Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea...

51
Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna - Ravenna Docente : Daniele FABBRI Parte VIII 1 - analisi inquinanti organici

Transcript of Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea...

Page 1: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 1

corso di

CHIMICA ANALITICA DEGLI INQUINANTI

Laurea specialistica - Scienze Ambientali Università di Bologna - Ravenna

Docente : Daniele FABBRI

Parte VIIIParte VIII

1 - analisi inquinanti organici

Page 2: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 2

SELETTIVITA’ : esprime la capacità di un metodo analitico di determinare un particolare analita senza interferenza dai componenti della matrice, ovvero di discriminare fra analita e sostanze strutturalmente simili. (Il termine specificità è spesso usato come sinonimo).

La presenza di eventuali interferenti può essere riconosciuta attraverso l’analisi di opportuni bianchi (matrice, matrice fortificata con un sospetto interferente, …).

L’interferente può: far ritenere che l’analita sia presente quando invece è assente (falso positivo); impedire l’identificazione dell’analita (falso negativo); influenzare il dato quantitativo.

La selettività’ può essere conseguita nella varie fasi della procedura analitica:

selettività nel trattamento del campione. I potenziali interferenti sono eliminati nella fase di trattamento del campione. Esempio: scelta opportuna delle condizioni di estrazione in fase solida (SPE), cromatografia di affinità, polimeri ad impronta molecolare, estrazione con un chelante, ecc.

selettività nel sistema di separazione cromatografica. I potenziali interferenti eluiscono in tempi diversi dall’analita. Scelta opportuna delle condizioni di analisi GC e HPLC, GC multidimensionale (GCn).

selettività nel metodo di rivelazione. L’analita è determinato preferenzialmente rispetto agli interferenti che co-eluiscono. In spettrometria di massa possono essere usate tecniche molto selettive. Esempio: HRMS (alta risoluzione), SIM (selected ion monitoring), SRM (selected reaction monitoring, in MS/MS).

Page 3: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 3

Esempio tipico : la MSn comporta una diminuzione dell’intensità del segnale all’aumentare di n, ma con un deciso aumento del rapporto segnale/disturbo.

passaggi dell’analisi

intensità

1 2 3 4

segnale

noise

S / N

RG Cooks, KL Busch, J.Chem.Educ. 59(1982)926.

All’aumentare del numero di passaggi gli errori possono aumentare ed il segnale diminuire, ma a vantaggio di un aumento del rapporto segnale/disturbo.

Page 4: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 4

R

sistema di iniezione

Igas di trasportofase mobile

forno

colonnacapillare

rivelatorestazione dati

MS

AED

ECD

NPD

FID

fg pg ng g

intervallo di utilizzazione

gascromatografia capillare - CGC (GLC)

rivelatore selettività logIDL-LOD IDtermoconducibilità TCD universale (gas) 4 - > ng trionizzazione di fiamma FID universale (idrocarburi) 6/7 - <ng trcattura di elettroni ECD specifico RX (organoalogenati) 2/3 - pg tr/spemissione termoionica NPD specifico N e P (pesticidi) 5/7 - pg tr/spfotometrico di fiamma specifico P e S (pesticidi) 4 - < ng tr/spemissione atomica AED elemnto specifico (TBT, RHg)

spettrometria di massa - EI, PCI, NCI, MSn, HRMS… spettrometria di massa - EI, PCI, NCI, MSn, HRMS…* tr: tempo di ritenzione; sp: specificità della tecnica

Page 5: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 5

fase mobileliquido

sistema di iniezione

IR

rivelatore

stazione dati

colonna

HPLC high performance liquid chromatography

rivelatore selettività sensibilità IDindice di rifrazione universale bassa trassorbimento UV-vis- DAD cromofori (fenoli, IPA, der.) buona tr / spettro UNfluorimetria Fl fluorofori (IPA, derivatizz.) elevata tr / spemissione atomica ICP-AES elemento specifico (R-As)

spettrometria di massa - ESI, APCI, ICP-MS, MSn spettrometria di massa - ESI, APCI, ICP-MS, MSn

* tr: tempo di ritenzione; sp: specificità della tecnica

Page 6: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 6

Campi di applicazione

volatili, semi-volatili

Composti polari-ionici derivatizzabili: X-CH3, X-SiMe3, X-CO-CF3 Fenoli, acidi grassi, steroli, zuccheri, amminoacidi, alcaloidi (metaboliti)

Macromolecole degradazione chimica, pirolisi

ionici, ionizzabili, polari

PESO MOLECOLARE analita

POLARITA’ analita

GC-MS

APCI

ESIproteine

peptidi

sterodi

VOC, IPA, POPs

moderatamente polari non polari

Page 7: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 7

Lo spettrometro di massa separa gli ioni secondo il loro rapporto massa su carica m/z.

Lo scopo analitico della spettrometria di massa è quello di convertire il campione in prodotti misurabili indicativi delle molecole originali. I prodotti sono ioni le cui masse (o i rapporti massa su carica) e abbondanze relative costituiscono lo spettro di massa.

formare ioni gassosidell’analita

Separarli nello spazio (deviandoli su traiettorie )o nel tempo (traiettorie uguali in tempi ) in base alrapporto m/z (energia,velocità, momento).

Misurare la loroabbondanza relativa.Elettromoltiplicatore

accelerarli

sorgenteionica

sorgenteionica

analizzatoredi massa

analizzatoredi massa

Collettore.Rivelatore

di ioni

Introduzionedel campione

conversione in una forma adatta alla

ionizzazioneGC-HPLC

Elaborazionedativuoto

spettrometria di massa

Page 8: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 8

MASSAViene espressa in unità di massa atomica.unità di massa atomica u (chiamata anche dalton, Da) : 1/12 della massa di un atomo di 12C.

1 u = 1 Da = 1.6605 10-24 g.

Massa media (o chimica): calcolata usando le masse atomiche medie (pesate sugli isotopi naturali di ogni elemento).Massa atomica media Am dell’elemento A che in natura ha n isotopi, ciascuno con massa Ai e abbondanza naturale Pi:Am = P1A1 + P2A2 + … + PnAn

Massa nominale: calcolata usando il numero intero della massa dell’isotopo predominante di ciascun elemento.Ioni diversi che hanno la stessa massa nominale sono detti isobari. Massa monoisotopica: calcolata dalle masse degli isotopi predominanti di ciascun elemento.

La misura della massa esatta di uno ione con sufficiente accuratezza definisce in modo univoco la composizione elementare dello ione.La massa esatta viene determinata con strumenti ad alta risoluzione (HR).

Mz+ Mz+

CARICA unità di carica è la carica dell’elettrone e. e = 1.602 10-19 C.Carica totale q = numero delle cariche z • carica dell’elettrone e: q = z • e

RAPPORTO MASSA/CARICA

Rapporto massa su carica m/z: se massa espressa in u e carica in e, unità thompson (Th). Numero adimensionale se m/z espressa in numero di massa e numero di carica.

CARATTERISTICHE DI UNO IONE

Page 9: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 9

L’unità di massa atomica è un’unità di misura ibrida. Indica una scala relativa il cui riferimento è l’atomo 12C a cui è stato assegnato il valore di 12u esatte.

L’atomo 12C ha massa 12.00000…u.

