Equilibrio acido-base - : Applicazione chiusamedicina.unipr.it/didattica/att/781b.file.ppt · PPT...

Post on 18-Feb-2019

233 views 1 download

Transcript of Equilibrio acido-base - : Applicazione chiusamedicina.unipr.it/didattica/att/781b.file.ppt · PPT...

ADF Semeiotica Equilibrio acido-base

Enrico Fiaccadori

Dipartimento di Clinica Medica, Nefrologia & Scienze della Prevenzione

Il controllo dell’equilibrio acido base ha un ruolo centrale nell’omeostasi

dei fluidi corporei, assicurando il mantenimento della concentrazione

idrogenionica entro limiti stretti

Lo ione idrogeno come specie altamente reattiva

H+

Legame con le proteine (enzimi, proteine

contrattili, proteine di trasporto etc.)

Alterazioni strutturali

Alterazioni funzionali

MAJOR ADVERSE CONSEQUENCES OF SEVERE ALKALEMIA(Adroguè HJ, Madias NE, N Engl J Med 1998; 338:107-111) Cardiovascular - Arterial constriction- Reduction in coronary blood flow- Reduction in anginal threshold- Predisposition to refractory supraventricular and ventricular arrhythmias Respiratory- Hypoventilation with attendant hypercapnia and hypoxemia- Enhancement of hypoxic pulmonary vasoconstriction worsening of ventilation-perfusion relationships Metabolic - Stimulation of anaerobic glycolysis and organic acid production- Hypokalemia- Decreased plasma ionized calcium concentration- Hypomagnesiemia and hypocalcemia Cerebral- Reduction in cerebral blood flow- Tetany, seizures, lethargy, delirium and stupor

Impatto della dieta sull’equilibrio acido-base

(Dieta media con circa 70 –100 g. di proteine prevalentemente animali)

- Produzione di acidi 240 mEq- Produzione di basi (rimozione di acidi) 170 mEq

Il bilancio netto è di circa 70 mEqdi H+ che si accumulano nell’organismo

(1 mEq/Kg/die)

Forme di acidi fissi e volatili

Acidi fissiInorganici• H3PO4 (Fosfati organici,

proteine)• H2SO4 (AA solforati)

Organici• Acido lattico• Chetoacidi• Tossici• Farmaci

Acidi volatiliH2CO3 CO2 + H2O

Produzione di basi (rimozione di acidi)

con la dieta• Metabolizzazione aminoacidi anionici

(glutamato, aspartato)• Metabolizzazione anioni organici (ad es.

citrato)

Parametri dell’equilibrio acido-base:- quali sono, come si esprimono (unità di misura)- concetto di valori medi e range fisiologico

• [H+] 40 nEq/L (36-44)• pH 7.40 (7.36–7.44)• PaCO2 40 mmHg (36-

44) HCO3 24 mEq/L (22–26)

Dove si misurano: L’equilibrio acido-base nel suo complesso si può valutare solamente sul sangue arterioso, che consente di analizzare il ruolo dei tre componenti fondamentali della regolazione: trasporto ematico sotto forma di tamponi, polmone, rene l’emogasanalisi arteriosa rappresenta l’esame più importante

Concentrazioni normali anioni e cationi nel plasma

CATIONI, mEq/L• Na 140• K 4.5 • Ca 5 • Mg 2 • H+ 0.000040 (40

nEq/L)

ANIONI, mEq/L• Cl 103• HCO3 24

Finalità dei sistemi che concorrono all’equilibrio acido-base: mantenimento omeostasi idrogenionica

Meccanismi che limitano e/o correggono modificazioni della concentrazione

idrogenionica nell’organismo

• Sistemi tampone Sistema di prima difesa verso le alterazioni acido-basiche + trasporto acidi e basi verso gli apparati escretori (rene e polmone)

• Rene eliminazione acidi fissi (e basi)• Polmone eliminazione acidi volatili

(CO2) derivanti dal metabolismo dei nutrienti o dal tamponamento di acidi da parte del bicarbonato

