dello specifico scenario nel

Piano di emergenza aziendale Devono essere definite disposizioni specifiche per l'intervento in emergenza quali: arresto dell'impianto, interruzione di flussi, svuotamento di apparecchiature, allagamento di parti di impianto (con acqua, estinguenti, ecc.)

0,9

Lo scenario relativo all'esplosione con possibile rischio inalatorio è presente nel

Piano di emergenza aziendale

0,9

Il personale è adeguatamente informato sul comportamento da tenere in

emergenza

0,9

Possibilità di danno inalatorio post esplosione Il personale è adeguatamente informato

sul comportamento da tenere in emergenza

0,5

Sono forniti e mantenuti in servizio dispositivi di protezione delle vie

respiratorie da utilizzare in caso di emergenza

0,1