L’atomo di 35Cl ha una massa 2.91407 volte più grande del 12C quindi la sua massa atomica è 12 x 2.91407 = 34.9688 Da.La massa esatta del 35Cl è : 34.9688 Da (numero decimale)La massa nominale del 35Cl è : 35 Da. (numero intero)

La massa atomica media è utilizzata nei calcoli stechiometrici.BrMassa media = P1

81Br + P279Br = 0.4931 x 80.9163 + 0.50069 x 78.9183 = 79.904u

Le masse monoisotopiche sono utilizzate in MS per indicare le masse molari.Br2

La massa di Br2 è 158u per convenzione, anche se la specie più abbondante ha massa 160u.79Br79Br 158u 51% “peso molecolare” in MS 15879Br81Br 160u 100% ione più abbondante 16081Br81Br 162u 49%

CH3BrMassa media : 12.011 + 3x1.008 + 79.904 = 94.939uMassa nominale: 12 + 3x1 + 79 = 94uMassa monoisotopica (12C1H3

79Br): 12 + 3x1.0078 + 78.9183 = 93.9417u

esempi

Gli ioni CO+ , N2+ e C2H4

+ sono isobari: hanno masse nominali uguali (28 Da), ma masse esatte diverse:CO+ 27.994914 uN2+ 28.006146 uC2H4

+ 28.031298 u

Page 10: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 10

Potere risolutore (risolutivo) : capacità di separare ioni con m/z vicini. Prestazioni analisi qualitativa.

Risoluzione R: quando due picchi, il più piccolo dei quali ha altezza h, di massa m e m+m, sono separati da una valle che ha un’altezza pari al 10% di h, allora

R = m / m (10% valley definition)

5%h

h

R = m / m

Caratteristiche di un analizzatore di massa

Limite di massa : valore più alto di m/z che può essere misurato. Applicabilità.

Trasmissione : rapporto tra il numero di ioni che raggiungono il rivelatore e il numero di ioni prodotto nella sorgente. Sensibilità.

10%h

m m

Altre definizioni:Per i quadrupoli si usa la 50% valley definition di R.La risoluzione per un picco isolato è la larghezza del picco (m) a un altezza x% dell’altezza del picco. Spesso si usa X%= 50% e la m è chiamata FWHM (full width at half-maximum).

Page 11: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 11

RISOLUZIONE

Doppia focalizzazione Singola focalizzazione QuadrupoloHRMS settore magnetico Qfino a 105 < 104 103 (unitaria)

Per il quadrupolo la R è variabile lungo l’intervallo di massa (m è costante), per l’analizzatore magnetico è costante (m variabile: aumenta all’aumentare delle masse). Picchi adiacenti sono distinguibili se i loro rapporti d’intensità sono minori di 1:10.

Per separare CO+da N2+è necessaria una risoluzione :

R = 27.994914 / (28.006146 - 27.994914) = 2493

Per separare gli ioni molecolari del tridecilbenzene (C19H32+, 260.2504) dal fenilundecilchetone (C18H28O+, 260.2140) è necessaria una risoluzione : R = 260 / (260.2504 - 260.2140) = 7100

All’aumentare della massa aumenta l’utilità informativa della composizione elementare, e aumentano le richieste di risoluzione e accuratezza.

Per aumentare la risoluzione bisogna diminuire la dispersione del fascio ionico (es.riduzione fenditura), il che determina una riduzione della sensibilità (meno ioni raggiungono il collettore).

Per un analizzatore magnetico ha R = 1000.Per uno ione di massa 100,0000 m = 0.1, per uno ione di massa 1000,0000 m = 1.

Page 12: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 12

Una molecola contiene n atomi di un elemento che ha due isotopi di abbondanza naturale a e b. L’abbondanza relativa dei picchi isotopici segue una distribuzione binomiale:

(a + b)n = an + nan-1b + [n(n-1)/2!]an-2b2 + …

L’abbondanza relativa della molecola che ha k isotopi del tipo a è :

[n!/k!(n-k)!]akbn-k

Per più elementi le relazioni sono del tipo

(a+b)n(c+d)m…

Esistono programmi per il calcolo o figure per le abbondanze relative di cluster isotopiciwww.sisweb.com/mstools.htm, www.shef.ac.uk˜chem/chemputer/isotopes.html

Picchi isotopici

Elementi A+1 C, O, N.Il rapporto di intensità A+1/A dà informazioni sulla composizione elementare dello ione (es. numero massimo di atomi di C; massimo perchè al picco A+1 possono contribuire altri ioni, impurezze, etc.). A+1/A = nbPer il 13C b = 1.08%, con deviazioni di ~ 2% (20 ‰) a seconda della fonte. Per comodità si usa il valore 1.1%, tenendo conto del piccolo contributo del 2H (b = 0.015%).(Infatti, considerando 1.5 H per atomo di C si ha per A+1 : 1.08% + 1.5x(0.015%) = 1.1%).

Lo ione monoisotopico non è necessariamente il più abbondante. Esempio molecole organiche:se la molecola ha più di 91 atomi di C, lo ione A+1 (per 13C) è più iintenso è più intenso dello ione A.

Page 13: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 13

Cl 2 Cl 3 Cl 4 Cl

Br 2 Br 3 Br 4 Br

Cl+Br Cl+2Br Cl+3Br 2Cl+Br

pattern isotopici

Page 14: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 14

Esempio:

(a + b)n = an + nan-1b + [n(n-1)/2!]an-2b2 + …

per 35Cl e 37Cl a = 1 e b=0.32. Se una molecola ha n = 2 atomi di cloro la probablilità delle combinazioni 35Cl35Cl, 35Cl37Cl(37Cl35Cl) e 37Cl37Cl è, rispettivamente, 1x1, 2(1x0.32), 0.32x0.32, quindi le abbondanze relative sono: 1 : 0.64 : 0.10.

(a + b)2 = a2 + 2ab + b2 = 12 + 2x1x0.32 + 0.322 = 1:0.64:0.10

•Esempio:

(a+b)n(c+d)m

CCl2Br2: 0.51 x (1: 0.64 : 0.10) = 0.51, 0.32, 0.051, -----, -----,

1.0 x (1 : 0.64 : 0.10) = ------, 1.00, 0,64, 0,10, -----,

0.49 x (1 : 0.64 : 0.10) = ------, -----, 0.49, 0.31, 0.049

intensità relative per M, M+2, M+4, M+6, M+8 0.38, 1, 0.89, 0.32, 0.04.

•Esempio: A + 1 per il nitrobenzene C6H5NO2, l’intensità relativa di A+1 rispettto A è:13C 6 x 1.08% = 6.48 % 15N 1 x 0.37% = 0.37 %2H 5 x 0.015% =0.07 % 17O 2 x 0.04% = 0.08 %totale: 7.0%.

Esempio. A+2Esempi: abbondanza di A+2 rispetto A (100%) per Si e S: Si1 3.4 % Si2 7.1 % Si3 11% S1 4.4 % S2 8.8 % Si3 13%

Picchi isotopici

Page 15: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 15

Per composti con peso molecolare < 1000 (relativamente basso: LMW) la risoluzione è sufficiente per separare ioni che differiscono solo per la composizione isotopica Esempio ione monoisotopico dallo ione satellite che contiene un 13C.La richiesta di risoluzione aumenta all’aumentare del peso molecolare, e per composti a peso molecolare elevato (HMW) i picchi isotopici potrebbero non essere separati.

Esempio: C35H48N8O11S ione monoisotopico 788.3152 Da

satellite 13C 789.3186 DaRisoluzione 786

C284H432N84O79S7 ione monoisotopico 6507.0318 Daaprotina satellite 13C 6508.0352 Da

Risoluzione 6485

La risoluzione richiesta per separare ioni molecolari non è influenzata dal numero di cariche sulle ione:

[C284H432N84O79S7]7+ ione monoisotopico 929.5760 Daaprotina satellite 13C 929.7193 Da

Risoluzione 6487

Per uno ione con 10 cariche la separazione di massa apparente fra 12C e 13C è di 0.1 Da.