Un sistema tampone è costituito da un acido e dalla sua base coniugata ed è in grado di rilasciare o legare H+ a seconda

delle necessità. In caso di legame l’H+ cessa temporaneamente di esistere come specie dissociata

autonoma (e quindi altamente reattiva) nel fluido contenente il tampone

Sistemi tampone dell’organismo:tamponi intra- ed extracellulari

Ruolo centrale del sistema tampone bicarbonato

• E’ il tampone quantitativamente più importante nell’extracellulare

• E’ in equilibrio con i sistemi tampone intracellulari

• Le due componenti del sistema (bicarbonato/acido carbonico) sono controllate separatamente dal rene (componente metabolica) e dal polmone (componente respiratoria)

La valutazione delle due componenti del sistema del bicarbonato consente di valutare l’equilibrio acido-base dell’organismo, attraverso l’equazione di Henderson-Hasselbalch

H2CO3 HCO3- + H+

Il sistema tampone bicarbonato/acido carbonico

CO2 + H2O H2CO3 HCO3- + H+

CO2 + H2O H2CO3 HCO3- + H+

polmone rene

CO2 + H2O H2CO3 HCO3-

+ H+ polmone rene

Tamponi cellulari

CO2 + H2O H2CO3 HCO3- +

H+ polmone rene

Tamponi cellulari

Lo studio dell’equilibrio di dissociazione del sistema tampone bicarbonato/acido carbonico fornisce indicazioni sull’equilibrio acido-base dell’organismo in toto e sui meccanismo di compenso renali (metabolici) e polmonari (respiratori)

CO2 + H2O H2CO3 HCO3-

+ H+ polmone rene

pH = 6.1 + log HCO3-

0.0301 PaCO2

L’equilibrio di dissociazione del sistema tampone HCO3/H2CO3 è descritto dalla legge d’azione di massa, espressa come equazione di Henderson-Hasselbach, nella quale l’H2CO3 è inserito sotto forma di PaCO2 moltiplicata per un coefficiente di solubilità della CO2 in H2O (si ottiene un dato in mEq/L)

Tamponi cellulari

pH = 6.1 + log HCO3-

0.0301xPaCO2

pH = 6.1 + log 24 mEq/L0.0301x 40 mmHg

pH = 6.1 + log 24 mEq/L 1.2 mEq/L

pH = 6.1 + log (24/1.2)pH = 6.1 + log 20pH = 6.1 + 1.3 = 7.40

Nell’organismo esistono numerosi sistemi e ciascuno di essi ha un equilibrio espresso dalla sua equazione di HHPerò, poiché tutti sono anche in equilibrio tra di loro, sarà sufficiente studiarne uno solo per conoscere l’equilibrio acido-base di un soggettoIl sistema tampone che viene utilizzato in clinica è quello bicarbonato/acido carbonico, cioè bicarbonato/CO2Vine utilizzato in quanto le due componenti sono facilmente misurabili e in quanto direttamente influenzata dai due sistemi coinvolti nella regolazione dell’equilibrio acido-base: emuntorio renale e sistema respiratorio

RENE

Ruolo del rene nel mantenimento del bilancio acido-basico

• Riassorbimento del bicarbonato già presente nel sangue e che venendo filtrato dal glomerulo verrebbe perso nelle urine (tubulo prossimale)

• Eliminazione netta di H+ (tubulo distale)

La base fisiologica di entrambi gli effetti è rappresentata dalla secrezione di H+, a livello dei tubuli prossimale e distale

Riassorbimento dei bicarbonati nel tubulo prossimale

• 85% del bicarbonato filtrato• elevata capacità (24 mEq/L di

bicarbonato x 150 L di filtrato glomerulare = 3600 mEq/24 ore filtrati)

• Elevata permeabilità luminale agli H+

• Basso gradiente di H+ (7.4 inizio t.p., 7 fine t.p.) per la presenza della anidrasi carbonica

• Scambio Na/H epitelio tubulare + cotrasporto Na/HCO3 basolaterale

• Soglia dei bicarbonati 26 mEq/L

Na+

NaHCO3

Controllo del riassorbimento prossimale di bicarbonato

• Acidosi extracellulare• Volemia efficace• Sistema renina-angiotensina• Potassiemia e patrimonio potassico

Eliminazione netta di H+ (generazione di bicarbonati) nel tubulo distale

• Secrezione di H+ mediata da una H+ATPasi nelle cellule intercalate

• Secrezione contro gradiente elevato (pH 7.4 nel sangue, 4.5 nelle urine gradiente di 1:1000) con bassa permeabilità luminale agli H+

