4 - Relazione Idraulica - orobievive.net VER-193 BG/4... · Q portata fluente attraverso la sezione...

25
Marzo 2016

Transcript of 4 - Relazione Idraulica - orobievive.net VER-193 BG/4... · Q portata fluente attraverso la sezione...

Marzo 2016

Relazione idraulica IIIIIIIImmmmmmmmppppppppiiiiiiiiaaaaaaaannnnnnnnttttttttoooooooo IIIIIIIIddddddddrrrrrrrrooooooooeeeeeeeelllllllleeeeeeeettttttttttttttttrrrrrrrriiiiiiiiccccccccoooooooo ““““““““VVVVVVVVeeeeeeeerrrrrrrrttttttttoooooooovvvvvvvvaaaaaaaa IIIIIIII””””””””

2

IndiceIndiceIndiceIndice

Indice .................................................................................................................................. 2

Premessa ............................................................................................................................ 3

Calcolo quote medie di progetto...................................................................................... 4

Opere di presa: dimensionamento trappola sublaveo ............................................................... 4

Opere di presa: descrizione quota di progetto............................................................................ 5

Centrale di produzione: scelta della turbina ................................................................................ 8

Centrale di produzione: descrizione della quota di scarico ........................................................ 9

Dimensionamento vasca di sedimentazione .................................................................. 11

Scala di risalita ittiofauna .................................................................................................. 13

Rilascio del D.M.V. ............................................................................................................ 14

Calcolo producibilità impianto ........................................................................................ 15

Condotta forzata........................................................................................................................ 15

Centrale di produzione .............................................................................................................. 16

Analisi idraulica dell’intervento .......................................................................................... 18

Piogge di forte intensità .............................................................................................................. 18

Tempo di corrivazione ................................................................................................................ 19

Portata di massima piena .......................................................................................................... 21

Dati di concessione .......................................................................................................... 22

Misuratore di portata ........................................................................................................ 24

Relazione idraulica IIIIIIIImmmmmmmmppppppppiiiiiiiiaaaaaaaannnnnnnnttttttttoooooooo IIIIIIIIddddddddrrrrrrrrooooooooeeeeeeeelllllllleeeeeeeettttttttttttttttrrrrrrrriiiiiiiiccccccccoooooooo ““““““““VVVVVVVVeeeeeeeerrrrrrrrttttttttoooooooovvvvvvvvaaaaaaaa IIIIIIII””””””””

3

PremessaPremessaPremessaPremessa

La presente relazione idraulica ha lo scopo di giustificare le scelte effettuate in fase di

predimensionamento delle opere di presa e di restituzione, così da poter fornire dati

precisi riguardanti le quote medie per la valutazione della potenza di concessione.

Nei paragrafi successivi si illustrano inoltre i calcoli effettuati per il dimensionamento

dell’opera di presa, nonché una stima delle perdite di carico della condotta forzata, in

modo tale da ricavare una produzione annua teorica dell’impianto in fase di progetto.

In ultimo, si determina la portata di massima piena duecentenaria prevedibile per il

torrente Vertova in corrispondenza dell’opera di presa: in una fase più avanzata, tale

dato sarà utile per condurre le necessarie verifiche idrauliche sul tratto sotteso.

Relazione idraulica IIIIIIIImmmmmmmmppppppppiiiiiiiiaaaaaaaannnnnnnnttttttttoooooooo IIIIIIIIddddddddrrrrrrrrooooooooeeeeeeeelllllllleeeeeeeettttttttttttttttrrrrrrrriiiiiiiiccccccccoooooooo ““““““““VVVVVVVVeeeeeeeerrrrrrrrttttttttoooooooovvvvvvvvaaaaaaaa IIIIIIII””””””””

4

CalcoloCalcoloCalcoloCalcolo quote mediequote mediequote mediequote medie di progettodi progettodi progettodi progetto

In questa sezione si analizzano le quote medie, riferite al livello del mare, dell’opera di

presa e della centrale di produzione; per quanto riguarda la restituzione nell’alveo del

torrente Vertova, avendo scelto di installare una macchina ad azione, si assumerà

come dato di concessione la quota di recapito delle acque nel fiume.

Il rilievo dell’area in cui sorgeranno presa e centrale è stato effettuato con

strumentazione GPS GeoMax Zenith 10: le quote assolute sono determinate con la

trasposizione dai dati forniti dall’ellissoide WGS84 al Modello di Geoide Italia2008; sugli

elaborati grafici sono individuati i punti fissi e materializzati utilizzati come riferimento per

l’intero progetto.

Opere di Opere di Opere di Opere di presapresapresapresa: : : : dimensionamento trappola sublaveodimensionamento trappola sublaveodimensionamento trappola sublaveodimensionamento trappola sublaveo

L’opera di presa (per la cui descrizione dettagliata si rimanda alla Tav. n°3 del progetto

preliminare di concessione) ha il compito di derivare le acque del torrente Vertova,

garantendo comunque il rilascio del D.M.V.

Essa viene realizzata interamente in comune di Vertova, in un tratto dell'omonimo

torrente facilmente accessibile dalla strada pubblica che sale dal centro abitato del

paese, costeggiando il corso del fiume; sarà costituita da una traversa fissa munita di

gaveta e da una griglia subalveo (presa a trappola tipo “coanda”) opportunamente

dimensionata.