Page 16: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 16

Numero di anelli e insaturazioni:Numero totale di anelli e doppi legami per uno ione (C, Si, …)x(H, F, Cl,..)y(N, P,…)z(O, S,…)n

n = x - ½ y + ½ z +1Per ioni a numero pari di elettroni, n può essere seguito da “ .5”.Esempio: ione benzoile C6H5-CO+: N = 7 - 2.5 = 5.5. (N = 5 4 doppi legami + 1 ciclo).

Regola dell’azoto: se il peso molecolare di un composto è un numero dispari, la molecola contiene un numero dispari di atomi di azoto.Per molecole contenenti C, H, O, N, S, P, Si, As, alogeni, metalli alcalini. Infatti, fra questi elementi solo N ha massa pari e valenza dispari, gli altri hanno sia massa che valenza entrambe pari o dispari.

Parità di massa/parità di carica:uno ione che contiene 0, 2 , 4,… atomi di azoto è a numero dispari di elettroni (radicalcatione OE •+ o radicalanione) se ha massa pari, e a numero pari di elettroni (es.EE+) se ha massa dispari.

La scarsità di picchi importanti a massa pari, soprattutto nella parte a masse basse dello spettro, indica che lo ione molecolare ha massa pari. L’opposto non è sempre vero (l’abbondanza di ioni pari non indica necessariamente uno ione molecolare di massa dispari).Picchi intensi di OE sono meno probabili di EE sopratutto alle masse inferiori. Le serie omologhe (es. M/z 57, 71, 85 degli alcani), sono tipiche di ioni EE.

OE ioni a elettroni dispari (contengono un elettrone spaiato)

EE ioni a elettroni pari (tutti gli elettroni sono appaiati).

Gli EE sono più stabili degli OE .

Page 17: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 17

IONI (PSEUDO) MOLECOLARI.Forniscono un’informazione importante: il peso molecolare dell’analita.Lo ione molecolare si genera dalla molecola di analita per perdita o acquista di uno o più elettroni. Per definizione è il monoisotopico. In ionizzazione elettronica (EI) è un OE (ione radicalico M , oppure M- ). Potrebbe essere molto instabile e frammentarsi prima di arrivare al rivelatore.Lo ione pseudomolecolare è formato dalla molecola analita per perdita di un protone o uno ione idruro, o per associazione con uno ione stabile.(formazione di un addotto) Nelle tecniche di ionizzazione soft è uno ione EE relativamente stabile; frammentandosi poco può aumentare la sensibilità della tecnica. Un esempio tipico è la molecola protonata MH+ (nota: non è lo ione molecolare protonato).Esempio:

ionizzazione chimica con CH4: MH+ MC2H5+ MC3H5

+

ionizzazione elettrospray ESI : ioni positivi MH+ MNa+ MNH4+ MK+ ; ioni negativi (M-H)-.

Nella tecnica ESI si possono avere ioni multicarica: MH55+ MH6

6+ ….

FRAMMENTAZIONE.Gli ioni che si ottengono dalla frammentazione di ioni precursori (es. ione molecolare) forniscono informazioni sulla struttura dell’analita, utili per l’analisi qualitativa (riconoscimento). La loro produzione può essere importante nell’analisi quantitativa (specificità, riduzione S/N; es. tandem MS).

OE produce un EE per rottura di un legame, un OE per rottura di due legami (riarrangiamento, frammentazione anello). Generalmente gi EE producono solo EE .

OE EE + OE OE OE + EEo

EE EE + EE° EE OE + OE poco probabile (formazione di due siti radicalici).

Lo ione si frammenta per l’elevata energia interna acquistata nelle condizioni di ionizzazione hard (es. EI).Lo ione viene indotto a frammentarsi per collisioni con altre molecole (es. tecniche tandem MS).

TIPI DI IONI

Page 18: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 18

Formazione degli ioni.

anodo di scarica

Selettore ionico

filamentoElettrodi di accelerazione (5000 V)focalizzazione

fenditura

All’analizzatore

+ 4930V

+ 5030V+ 5010V + 4100V

0V

P = 10-5 torr

T = 200°C

EI ionizzazione elettronica

E’ una tecnica di ionizzazione hard. Gli elettroni sono emessi da un filamento riscaldato, vengono accelerati da un potenziale che è di 70V nella camera di ionizzazione. L’elettrone e¯ interagisce con la molecola M ionizzandola:

M + e¯ M + 2 e¯ (elettroni secondari)

M è lo ione molecolare. La frazione di molecole ionizzate è ca. 1:105. La ionizzazione è un processo veloce: 10 -16 s. L’energia di ionizzazione adiabatica (minima, ai livelli vibrazionali zero di M e M ) è tipicamente intorno ai 10 eV per molecole organiche (per atomi : 25 eV per He, 3.9 eV per Cs). Gli e¯ hanno una distribuzione gaussiana di energie cinetiche attorno ad un massimo di 70 eV.

Energie di ionizzazione di alcune molecole (IE in eV):

CH3-CH3 11.5 NH3 10.2 Et2O 9.5 CH2=CH2 10.5 PH3 9.9 Et2S 8.4EtOH 10.5 Et2Se 8.3EtNH2 8.9

Metodi di ionizzazione in GC

Page 19: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 19

CI ionizzazione chimica

Vantaggi. La CI (chemical ionisation) è una tecnica di ionizzazione soft, utile per conoscere il peso molecolare, e per introdurre sensibilità e specificità.Composti con una elevata affinità protonica PA (ammine) possono essere rivelati dall’analisi di ioni positivi prodotti per protonazione (PCI, positive chemical ionisation).Composti con un’elevata affinità elettronica EA (nitro, ciano, alogeni) possono essere determinati per cattura elettronica (NCI, negative chemical ionisation).

Difficoltà. Lo spettro di massa in CI dipende molto dalle condizioni di ionizzazione in cui si lavora. Fattori importanti sono: T e P, tuning dei vari parametri strumentali, purezza del gas reagente (es. Impurità contenenti ossigeno disturabano notevolmente la NCI in EC), ecc. Data la bassa riproducibilità nelle abbondanze relative dei vari ioni, non esistono librerie di spettri CIMS per l’identificazione dei composti.

L’affinità protonica (PA) misura la tendenza della specie M ad addizionare un protone (basicità di M in fase gassosa). E’ il negativo del termine entalpico della reazione:

M + H+ = (M+H)+ PA (M) = - [Hf(M) + Hf(H+) - Hf(M + H)+]Quanto più PA è grande tanto più la reazione di protonazione è favorita.Valori tipici per composti organici: PA = 550 - 1000 kJ/mol.

L’affinità elettronica (AE) misura la tendenza di una specie M ad acquistare un elettrone trasformandosi in un anione:

M + e– X–

Page 20: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 20

Gli ioni reagenti reagiscono con le molecole di campione M:Reazione controllata da1) trasferimento protonico: M + RH+ MH+ + R PA (favorita se PA(M)>PA(RH+)2) estrazione di idruro: M + (R -H)+ (M-H)+ + R3) formazione addotti M + RH+ MRH+

4) trasferimento di carica: M + R+° M+° + R energia di ionizzazione IE

PCI La ionizzazione è causata da reazioni ione-molecola

Un gas reagente R viene introdotto nella sorgente ionica a pressioni relativamente alte (0.5-10 torr). Poiché R è in forte eccesso rispetto al campione (104:1), si ha ionizzazione della specie R per ionizzazione elettronica (EI):

R + e– R+° + 2e–

Si utilizzano elettroni ad elevata energia (500 eV) per aumentare le penetrazione e rendere più efficace la ionizzazione

R+° reagisce con altre molecole R per formare specie ioniche reattive (ioni reagenti):

R + R+° RH+ + (R -H)°

R + R+° RH° + (R -H)+

Spettri di massa EI e CIdella prolina

PM = 115

70

70

MH+

116

98

EI CI

m/z

%

m/z

%

Page 21: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 21

Formazione ioni primari:

CH4 + e– CH4+° + 2 e–

CH4+° CH3

+ + H°

Formazione ioni reagenti:

CH4+° + CH4 CH5

+ + CH3°

CH3+ + CH4 C2H5

+ + H2

se P elevata si forma anche C3H5+

Reazione con l’analita

M + CH5+ (M-H)+ + CH4 + H2

M + CH5+ MH+ + CH4

M + C2H5+ MH+ + C2H4

M + C2H5+ (M-H)+ + C2H6

M + C2H5+ MC2H5

+

M + C3H5+ MC3H5

+

Esempio: gas reagente metano.

gas reagente ione reagente PACH4 CH5

+ 5.7H2O H3 O+ 7.2MeOH MeOH+ 7.9iso-C4H10 (CH3)3C+ 8.5NH3 NH4

+ 9.0

L’energia interna delle specie M ionizzate dipende dal reagente scelto.Se PA (M) > PA(R) la formazione di MH+ è favorita, ma se PA(M)>>PA(R) MH+ può avere elevata energia interna e frammentarsi.