• Presenza di tamponi luminali (Fosfati e NH3) per legare gli H+ secreti

• l’acidificazione è massima per valori di pH di 4.5, oltre ai quali non è possibile creare maggiore gradiente di H+; manca inoltre la anidrasi carbonica luminale

• H+ escreti come H+ liberi (quantità minima), acidità titolabile e ioni ammonio (NH4

+) quest’ultimo rappresenta il principale meccanismo di eliminazione degli H+ sia in condizioni fisiologiche che quando sia necessario eliminare un carico di H+ (acidosi)

Escrezione netta di H+ come acidità titolabile

Escrezione netta di H+

come ammoniuria

Delle varie forme di escrezione di H+, solamente l’escrezione dello ione ammonio può aumentare significativamente in

presenza di un carico acido

A parità di valori di pH urinario raggiunti, in corso di acidosi (da cause non renali), vengono eliminati più H+, perché nelle urine ci sono più NH3 (e quindi NH4

+)

Fattori che stimolano l’escrezione di idrogenioni nel tubulo distale

• Riduzione pH ematico• Aumento PaCO2

• Ipopotassiemia• Aumento aldosterone

POLMONE

Ruolo del polmone nel bilancio acido-base:eliminazione acidi volatili (CO2) attraverso la ventilazione alveolare

Ventilazione alveolare (VA) e PaCO2 (I)

• La VA è la quantità di aria che raggiunge gli alveoli e prende parte agli scambi respiratori. E’ data dalla differenza tra VE (ventilazione minuto) e VD (spazio morto, cioè le vie aeree che non partecipano agli scambi respiratori)

• La VA rappresenta l’unica modalità di eliminazione della CO2 prodotta dal metabolismo (VCO2)

• In condizioni normali la quantità di CO2 eliminata con VA è uguale a alla produzione metabolica di CO2 (circa 200 ml/min)

Ventilazione alveolare (VA) e PaCO2 (II)

Il rapporto tra VCO2 e VA è espresso dal valore di PaCO2

VCO2 x 0.863 -------------- VA

PaCO2 =

Le alterazioni dell’equilibrio acido-

base

Equilibrio acido-base: definizioni

Acidemia pH < 7.36Alcalemia pH > 7.44Acidosi Processo fisiopatologico che tende ad aumentare [H+]

e a ridurre il pHAlcalosi Processo fisiopatologico che tende a ridurre [ H+] e ad

aumentare il pHAcidosi metabolica

processo che primitivamente riduce HCO3

Alcalosi metabolica

processo che primitivamente aumenta HCO3

Acidosi respiratoria

processo che primitivamente aumenta la PaCo2

Alcalosi respiratoria

processo che primitivamente riduce la PaCO2

Disordine misto Condizione nella quale è presente più di un disturbo acido-base primitivo

Compenso Risposta fisiologica all’acidosi o all’alcalosi, che determina un parizlale ritorno del pH verso i livelli normali

Alterazioni dell’equilibrio acido-base:

alterazioni respiratorie e alterazioni metaboliche

Componente “respiratoria” e componente “metabolica” dell’equilibrio acido-base

Squilibrio primitivo respiratorio compenso “metabolico”Squilibrio primitivo metabolico compenso “respiratorio”

Compensi• acidosi metabolica• alcalosi metabolica• acidosi respiratoria• alcalosi respiratoria

• riduzione PaCO2 (polmone)

• aumento PaCO2 (polmone)

• aumento bicarbonati (rene)

• riduzione bicarbonati (rene)

ACIDOSI RESPIRATORIA Alterazione dell’equilibrio acido acido-base caratterizzata da un primitivo aumento della PaCO2, eventuale riduzione del pH arterioso (acidosi respiratoria con acidemia), e da secondario aumento dei bicarbonati (compenso renale)La patogenesi riconosce cause secondarie ad alterazioni del sistema ventilatorio

Sistema ventilatorio e ventilazione fisiologica

La ventilazione fisiologica è il risultato di complesse interazioni tra centri respiratori del SNC, chemocettori centrali e periferici, muscoli respiratori e parenchima polmonareHa lo scopo di eliminare la CO2 prodotta dal metabolismoI determinanti della PaCO2 arteriosa saranno quindi rappresentati dalla ventilazione alveolare e dalla produzione metabolica di CO2