L’energia interna delle specie M ionizzate (e quindi la possibilità di frammentazione) dipende dal reagente scelto e dalla T e P della camera di ionizzazione.

Gas reagenti. Come sceglierli

Page 22: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 22

NCI Per molti strumenti MS, basta cambiare le polarità per passare dalla rivelazione degli ioni positivi a quella degli ioni negativi. Esistono due processi principali per formare ioni negativi

Formazione di uno ione negativo per cattura di un elettrone a bassa energia (~ 0 eV) da parte del LUMO di un elettroforo MX.Un gas moderatore (es.metano, azoto a 1 torr) è bombardato con elettroni ad elevata energia ( es. 100 eV) prodotti da un filamento allo scopo di produrre elettroni secondari e ‘raffreddarli’ attraverso collisioni anelastiche. Il gas tampone stabilizza gli ioni negativi limitando la dissociazione. La cattura elettronica può essere:non-dissociativa: MX + e– MX–

dissociativa: MX + e– M + X–

La struttura molecolare e la T determinano il meccanismo predominante. Il processo non-dissociativo fornisce informazioni sul peso molecolare, e spesso è quello che si vuol favorire.La NCI è molto più sensibile della EI o PCI per certi analiti, anche perchè la velocità di cattura elettronica è molto maggiore di quella della reazione ione-molecola (gli elettroni hanno elevata mobilità). Però il processo è efficace per molecole con elevata affinità elettronica, EA, come composti organoalogenati. Un elettroforo contiene elementi elettronegatvi (F, Cl elevata EA) o sistemi coniugati (carotenoidi, orbitale vuoto a bassa energia).

Selettività : pochi composti sono forti elettrofori (es. PCB, toxafeni).Sensibilità : elevata efficienza di cattura, formazione di un anione dominante.Derivatizzazione: per composti che non sono elettrofori: bromuro pentafluorobenzile. La diminuzione della selettività può richiedere HRMS, MS/MS.

cattura elettronica MX + e– MX–

estrazione di protone. B¯ + M BH + [M - H]¯ agisce come acido di Bronsted cedendo un protone ad uno ione reagente

Cattura elettronica (electron capture mass spectrometry, ECMS):

Page 23: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 23

Metodi di ionizzazione in HPLC.

Problema interfacciamento HPLC che opera con fasi liquide a pressione P atmosferica e flussi tipici di 1 mL/min con MS che opera in fase gassosa a P basse.

Tecniche di ionizzazione a pressione atmosferica (API)Con i moderni HPLC-MS la Ionizzazione avviene a P atmosferica direttamente dalla soluzione all’interno dell’interfaccia. Lo spettrometro di massa è utilizzato per separare gli ioni e rilevarli.In generale, la ionizzazione dell’analita prevede i seguenti processi:

formazione di goccioline dall’eluato HPLC.

formazione di cariche sulle goccioline.

eliminazione del solvente (desolvatazione).

formazione di ioni dall’analita.

Principali metodi di interfacciamento/ionizzazione in HPLC:

elettrospray ESI ionizzazione chimica a pressione atmosferica APCIfotoinonizzazione a pressione atmosferica APPI

Page 24: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 24

ESI

Componenti:Capillare, ago metallico ad elevato voltaggio da cui esce la soluzione che viene spruzzata in un intenso campo elettrico Campi di 2-6 kV per ioni positivi; minori e a polarità inversa per ioni negativi.Le gocce elettricamente cariche sono dirette verso un contro-elettrodo che le attrae.Flusso di gas inerte caldo per favorire l’evaporazione del solvente (desolvatazione).Ottica ionica: campi elettrici che focalizzano il raggio ionico verso l’analizzatore.

L’interfaccia electrospray (ESI)

eluato HPLC

SprayelettrostaticoElettrodo

cilindrico

Capillare ad elevato voltaggio

Drying gas(N2 riscaldato) Skimmer

controelettrodo

P atmosferica ---- ---------vuoto crescente ----- alto vuoto

analizzatore

Nozzle

I principali vantaggi dell’ESI:

E’ una tecnica di ionizzazione soft che permette l’analisi di composti termolabili e molto polari.

Genera ioni multicarica. Si formano addotti con più protoni o ioni sodio (M + nH)n+ (M + nNa)n+

Composti ad elevato peso molecolare (HMW) formano macroioni molecolari multicarica che possono essere così rilevati con analizzatori MS che hanno limiti di massa minori della massa molecolare dell’analita.

Page 25: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 25

++

+-++ +-

+

+-+

+ ++

Nebulizzazione e ionizzazione all’uscita dell’ago. Formazione di goccioline (ca. 1 um) che vengono caricate elettricamente per azione del forte campo elettrico (5-10 kV cm-1).

Desolvatazione ad opera del drying gas. Il solvente nelle goccioline evapora.

Coulombic explosion. Dopo circa 100 us le dimensioni delle gocce sono ridotte al punto che le forze elettrostatiche di repulsione vincono le forze coesive della tensione superficiale. Le gocce esplodono producendo goccioline più piccole ( circa 10% del diametro iniziale).

Ionizzazione dell’analita. I processi di desolvatazione e “collasso” delle goccioline continuano fino a che si formano ioni dell’analita in fase gassosa che vengono convogliati nell’analizzatore MS. Ci sono diverse ipotesi sul meccanismo di ionizzazione dell’analita:ion evaporation : se la goccia è sufficientemente piccola l’analita evapora in forma ionizzata<dalla goccia;charge-residue model: le successive esplosioni coulombiche generano gocce contenenti alla fine un solo ione; lo ione è trasferito nella fase gassosa a causa dell’evaporazione del solvente.

N2

+++

- N2+

++

+

+

+

++

+

++

MS

Meccanismo di ionizzazione ESI

Page 26: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 26

Composti analizzabili in ESI: Analiti che sono già in forma ionica in soluzione (es. acidi, basi). Composti neutri/polari che possono essere ionizzati per protonazione (M+H)+ e deprotonazione (M-H)-. composti non-polari che possono essere ossidati (ioni positivi) o ridotti (ioni negativi) nella punta del capillare.

Spettro ESI del citocromo cM = 12 360 Da

687

773

884

fra due picchi consecutivi la carica cambia di un unità

m/z700 800 900

Spettro di massa ESI di un composto HMW. Formazione di ioni multicarica.

Determinazione del peso molecolare.dati sperimentali : (m/z)1 dello ione 1, (m/z)2 dello ione 2, …; incognita: peso molecolare M dell’analita;si assume che la carica dello ione 1 sia dovuta all’addizione di n1 protoni, dello ione 2 con n2 protoni, ecc. Per ioni consecutivi n2 = 1 + n1, ecc.M può essere calcolato per ogni coppia di ioni 1, 2, … del cluster di ioni molecolari di carica z1 = n1, z2 = n2, ecc. utilizzando le equazioni (esemplificate per la copppia di ioni 1 e 2):

(m/z)1 = (M + n1(massa protone)) / n1 = (M + n1) / n1

(m/z)2 = (M + n2) / n2

ESI

Possono formarsi ioni per aggiunta di protoni:esempio (M+5H)5+

di ioni sodioesempio (M+5Na)5+

Page 27: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 27

APCI atmospheric pressure chemical ionisation

la fase liquida che esce dalla colonna HPLC è dispersa in piccole gocioline per azione del calore e di un gas nebulizzante.

Lo spray è desolvatato e fatto passare in una regione calda dove viene vaporizzato.

Le specie neutre passano in una regione dove si ha una scarica a corona (corona discharge) che ionizza il gas. Per interazione degli elettroni con le specie principali si ha formazione di ioni reagenti. Nella modalità di ioni positivi sono in genere le molecole di solvente protonato (in quella negativa, ioni O2

-).

Gli ioni reagenti ionizzano le molecole di analita in modo simile alla ionizzazione chimica convenzionale attraverso reazioni ione-molecola.

Tipi di ioni:è una tecnica di ionizzazione soft. Si formano ioni molecolari con bassa energia, che hanno una scarsa tendenza a frammentarsi. Es.modalità ioni positivi modalità ioni negativi(M + H)+ , (M + NH4)+ (M - H)- (M + CH3COO)-

I componenti dell’interfaccia sono simili a quelli dell’ESI; in alcuni HPLC-MS le due tecniche sono interscambiabili.Il meccansimo di ionizzazione è diverso da quello dell’ESI, per cui le due tecniche sono complementari. L’APCI è un processo di ionizzazione in fase gassosa, applicabile a molecole volatili e poco polari.

Metodi di ionizzazione in HPLC.

Page 28: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 28

ESI forma macroioni multi-carica; adatta per analisi composti HMW (proteine, polimeri). Misure indipendenti di peso molecolare da un singolo spettro

adatta per analisi composti polari e già ionizzati in soluzione (la ionizzazione si ha direttamente dalla soluzione).

tecnica molto soft; adatta per analisi composti termolabili.

Lo ione si forma direttamente nella fase mobile; il risultato dipende molto dalle condizioni sperimentali.

Con opportuni sistemi per diminuire il flusso dell’HPLC convenzionale; possibilità di operareda nL/min a ml/L.

APCI non forma ioni multicarica; non adatta per compostii HMW (limite di massa tipico 2000 Da).

adatta per analisi composti volatili (LMW) e poco polari. Meno adatta per composti già ionizzati in soluzione.

E’ una tecnica soft, ma richiede condizioni più drastiche dell’ESI. Composti termolabili non sempre analizzabili.

ionizzazione simile alla CI convenzionale in fase gassosa; meno sensibile alle condizioni sperimentali e composizione fase mbile (tampone,

Abbinamento diretto ai flussi tipici HPLC (1-2 mL/min).

Tecniche soft. Produzione di ioni molecolari; spesso non informativi da punto di vista strutturale (analisi qualitativa); analisi dei frammenti ionici (indotta per collisione con molecole di gas oppure dissociazione nel sistema di ionizzazione

Page 29: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 29

formazione ioni

focalizzazione fascio ionico

gli ioni con un determinato m/z attraversano il quadrupolo

gli ioni sono rilevati

campo costante U

campo oscillante Vcost

y

zx

Alle aste viene applicato un potenziale totale dato dalla somma di un potenziale diretto U (non oscillante, DC) e un potenziale oscillante alla frequenza (frequenza angolare =2) di ampiezza V. = U + V cost.Tipicamente U=5002000volt; V =-3000 +3000; campo radiofrequenze (RF)

QUADRUPOLO Q quadrupolo lineare

Gli ioni sono separati in base al rapporto m/z sfruttando la stabilità delle loro traiettorie in campi elettrici oscillanti.

analizzatori di massaanalizzatori di massa

Le traiettorie degli ioni (soluzioni dell’equazione di Mathieu) sono stabili (e gli ioni arrivano al rivelatore) se i valori di x e y rimangono < ro; altrimenti gli ioni si scaricano contro le aste.

2r°

Page 30: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 30

Diagramma di stabilità per ioni con masse m1 < m2 < m3 (z =1).

triangolo di stabilità

di m3 V

U

m1

m2

m3

Per un dato quadrupolo ro e sono costanti. Le variabili sono U e V. Per determinate coppie di valori U, V gli ioni con dato m/z hanno traiettorie stabili e sono rivelati. Aumentando U e V, e mantenendo il rapporto U/V costante, i vari ioni vengono rivelati in successione al crescere di m/z; si effettua così una scansione (scan).

U è variato linearmente in funzione di V, gli ioni m1 < m2 < m3 sono rivelati in successione.

Per U=O (quadrupolo con solo RF) la risoluzione è zero. Il valore di V determina il valore minimo di m che deve avere lo ione per essere rivelato.

V1

Es. Per V > V1 gli ioni con m<m1 sono instabili

Hoffmann & Stroobant, Mass Spectrometry, 2002Hubschmann, Handbook of GC/MS, 2001

Page 31: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 31

Caratteristiche tipiche di un analizzatore a quadrupolo:

Limite di massa < 4000 Th

Risoluzione bassa (‘unitaria’, picchi separati se differiscono di almeno un’unità di massa)La risoluzione è ~ 3000 (oltre 3000 u i cluster isotopici non sono risolti; R aumenta aumentando L).Il potere risolutore è variabile lungo l’intervallo di massa (m costante); (scansione a velocità uniforme).

Elevata sensibilità. Non richiede focalizzazione del raggio ionico all’ingresso.

Elevata velocità di scansione; può superare i 1000Th/s; adatto per accoppiamento con GC.

Analizza anche ioni negativi (indipendente dalla polarità).

Altre caratteristiche:

L’analisi non dipende dall’energia cinetica degli ioni che entrano nell’analizzatore (il tempo per attraversare il Q deve essere però breve rispetto alla scansione da una massa all’altra e abbastanza lungo da permettere alcune oscillazioni, per cui l’energia cinetica deve essere dell’ordine di 100-102 eV).

Gli ioni possono essere focalizzati al centro delle barre.

Q

Hoffmann & Stroobant, Mass Spectrometry, 2002

Page 32: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 32

TRAPPOLA IONICA - ITLa IT può essere immaginata come un quadrupolo piegato su se stesso a formare un anello chiuso: l’asta interna svanisce in un punto, l’asta esterna diventa un elettrodo circolare, l’asta inferiore e superiore due elettrodi a calotta.

Gli ioni sono tutti intrappolati da questo potenziale all’interno della sorgente in traiettorie stabili chiuse (orbite); nella trappola è presente He (10-3Torr) per far diminuire l’energia cinetica degli ioni tramite collisioni e concentrare gli ioni al centro della trappola, processo controbilanciato dalla repulsione elettrostatica.

Il potenziale o è dato da un potenziale diretto DC U, e da un potenziale alternato RF, V: o = U + V cost.

IT

z0

r0

filamentocalotta superiore

calotta inferiore

elettrodo ad anello

uscita ioni

elettromoltiplicatore

sezione trasversale della IT

Le traiettorie stabili sono quelle che non superano i confini della trappola: r < ro, z < zo. La geometria della IT (ro,zo)èdefinita; fissata la frequenza = , si opera a U=0, e si imposta V in modo da intrappolare tutti gli ioni che interessano.Aumentando V, gli ioni a valori di m/z crescenti raggiungono il limite di stabilità superato il quale vengono espulsi in sequenza lungo la direzione z; il 50% esce dalla calotta inferiore e colpiscono il rivelatore.