ACIDOSI RESPIRATORIA

 a)   pazienti che non ventilano (di solito acidosi resp. acute)il problema è la depressione dello stimolo respiratorio (es. sedativi, narcotici, alcool, lesioni SNC post-anossiche, trauma cranico, encefalite, etc) b)  pazienti che non possono ventilare (di solito acidosi resp. croniche)due possibili problemi1)   insufficienza primitiva della pompa ventilatoria (m. respiratori): farmaci e tossici (curarizzanti, esteri organofosorici etc.), sclerosi multipla, miopatie acute etc. 2)   insufficienza secondaria della pompa ventilatoria (fatica dei muscoli respiratori) da eccessivo aumento del lavoro respiratorio-         lavoro elastico (malattie restrittive, ARDS etc.)-         lavoro resistivo (ad es. crisi asmatica, BPCO)3) patologie del parenchima polmonare compromissione degli scambi gassosi (BPCO grave, edema polmonare acuto etc.)

due meccanismi: # sistemi tampone (acidosi resp.acuta)meccanismo rapido ma quantitativamente limitatoHCO3 = 0.1 mEq/L per mmHg PaCO2 # rene (acidosi respiratoria cronica)meccanismo più lento ma quantitativamente più adeguatoHCO3 = 0.3-0.4 mEq/L per mmHg PaCO2

COMPENSO ALL’ACIDOSI RESPIRATORIA 

ACIDOSI RESPIRATORIA CLINICA ACIDOSI RESPIRATORIA ACUTA-         cefalea-         alterazioni visus-         tremori-         agitazione – stato soporoso – coma-         ipotensione ACIDOSI RESPIRATORIA CRONICA-         dispnea-         agitazione – stato soporoso – coma-         segni e sintomi della pneumopatia di base-         segni e sintomi di cuore polmonare cronico

Diagnosi: emogasanalisi arteriosa PaCO2 > 44 mmHg

Acidosi metabolicaCondizione caratterizzata da primitiva riduzione della concentrazione di bicarbonati, con eventuale riduzione del pH (acidosi metabolica con acidemia) e riduzione secondaria della PaCO2 (compenso respiratorio)

La patogenesi riconosce più spesso cause che determinao perdita di bicarbonati, aumentata produzione di acidi (di solito organici), o insufficiente capacità escrezione di H+ sotto forma di ioni ammonio

Meccanismi di compenso all’acidosi metabolica

• Sistemi tampone extra- e intracellulari

• Polmone (se il sistema ventilatorio è adeguato)

• Rene (se non è causa primitiva dell’acidosi metabolica)

Il sistema tampone HCO3/H2CO3: importanza della rimozione della CO2 nell’acidosi

metabolica

Condizione H+(nmol/L)

pH PCO2(mmHg)

HCO3(mmol/

L)sistema chiuso 871 6.06 455 12.5

PCO2 costante 77 7.11 40 12.5

PCO2 ridotta(iperventilazione)

52 7.29 27 12.5

Entità del compenso respiratorio all’acidosi metabolica(di quanto si dovrà ridurre la PaCO2 se il sistema respiratorio funziona)

Acidosi metabolica: eziopatogenesi2) Perdita di

bicarbonati a) Perdita diretta • Via gastroenterica (diarrea,

fistole biliari, pancreatiche, intestinali etc.

• Via renale (acidosi tubulari prossimali)

1) Aumentata produzione

di acidiEndogena• Acidosi lattica• ChetoacidosiApporto esogeno di acidi o precursori di acidi• Tossici

b) Perdita indiretta di bicarbonati (ridotta capacità di rigenerazione renale dei bicarbonati per deficit di eliminazione urinaria di NH4

+)insufficienza renale acuta o cronica, acidosi tubulari distali

Acidosi da aumentata produzione endogena di acidi organici: l’acidosi lattica

Ridotta disponibilità periferica O2

a) Ridotta utilizzazionedel piruvato

b) Aumentata produzione piruvato

Patogenesi dell’acidosi lattica

Acidosi da aumentata produzione endogena di acidi organici: la chetoacidosi diabetica