Page 33: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 33

All’uscita della regione di accelerazione uno ione di massa m e carica z ha un’ energia cinetica :

zeV = ½ mv2

ioni

Forza magnetica F. centripeta = F.centrifuga

zevB = mv2 / r

r = mv2 / zeB

solo gli ioni con un determinato m/z hanno una curvatura r corrispondente a quella del settore magnetico.Variando l’intensità del campo elettrico V o magnetico B si misurano ioni con diverso m/z.

m/z = B2r2e / 2V m/z = B2r2e / 2V

ANALIZZATORE A SETTORE MAGNETICO B

sorgente ionica (EI)

regione di accelerazione.Gradiente di potenziale V.

Limiti alla risoluzione. Cause :

divergenza angolare del fascio ionicoaberrazione energetica : v = (2zeV/m)1/2 ± vFormazione di ioni con velocità vi differenti in modulo e direzione (distribuzione di Boltzmann delle energie termiche dei

precursori degli ioni, disomogeneità di campo).

v + vi

le traiettorie tendono a essere perpendicolari alle linee di campo equipotenziali (FOCALIZZAZIONE) ma c’è una certa

divergenza de fascio ionico ().

rivelatore

settore magnetico

Il campo magnetico agisce alla direzione del moto; lo ione è deflesso in una traiettoria circolare

Page 34: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 34

Spettrometri a doppia focalizzazione HRMS (high resolution mass spectrometry)

divergenza angolare fascio ionico focalizzazione della direzione operata dall’analizzatore magneticodispersione energetica degli ioni focalizzazione delle velocità operata analizzatore eletrostatico

Guadagno di risoluzione incorporando due analizzatori: a campo elettrostatico e campo magnetico.La HRMS permette la determinazione delle masse esatte (composizione elementare) e la separazione di ioni isobari, ma è una strumentazione molto costosa.

Analizzatore elettrostatico (ESA)

Campo radiale V’

L’ESA uniforma le energie traslazionali compensando differenze nelle velocità iniziali. Ioni con troppa (poca) energia colpisono il polo positivo (negativo)

+ piano focale della direzione

piano focale della energia

punto di doppia focalizzazione (fenditura d’uscita, rivelatore)

Analizzatore magnetico

F.elettrica F.centripeta =F.centrifuga

zeV’ = mv2/r

r = mv2 / zeV’ = 2V /V’

sorgente ionica

regione di accelerazione

zeV = 1/2 mv2/r

zeV’ = mv2 / r

Page 35: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 35

Tecniche combinate. GC-MS HPLC-MS METODI DI ACQUISIZIONE

Registrazione di tutti gli ioni di un determinato intervallo di massa (es. da m1 = 50 a m2 = 500 per monopositivi). Fornisce lo spettro di massa utile per l’identificazione (analisi qualitativa)La sensibilità può non essere sufficiente per l’analisi in tracce. La sensibilità diminuisce al diminuire del dwell time, Dt degli ioni.

Nel Q gli ioni con un determinato m/z sono registrati per un tempo breve (ca. 1 ms) durante la scansione.Es.Dt = scan time/mass range = = 500 ms/(550-50)u = 1 ms/u

m1

m2

m(u)

t(ms)scan time

FULL SCAN

m1

m3

m(u)

t(ms)scan time

m2

Nel Q il tempo della scansione viene utilizzato per misurare solo alcuni ioni con determinati m/z.Non si ottiene lo spettro di massa totale, ma aumenta la sensibilità, perché aumenta il Dt.Es. 3 ioni analizzati, total scan time 500 ms Dt ~ 550/3 = 166 ms per ione

Il guadagno in sensibilità è proporzionale al tempo speso dallo strumento sullo ione nell’analisi in SIM rispetto a quella in TIC. Es.: nell’analisi in TIC un intervallo di 500u viene registrato in 2 sec, tempo speso sullo ione 2/500 = 4 ms; guadagno in sensibilità nell’analisi in SIM (sempre 2 s utilizzati per la rivelazione) di (2000 ms/4 ms=) 500 volte.

SELECTED ION MONITORING SIM

Page 36: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 36

TOTAL ION CHROMATOGRAM - TIC Somma delle correnti ioniche di tutti gli ioni dello spettro di massa per ogni scansione spettrale. E’ un diagramma corrente ionica totale vs. numero di scansione (tempo).L’intensità dipende dall’ampiezza dell’intervallo di scansione.

MASS CHROMATOGRAM - MCÈ un estratto dei dati ottenuti dall’analisi in TIC, in cui vengono riportate solo le intensità di ioni selezionati in funzione del numero di scansioni (tempo d’analisi).Aumenta la selettività rispetto al TIC (elimina ioni interferenti) e aumenta S/N.E’ quindi adatta all’analisi quantitativa ed è sempre possibile l’identificazione dei composti dallo spettro di massa totale.

50 76

126

152

m/z1713 14 15 16 18

5

10

MCounts

0

20

40 kCounts

TIC

MC a m/z 152

acenaftilene

minuti

Esempio: analisi GC-MS estratti di sedimento.

Page 37: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 37

Scelta degli ioni

specifici dell’analita.

tra i più abbondanti dello spettro di massa

in genere quelli di massa più elevata (> 200Th) che danno S/N migliori (la probabilità che i composti presenti in una miscela producano ioni caratteristici con lo stesso m/z diminuisce all’aumentare di m/z)

verificare l’assenza di ioni interferenti nel campione

in genere si scelgono tre-quattro ioni per confermare l’identità, e uno ione per l’analisi quantitativa.

Criteri per l’identificazione in SIM (descriptors). Esempio:

corrispondenza esatta di tre ioni caratteristici

ai tempi di ritenzione dello standard

con le corrette abbondanze relative (entro un certo intervallo di incertezza; es. 10% EI, 20% CI.

S/N del picco almeno > 3.

Page 38: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 38

13491

58

methamphetamine

triazolam : gli ioni a m/z 342 e 313 sono ioni a masse relativamente alte e abbondanti. Lo ione a m/z 313 è preferito rispetto al 344 perché la perdita di - 29 u (342 313) è più significativa dello ione M+2, prodotto da ogni ione che contiene cloro. Gli ioni a m/z 344 o 315 possono essere scelti per la conferma; se dovesse esserci un fondo elevato in queste zone di m/z, rimane sempre la possibilità di scelta dello ione a m/z 238.

342

344

313

315279

238

triazolam

303

254

230118

chlorambucil

scelta degli ioni in SIM

B.Ardrey LC-MS. An introduction, 2003

methamphetamine : scelta problematica. Lo ione a m/z 58 va bene per l’analisi quantitativa, ma è uno ione a masse basse poco specifico (tipico delle ammine), per cui la scelta di uno ione per la conferma è cruciale. Il secondo ione più abbondante a m/z 91 è poco specifico (comune a composti contenenti il gruppo benzilico). Lo ione ai valori più alti di m/z (134) è poco intenso, e comunque cade sempre in una zona di m/z bassi dove l’interferenza dovuta al fondo può essere significativa. Considerare tecniche di ionizzazione soft per fornire maggiore specificità attraverso la formazione dello ione molecolare a valori m/z più alti.

chlorambucil : lo ione a m/z 254 è sicuramente scelto per l’analisi quantitativa. Più problematica la scela degli ioni per la conferma. Lo ione 303 è a valori di m/z relativamente alti, ma è poco intenso, per cui la sua scelta può essere problematica a basse concentrazioni di analita. In alternativa si può scegliere lo ione M+2 come specificità della presenza di cloro.

Page 39: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 39

Esempio: analisi eptaclorodibenzo-p-diossine in scarichi municipali.

Identità molecolare

formula bruta C12HO2Cl7

peso molecolare (massa monoisotopica : 422 Da

isomeriO

O

Cl

Cl

Cl Cl

ClCl

ClO

O

Cl

Cl

Cl Cl

Cl

Cl

Cl

Analisi soluzione standard:

GC tempi di ritenzione;

MS scelta degli ioni: ioni selezionati m/z 422, 424 e 426 misurazione abbondanze relative : 44 / 100 / 97.

Analisi campione SIM a m/z 422, 424, 426.

Spettro di massa

banche-MS, siti web (NIST), letteratura, …

428

432

426

430

424

422

434m/z

es. isotope distribution calculator (www.sisweb.com)

calcola abbondanze relative cluster ioni molecolari inserendo la formula bruta

Page 40: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 40

RISULTATIAnalisi campione SIM a m/z 422, 424, 426.

B D

F

Analisi eptaclorodibenzo-p-diossina

time

m/z 424

m/z 426

m/z 422

31428 36605

86598 96785

28818

85983 97067

cromatogramma su tre caratteristici ioni dell’eptaclorodibenzofiossina nell’analisi GC-MS SIM degli estratti. Tratta da FW Karasek, RE Clement, Basic GC-MS, 1988

Page 41: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 41

Analisi qualitativa:

Picchi B,D confermati:

presenti gli ioni caratteristici a m/z 422, 424, 426.

con rapporti delle aree che rispettano abbondanze relative (entro errore tipico 10-20%):

31400 / 86600 / 86000 = 36 / 100 / 99; 36600 / 96800 / 97000 = 38 /100 / 98

Confermati i tempi di ritenzione determinati dall’analisi dello standard.

picco F scartato mancano gli ioni a m/z 422 3 426. Assente nello standard.

Analisi quantitativa:

Metodo standard esterno. Single point calibration. (Curva di calibrazione fornirebbe migliore accuratezza, ma non effettuata per diminuire tempi di analisi).

Analisi soluzione standard di un isomero. Ione selezionato m/z 424 (più abbondante): area 6400 per 100 pg iniettati. Fattore di risposta = 64 counts/pg.

Risultato: 1.4 ng B, e 1.5 ng D.

Analisi eptaclorodibenzo-p-diossina

Page 42: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 42

100 200 300 400m/z

97

2,3,7,8-Tetraclorodibenzo-p-diossina

74 161194

229

257

285

322

324

320

326

Possibile scelta degli ioni per l’analisi in SIM: m/z 320, 322, 324. Analisi quantitativa effettuata sullo ione 322 Th. Rapporto delle aree dei picchi deve corrispondere alle abbondanze relative degli ioni nello spettro di massa (320:322:324 = 78:100:48).

O

O

Cl

Cl

Cl

Cl

C12H4O2Cl4Massa media : 321.975 Da; massa nominale : 320 Damassa monoisotopica 12C12

1H416O2

35Cl4: 319.896 Daione più abbondante 12C12

1H416O2

35Cl337Cl: 321.8934 Da

Esempio: analisi “diossina” (2,3,7,8-Tetraclorodibenzo-p-diossina)

Interferenza da eptacloro bifenili (MW 392) in caso di coeluizione.

La scelta dello ione a 322 potrebbe portare ad un falso positivo, e il monitoraggio di un altro ione di conferma (es.320) ad un falso negativo (rapporto 320:322 errati).

potenziale interferenza da eptacloro bifenile

100 200 300 400m/z

127

162

197

254

290

324

359

394

322

Cl7

L’uso della HRMS con una risoluzione > 12,500 permette di distinguere la diossina dall’eptaclorobifenile (321.8678 u).

Page 43: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 43

TANDEM MS - MS/MS - MSn

La MS/MS consiste in almeno due stadi di analisi MS combinati con un processo di dissociazione o reazione chimica che determina una variazione di m/z dello ione.

Il primo analizzatore isola lo ione precursore (precursor, parent ion, lo ione che poi subisce un processo) che subisce una reazione formando uno ione prodotto (product, daughter ion) analizzato dal secondo strumento. La reazione è in genere una frammentazione, e lo ione prodotto è uno ione frammento dello ione precursore.

Mp+ Mf+ + Nione precursore ione prodotto + frammento neutro

Esistono diverse configurazioni con analizzatori a settore magnetico B, elettrostatico E, e a quadrupolo Q. Nella figura la configurazione più comune: QQQ (QqQ) triplo quadrupolo. Il primo Q agisce da filtro di massa, il secondo q è una camera di collisione dove avviene la frammentazione degli ioni per collisione con un gas inerte, il terzo Q come filtro di massa degli ioni prodotti.

Q - 1ionsource

elettromoltiplicatoreQ - 2 Q -3

camera dicollisione

ionizzazionefocalizzazione analisi m/z rilevazione dissociazione analisi m/z

tandem in space

Page 44: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 44

tandem MS

La MS/MS richiede la frammentazione degli ioni precursori selezionati dal primo analizzatore.

La frammentazione avviene tramite collisione con atomi/molecole di un gas inerte. Nella collisione l’energia cinetica dello ione (B: > 1 KeV, Q:10-100 eV, IT < 6eV) è trasformata in energia interna dello ione

Il valore massimo di energia interna Ei che può essere assorbita da uno ione di energia cinetica Ec e di massa Mi che urta una particella di gas (target) di massa Mt è dato da:Ei = (Mt/Mi + Mt)EcEsempio Ei = 2.9 eV per uno ione di 100u con Ec = 10eV che collide un atomo di Ar (40Da).

CAD (CID) : COLLISION ACTIVATED (o -INDUCED) DECOMPOSITION

Nella configurazione QqQ, il secondo quadrupolo non agisce come filtro di massa. Tutti gli ioni trasmessi dal primo Q e i suoi frammenti formati per collisione con il gas inerte arrivano al secondo Q.

Q - 1

ione precursore

Q - 3

ione prodotto

cella di collisionesorgente ionica

Page 45: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 45

Hubschmann, Handbook of GC/MS, 2001

In una trappola ionica tutti gli ioni sono resi instabili tranne quelli di interesse con un certo valore di m/z che vengono intrappolati nella sorgente; gli ioni selezionati sono eccitati per decomporli; gli ioni prodotto sono resi instabili e rilevati (product ion scan).Anche gli ioni prodotto possono essere intrappolati, decomposti ed i frammenti analizzati. Gli stadi di selezione, decomposizione ed analisi avvengono nella stessa zona dello strumento, ma separati nel tempo. Possono essere numerosi (n) e si parla di MS/MS/MS… o MSn.

MSn

263

235

MS2

- HN(CH3)2

263

235

- CO

248

235MS3

248- CH3

220

MS4 di m/z 248

220- CO

analisi ESI-IT-MSn di zolpidem

308

[M + H]+

ione molecolare

N

N

N

O

MW 307

W.:F.Smith et al., Anal.Chim.Acta 506 (2004) 203

tandem in time

Page 46: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 46

PRODUCT ION SCAN.Si seleziona lo ione precursore nel MS-1 e si fa l’analisi dei frammenti operando MS-2 in scansione. Si usano spesso metodi di ionizzazione soft per avere ioni (quasi)molecolari.

MODI DI SCANSIONEMS fissoMS in scansione

MS - 1 camera dicollisione

ionsource detectorMS - 2

PRECURSOR ION SCAN.MS-1 opera in scansione, mentre MS-2 opera in SIM su uno ione specifico. Vengono così identificati tutti gli ioni che producono lo stesso frammento. Non può essere effettuata nella tandem in time.