Acidosi metaboliche da aumentata produzione di acidi secondaria ad introduzione esogena (intossicazioni

acute)

Acidosi metabolica da perdita di bicarbonati per via gastroenterica

• Diarrea• Drenaggi chirurgici• Fistole enteriche• Ureterosigmoidostomie

Composizione elettrolitica dei fluidi gastroenterici

HCO3mEq/L

NamEq/L

KmEq/L

ClmEq/L

plasma 22-26 135-145 3.5-5 98-106

bile 30-40 130-140 4-6 95-105

pancreas 80-100 130-140 4-6 40-60

Int tenue 80-100 130-140 4-6 40-60

Colon 30-50 80-140 25-45 80-100

Meccanismi patogenetici dell’alterato riassorbimento di bicarbonato nelle acidosi tubulari

prossimali (tipo 2)

Alterato riassorbimento di HCO3• Difetti c.a. luminale• Difetti Na/H luminale• Difetti cotrasp Na/3HCO3

basolat• Difetti c.a. cellulare• Difetti Na/K ATPasi

Acidosi metabolica da ridotta capacità di rigenerazione renale dei bicarbonati: acidosi tubulari distali da ridotta

secrezione distale di H+ ( ridotta escrezione urinaria di ioni ammonio)

X

Acidosi metabolica da ridotta capacità di rigenerazione renale dei bicarbonati: acidosi dell’insufficienza renale ridotta

produzione di NH3 ridotto trasferimento luminale di NH3 ridotta escrezione urinaria di ioni ammonio

X

Diagnosi differenziale dell’acidosi metabolica: due categorie da

individuare• Acidosi metaboliche da aumentata

produzione di acidi (endogena o da precursori esogeni):

c’è iperproduzione di acidi e di che tipo sono?

• Acidosi da perdita di bicarbonati: c’è perdita di bicarbonati e da dove avviene

(è diretta o indiretta?

Acidosi metaboliche: semeiotica di laboratorio

SANGUE• Emogasanalisi arteriosa• Gap anionico (Na, Cl, HCO3)• Gap osmolare (osmolarità misurata, osmolarità

calcolata)• Acido lattico• Screening tossicologico (tossici e farmaci)

URINE• pH urinario• Acidità titolabile e ammoniuria• Gap anionico urinario• Gap osmolare urinario

Misurazione diretta NH4+

Misurazione indiretta NH4+

Gap anionico su sangue

Come si calcola (in mEq/L o mmol/L)• Na+ – (Cl- + HCO3+)

Valore normale• 10-12 ++ 2

Cosa occorre per calcolarlo• Emogasanalisi arteriosa• Sodiemia• Cloremia

Cosa significa• Quantifica gli anioni non misurati (in condizioni fisiologiche costituiti in gran parte

dai siti anionici dell’albumina)• Se è aumentato, esprime l’accumulo di anioni derivanti da acidi endogeni o

esogeni di solito viene utilizzato per individuare le acidosi da aumentata produzione endogena o a partire da precursori esogeni (acidosi a gap anionico aumentato)

Gap anionico e tipi di acidosi metabolica

Bicarbonatemia < 22 mEq/L

pH < 7.36

Acidosi metabolica

Calcolo gap anionico

AumentatoAcidosi metaboliche da accumulo e/o aumentata produzione di acidi organici (lattico, chetoacidi, tossici esogeni etc.) Acidosi a gap anionico elevato

NormaleAcidosi metaboliche da perdita di bicarbonati, che può essere diretta (gastroenterica o renale) o indiretta (ridotta rigenerazione renale) Acidosi a gap anionico normale o ipercloremiche

Diagnosi differenziale dell’acidosi metabolica

• GAP ANIONICO AUMENTATO Acidosi metaboliche da aumentata

produzione di acidi (endogena o da precursori esogeni):

di che acidi si tratta?