NEUTRAL LOSS SCANMS-1 e MS-2 operano in scansione simultanea, ma con una differenza di massa costante corrispondente alla massa di un frammento neutro (es. mentre MS-1 fa la scansione da 30 a 500, MS-2 la fa da 15 a 485, e la differenza di massa corrisponde alla perdita di un CH3

•.

SELECTED REACTION MONITORING (SRM).Si seleziona una reazione di frammentazione; MS-1 e MS-2 sono focalizzati su masse selezionate. E’ l’analogo MS/MS del SIM.

tandem MS

Page 47: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 47

Quando usare la MS/MS: disturbo causato dalla matrice co-eluizione con un interferente identificare la struttura di un composto incognito aumentare la sensibilità nell’analisi quantitativa conferma di un’analisi in SIM

MS-1 SIM - MS-2 SCANUtilizzato per confermare la presenza dell’ analita in una miscela complessa; per determinare la struttura di un composto incognito; per identificare l’analita quando la ionizzazione che si utilizza non produce frammentazioni (ESI, CI).

MS-1 SCAN - MS-2 SIM

Utilizzata per l’analisi specifica dei membri di una classe di composti con caratteristiche comuni.

Analisi alchilfenoli nei carboni: MS-2 è impostata per il monitoraggio dello ione a m/z 107, relativo al frammento HO-C6H4-CH2

+.

MS-1 SIM - MS-2 SIM

SRM. Caratterizzato da elevata sensibilità e selettività. Adatta per l’analisi di quantitativa di composti in tracce in matrici complesse.

MS-1 SCAN NL MS-2 SCANUtile per l’analisi di classi di composti, es.composti con lo stesso gruppo funzionale.Analisi PCDD: perdita consecutiva di Cl• e CO, con una perdita netta di 63 Da. Lo strumento determina in modo specifico tutte le PCDD lavorando con una differenza di massa costante a 63 Da.

tandem MS

Page 48: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 48

Esempio: ormoni steroidei in acque di scarico municipali-1

HO

OH

H

H

H

17-estradiolo

OH

O

H

H

H

testosterone

451

450452

m/z

451466

665

m/z

spettro MS/MSProcedura

Campioni di acque di scarico 4 L.

Filtrazione.

Aggiunta I.S. (100 ng/L mesterolone).

SPE C18; lavaggio H2O/MeOH 6:4; eluizione H2O/MeOH 25:75.

Derivatizzazione con anidride eptafluorobutirrica.

Evaporazione.

Ripresa con 0.1 mL iso-ottano.

Analisi GC-MS/MS. EI 70 eV.EP Kolodziej et al. Environ.Toxicol.Chem.22(2003)2622

O

O

H

H

H

O

CF2CF2CF3

CF3CF2CF2

O

MW 682.5

1CF3CF2CF2COO

OCOCF2CF2CF3

H

H H

MW 664.4

2

Analisi GC-MS/MS acqua di scarico

1 2

minuti

tracciato GC

m/z 681 m/z 664

Page 49: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 49

Condizioni GC-MS/MScomposto RT precursore prodotto LOD LOQ

min m/z m/z ng / L ng / L

testosterone 14.39 681 451, 466, 665 0.1 0.317-estradiolo 14.78 664 451 0.1 0.3androstenedione 15.88 ecc. ecc.mesterolone 19.10 414 (SIM)

Esempio: ormoni steroidei in acque di scarico municipali - 2

EP Kolodziej et al. Environ.Toxicol.Chem.22(2003)2622

Quantificazione e controllo qualità. Identificazione. Tempo di ritenzione ( 0.1 min); abbondanza ioni prodotto (daughter) in MS/MS ( 20%).

Calibrazione. Lineare, 7 punti spaziati su scala log da 1.0 a 100 ug / L.

LOQ. Punto di più bassa concentrazione della calibrazione considerando la pre-concentrazione; S/N > 6.

LOD. 1/3 del LOQ.

Quantificazione. Somma delle aree dei picchi dello spettro MS/MS (base peak + confirmatory qualifiers); normalizzate sullo standard interno (mesterolone).

QA/QC. Analisi dei bianchi (acqua distillata) (test contaminazione assente); campioni in duplicato (test precisione < 10%); recuperi (matrice fortificata con analiti 74% 27% n=18).…

Page 50: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 50

La scelta della tecnica dipende da: concentrazione di PCB prevista (LOD richiesto).

Tipo di interferenze sospettate.

Risoluzione richiesta (determinazione congeneri o PCB totali).

Potere di discriminazione qualitativa; accettabilità di falsi positivi e negativi (*).

Accuratezza e precisione richiesta.

Disponibilità della strumentazione.

Tempi e costi di analisi.

Esempio: analisi PCB

MD Erickson Analytical Chemistry of PCBs

HPLC risoluzione sufficiente per PCB totali. Rivelazione UV.HRGC (GC ad alta risoluzione: con colonna capillare) per l’analisi di congeneri.GC-FID per livelli di concentrazione alti (%) e bassa interferenza. GC-ECD se concentrazioni basse, ma ci sono poche interferenze da elettrofori.GC-MS per basse concentrazioni e presenza di interferenti..MDGC (multidimensional GC, GCn), GC-MS/MS, GC-HRMS per elevata selettività.

(*) Esempio: falso positivo :accettabile in un monitoraggio sulla contaminazione da PCB (danno: sostiuzione inutile del fluido dielettrico); non-accettabile: nel latte umano di una poplazione che vive nei pressi di un inceneritore di PCB.

Page 51: Chimica Analitica degli Inquinanti 8 - D.Fabbri 1 corso di CHIMICA ANALITICA DEGLI INQUINANTI Laurea specialistica - Scienze Ambientali Università di Bologna.

Chimica Analitica degli Inquinanti 8 - D.Fabbri 51MD Erickson Analytical Chemistry of PCBs

Ionizzazione chimica positiva (PCI). Per la minore frammentazione lo ione molecolare è in genere il picco principale nello spettro di massa. Usando metano come gas reagente si formano gli ioni [M+H]+, [M+C2H5]+. Il vantaggio è limitato, perché ioni molecolari intensi si hanno anche in EI. Inoltre, la risposta PCI è influenzata dalle condizioni di ionizzazione con effetti negativi sulla precisione.Ionizzazione chimica negativa (NCI, ECMS). Ha caratteristiche di sensibilità e selettività (e reattività) simili all’ECD, con il vantaggio dell’abilità di riconoscimento del MS. Ha i problemi di riproducibilità delle tecniche CI. Gli ioni possono essere M- e 35Cl-, 37Cl-.

Ionizzazione elettronica (EI). L’acquisizione full scan è utile per l’analisi qualitativa; in SIM si migliora la sensibilità e la selettività dell’analisi. In genere si usa lo ione più intenso per la quantitativa, e il rapporto M/M+2 per il riconoscimento, eventualmente un terzo ione nei casi dubbi. Esempio:

C12H9Cl 188 (100) 190 (33) C12H8Cl2 222 (100) 224 (33) 226 (11)

C12H7Cl3 256 (100) 258 (99) 260 (33) C12HCl9 430 (100) 432 (66) 428 (87)

Alta risoluzione (HREIMS). Maggiore certezza nell’identificazione, anche in presenza di diversi interferenti e senza separazione GC (analisi diretta).

Tandem MS (MS/MS). Può essere adatta per l’analisi quali-quantitativa in miscele molto complesse, ad esempio con un elevato fondo dovuto a idrocarburi o lipidi. In genere lo ione precursore è lo ione a massa più bassa del cluster di ioni molecolari (C12Hn

35Cl10-n). Gli ioni prodotto sono in genere (M-Cl)+, (M-HCl)+, M-Cl2)+.

Esempio: PCB N° 52 ione precursore m/z 292, ioni prodotto m/z 257, 222, 220.

Esempio: analisi PCB