Gap osmolare plasmatico: background

• L’osmolarità è determinata dal numero di particelle osmoticamente attive presenti in una soluzione

• A determinare l’osmolarità plasmatica concorrono sia sostanze ioniche che nonioniche

• In condizioni normali l’osmolarità plasmatica è determinata da cationi, anioni , glucosio e urea e può essere misurata con un osmometro oppure calcolata dalla formula 2Na + glicemia/18 + azotemia/60)(VN 280-300 mosm/L)

• L’osmolarità potrà aumentare per aumento della concentrazione di ioni (praticamente solo il Na) o di sostanze nonioniche già presenti nel plasma (ad es. iperglicemia), oppure in seguito all’aggiunta di sostanze esogene a basso peso molecolare (ad es. tossici non misurati di routine, come ad esempio alcooli o glicoli, oppure farmaci)

• La differenza tra osmolarità misurata e calcolata è di solito inferiore a 10 mOsm/L

• Se la differenza aumenta possibile accumulo di sostanze esogene

• L’alcool metilico, in quanto alcool, di per sé non dà direttamente acidosi, ma provoca aumento del gap osmolare• L’acido formico che deriva dal metabolismo dell’alcool metilico nella via della aldeide deidrogenasi, provoca acidosi metabolica con gap anionico aumentato

Intossicazione da alcool metilico

Acidosi metaboliche: semeiotica di laboratorio

SANGUE• Gap anionico• Gap osmolare• Acido lattico e screening tossicologico (tossici e

farmaci)

URINEIndici diretti: • Acidità titolabile e ammoniuriaIndici indiretti• Gap anionico urinario• Gap osmolare urinario

Diagnosi differenziale dell’acidosi metabolica

• GAP ANIONICO NORMALE Acidosi da “perdita” di bicarbonati

(diretta o indiretta) è il rene responsabile della “perdita”

di bicarbonati?

Escrezione urinaria di ioni ammonio (NH4

+)

Elevata (appropriata alla presenza di acidosi) il rene risponde appropriatamente all’acidosi l’acidosi è di origine extrarenale

Bassa (inappropriata alla presenza di acidosi) il rene non risponde in maniera adeguata alla presenza di acidosi l’acidosi è di origine renale

Presupposto fisiopatologico: il principale meccanismo di compenso all’acidosi metabolica è rappresentato dall’aumento

dell’ammoniuria (aumenta la rigenerazione di HCO3) nell’acidosi metabolica, se la causa non è il rene, dovrà esserci una

ammoniuria elevata

Diagnosi differenziale dell’acidosi metabolica gap anionico normale (acidosi

ipercloremiche)• La via più breve è rappresentata dalla misura dell’acidità titolabile

(titolazione delle urine con una soluzione basica fino ad un pH sovrapponibile a quello ematico) e soprattutto dell’ammoniuria

• Se il pH è < 5 in presenza di acidosi, la capacità di acidificazione è conservata, ma il problema è negli accettori di H+ (essenzialmente è un problema di produzione e/o secrezione di NH3 cioè di eliminazione di NH4

+); se il pH è maggiore di 6, il problema invece è nella secrezione di H+

• la somma dell’acidità titolabile e dell’ammoniuria esprime l’escrezione acida netta; in condizioni fisiologiche l’escrezione acida netta è pari a circa 1-1.5 mEq/Kg nelle 24 ore, 2/3 dei quali sotto forma di ioni ammonio NH4

+

• In condizioni di acidosi da cause non renali, l’acidità titolabile resta praticamente invariata, mentre è soprattutto l’escrezione di NH4+ che aumenta notevolmente (compenso renale), con valori a 200 mEq nelle 24 ore e oltre

• Non sempre l’ammoniuria è facilmente disponibile, e quindi si utilizzano indici derivati che forniscono indicazioni approssimative sull’escrezione di ioni ammonio: il gap anionico urinario ed il gap osmolare urinario

Gap anionico urinario (carica urinaria netta): background fisiopatologico

• Il gap anionico urinario si calcola come (Na+ + K+) – Cl- • I principali cationi urinari sono Na+, K+, NH4

+, il principale anione è Cl- (se pH < 6.5 l’HCO3 non è infatti presente)

• In presenza di acidosi metabolica, se Cl- è maggiore della somma di Na+ e K+ (carica urinaria netta negativa), per il principio dell’elettroneutralità deve essere presente nelle urine un catione non misurato in quantità equivalente alla differenza di solito si tratta di NH4

+ risposta adattativa adeguata• In presenza di acidosi, se Cl- è inferiore alla somma di Na+ e

K+, significa che NH4+ è presente in scarsa quantità ( risposta

adattativa inadeguata), oppure che NH4+ è escreto con un altro

anione come ad esempio l’anione di un acido organico in questo caso per valutare indirettamente l’escrezione di NH4

+ si deve utilizzare il gap osmolare urinario)

Gap anionico urinario (carica urinaria netta)

Come si calcola (in mEq/L o mmol/L)• (Na+ + K+) – Cl-

Valore normale• positivo In condizioni fisiologiche

Cosa occorre per calcolarlo• Na+, K+, Cl- urinari, in mEq/L • Volume di diuresi nelle 24 ore• Misurazione pH urinario (deve essere inferiore a 6.5)

Cosa significa• E’ un marker dell’escrezione urinaria di H+ sotto forma di ioni ammonio (fornisce indicazioni sulla

presenza di ioni ammonio, ma non è in grado di quantificarli con esattezza per questo è necessaria l’ammoniuria)

Limiti metodologici• Non devono essere presenti altri cationi urinari in quantità elevate (è quasi sempre vero)• Non devono essere presenti altri anioni urinari oltre al Cl- in quantità elevate (attenzione in caso di

eliminazione di anioni di acidi organici, utilizzare il gap osmolare urinario)• Non utilizzabile in urine alcaline

Esempio 1: Paziente con acidosi metabolica a gap anionico plasmatico normaleDati urinari (urine 24 ore):Na 100 mEq, K 70 mEq, Cl 370 mEqCarica netta urinaria (Gap anionico urinario) (100 + 70) – 370 = - 200L’ammoniuria nelle 24 ore è elevata (appropriatamente)L’acidosi è presumibilmente da cause extrarenali (per es diarrea, fistola intestinale etc.)

Esempio 2: Paziente con acidosi metabolica a gap anionico plasmatico normaleDati urinari (urine 24 ore):Na 100 mEq, K 70 mEq, Cl 70 mEqCarica urinaria netta (Gap anionico urinario)(100 + 70) – 150 = 20L’ammoniuria nelle 24 ore è bassa (assente): il compenso è inappropriatoL’acidosi è presumibilmente da cause renali (per es insufficienza renale, acidosi tubulare renale etc.)

Bicarbonatemia < 22 mEq/L, pH < 7.36

Acidosi metabolica

Aumentato Acidosi a gap anionico elevato

Normale Acidosi a gap anionico normale o ipercloremiche

Calcolo gap anionico

Ricerca acidi organici endogeni o esogeni(intossicazioni)

Carica urinaria netta elevata (Na+K < Cl)Cause extrarenali(ad es diarrea, fistole intestinali etc.)

Carica urinaria netta assente (Na+K > Cl)Cause renali(ad es insufficienza renale, acidosi tubulari distali)

Alcalosi metabolicaCondizione caratterizzata da aumento primitivo dei bicarbonati con aumento del pH, e da aumento secondario della PaCO2 (compenso respiratorio)

Compenso all’alcalosi metabolica: ipoventilazione aumento PaCO2

Risposta ventilatoria previstanell’alcalosi metabolica

- aum PaCO2 (rispetto a 40 mmHg) = 0.7 x HCO3 (rispetto a 24 mmol/L)- la PaCO2 attesa di solito corrisponde alle due cifre decimali del pH

MAJOR ADVERSE CONSEQUENCES OF SEVERE ALKALEMIA(Adroguè HJ, Madias NE, N Engl J Med 1998; 338:107-111) Cardiovascular - Arterial constriction- Reduction in coronary blood flow- Reduction in anginal threshold- Predisposition to refractory supraventricular and ventricular arrhythmias Respiratory- Hypoventilation with attendant hypercapnia and hypoxemia- Enhancement of hypoxic pulmonary vasoconstriction worsening of ventilation-perfusion relationships Metabolic - Stimulation of anaerobic glycolysis and organic acid production- Hypokalemia- Decreased plasma ionized calcium concentration- Hypomagnesiemia and hypocalcemia Cerebral- Reduction in cerebral blood flow- Tetany, seizures, lethargy, delirium and stupor

Alcalosi metabolica -         lieve: HCO3 < 32-34 mEq/L, K 3.5-3.9 mEq/L-         moderata: HCO3 32-40, K 2.5-3.5-         grave: > 40, K 2-2.5

ALCALOSI METABOLICA: MECCANISMI FISIOPATOLOGICI

A) GENERAZIONE

Meccanismi che determinano aumento della bicarbonatemiaattraverso la perdita di H+ o un guadagno di basi

 a) Perdita di fluido gastrico b) Diuretici FORME CLORO-RESPONSIVE O VOLUME-SENSIBILI (95% dei casi)c) Alcalosi post-ipercapnica d) Eccesso di attività mineralcorticoide FORME CLORO-RESISTENTI(reale o apparente) O VOLUME RESISTENTI (5% dei casi) 

Patogenesi dell’alcalosi metabolica nel vomito

ALCALOSI METABOLICA: MECCANISMI FISIOPATOLOGICI

B) MANTENIMENTO

Meccanismi che mantengono elevata la bicarbonatemia (aumento soglia renale HCO3)

1)   Ipopotassiemia-         acidosi intracellulare -         aumento attività scambiatore H+/K+ nefrone distale -         (aumentata produzione ed escrezione di ammonio)

2)   Eccesso di mineralcorticoidi-         stimolo diretto sulla H+-ATPasi del tubulo collettore-         stimolo indiretto (voltaggio dipendente): riassorbimento di Na nel t. collettore

3)   Deplezione di volume (volemia efficace)-         iperaldosteronismo-         angiotensina II-         stimolo adrenergico-         riduzione GFR- effetti diretti del cloro

Alcalosi metabolica: iter diagnostico

ALCALOSI METABOLICA MORTALITA’  -         pH 7.55 - 7.65: 41%-         pH > 7.65: 80%

Alcalosi respiratoria• Alterazione dell’equilibrio acido-

base caratterizzato da una primitiva riduzione della pressione parziale di CO2 nei fluidi corporei, eventuale aumento del pH (alcalosi respiratoria con alcalemia) e riduzione secondaria dei bicarbonati (compenso renale)

Compenso renale all’alcalosi respiratoria(riduzione dei bicarbonati)

• Alcalosi respiratoria acuta riduzione di 0.2 mEq/mmHg di riduzione della PaCO2

• Alcalosi respiratoria cronica riduzione di 0.4 mEq/mmHg di riduzione della PaCO2

• Ipoventilazione = ipercapnia

• Iperventilazione = ipocapnia

Cause di iperventilazione• Sepsi• Anemia grave• Ipossia• Intossicazione da salicilati• Pneumopatie• Insufficienza epatica• Compenso respiratorio acidosi

metabolica

Neurologic Effects of Hypocapnia Systemic hypocapnia results in cerebrospinal fluid alkalosis, which decreases cerebral blood flow, cerebral oxygen delivery, and to a lesser extent, cerebral blood volume. The reduction in intracranial pressure may be lifesaving in patients in whom the pressure is severely elevated. However, hypocapnia-induced brain ischemia may occur because of vasoconstriction (impairing cerebral perfusion), reduced oxygen release from hemoglobin, and increased neuronal excitability, with the possible release of excitotoxins such as glutamate. Over time, cerebrospinal fluid pH and, hence, cerebral blood flow gradually return to normal. Subsequent normalization of the partial pressure of arterial carbon dioxide can then result in cerebral hyperemia, causing reperfusion injury to previously ischemic brain regions.

pHNormale(7.36 – 7.44)

PaCO2 36-44HCO3 22-26

PaCO2 < 36HCO3 < 22

PaCO2 > 44HCO3 > 26

< 7.36

PaCO2

< 40> 40

> 7.44

PaCO2

< 40 > 40

Acid MetabolicaRiduz PaCO2 = 1.2 HCO3oppure ultime due cifre pH

Eq. A-bNormale*ac met + alc resp

ac resp + alc met

Acidosi RespiratoriaAc: aum HCO3= 0.1 PaCO2Cr: aum HCO3= 0.4 PaCO2

Alcalosi RespiratoriaAc: riduz HCO3 = 0.25 PaCO2Cr: riduz HCO3 = 0.5 PaCO2

Alc MetabolicaAum PaCO2= 0.7 x HCO3o le due cifre decimali del pH

*alc metab+ ac metab