In fase preliminare si utilizzano formule semplificate tipiche delle prese a trappola:

Relazione idraulica IIIIIIIImmmmmmmmppppppppiiiiiiiiaaaaaaaannnnnnnnttttttttoooooooo IIIIIIIIddddddddrrrrrrrrooooooooeeeeeeeelllllllleeeeeeeettttttttttttttttrrrrrrrriiiiiiiiccccccccoooooooo ““““““““VVVVVVVVeeeeeeeerrrrrrrrttttttttoooooooovvvvvvvvaaaaaaaa IIIIIIII””””””””

5

In particolare, avendo scelto di realizzare una gaveta con larghezza di 1,50 m e di

impostare la griglia con un’angolazione di 15°, si ottiene:

Portata di progetto 670 l/sec

Larghezza della griglia (perpendicolare H2O) 1,50 m

Coefficiente afflusso alla griglia (Cq) 0,61

Inclinazione della griglia (q) 15 °

Area efficace 0,19

Tirante critico 0,27 M

Lunghezza della griglia (parallela H2O) 1,39

La griglia deve avere una larghezza di circa 1,50 m per assicurare di poter derivare 670

l/sec. massimi.

Opere di presa: descrizione quota di progettoOpere di presa: descrizione quota di progettoOpere di presa: descrizione quota di progettoOpere di presa: descrizione quota di progetto

Si definisce la derivazione a quota 531,30 m s.l.m.: tale quota, costante a monte della

traversa di derivazione, viene assunta come quota dichiarata ai fini della

determinazione del salto di concessione.

Relazione idraulica IIIIIIIImmmmmmmmppppppppiiiiiiiiaaaaaaaannnnnnnnttttttttoooooooo IIIIIIIIddddddddrrrrrrrrooooooooeeeeeeeelllllllleeeeeeeettttttttttttttttrrrrrrrriiiiiiiiccccccccoooooooo ““““““““VVVVVVVVeeeeeeeerrrrrrrrttttttttoooooooovvvvvvvvaaaaaaaa IIIIIIII””””””””

6

La presenza della traversa e della gaveta costringe l’acqua ad accumularsi dietro di

essa e a cercare un percorso alternativo; l'unica strada che le permette di aggirare

l’ostacolo è una presa a trappola subalveo.

L’opera di presa svolge quindi due importanti funzioni:

1. Tramite la vaschetta anteriore a sfioro (alimentata da 3 fori sottobattente di

diametro 20 cm) permette lo scarico dell’acqua deputata al D.M.V. e mantiene

una continuità idraulica fluviale;

2. Attraverso la vasca di derivazione e carico, permette la derivazione delle portate

necessarie alla produzione di energia idroelettrica, con il limite di portata massima

che verrà imposto dal disciplinare di concessione (tale limite viene mantenuto

tramite la presenza di sfioratori laterali sulla parete della vasca di sedimentazione).

Relazione idraulica IIIIIIIImmmmmmmmppppppppiiiiiiiiaaaaaaaannnnnnnnttttttttoooooooo IIIIIIIIddddddddrrrrrrrrooooooooeeeeeeeelllllllleeeeeeeettttttttttttttttrrrrrrrriiiiiiiiccccccccoooooooo ““““““““VVVVVVVVeeeeeeeerrrrrrrrttttttttoooooooovvvvvvvvaaaaaaaa IIIIIIII””””””””

7

Vengono installati un misuratore di portata nella condotta forzata (posto in un tratto

sufficientemente rettilineo, almeno 20 diametri dopo l’innesto della condotta stessa),

munito di trasduttori, e funzionante a tempo di transito (la tipologia precisa, così come il

produttore, verranno approfonditi solo in fase di realizzazione) e un misuratore di livello

nella vasca di carico per la regolazione dell’efflusso da parte della macchina.

La scheda tecnica indicativa del misuratore di portata è allegata alla presente

relazione (il produttore della strumentazione di cui alla scheda tecnica può variare in

sede di realizzazione).

Relazione idraulica IIIIIIIImmmmmmmmppppppppiiiiiiiiaaaaaaaannnnnnnnttttttttoooooooo IIIIIIIIddddddddrrrrrrrrooooooooeeeeeeeelllllllleeeeeeeettttttttttttttttrrrrrrrriiiiiiiiccccccccoooooooo ““““““““VVVVVVVVeeeeeeeerrrrrrrrttttttttoooooooovvvvvvvvaaaaaaaa IIIIIIII””””””””

8

Centrale di produzione: scelta della turbinaCentrale di produzione: scelta della turbinaCentrale di produzione: scelta della turbinaCentrale di produzione: scelta della turbina

Considerando le caratteristiche dell’impianto in fase di concessione, si ritiene che il

miglior utilizzo per la risorsa idrica comporti l’installazione di un solo gruppo turbina di

tipo Francis.

La macchina viene infatti scelta in funzione della portata di progetto (massima

turbinabile) e del salto netto in condizioni di portata massima (in questa fase stimato in

circa 31,30 m); si riporta il dimensionamento della macchina:

Macchina: Turbina tipo Francis

Portata di progetto: 670 l/sec.

Salto netto: 31,30 m

Frequenza di rete nazionale: 50 Hz

Coppie polari dell’alternatore: 4

Moltiplicatore di giri: No

Partendo da tali dati di progetto, si ottiene:

N° di giri dell’alternatore (n): 750

N° di giri caratteristico della macchina (nC): 145

Dalla letteratura, noto nC, è possibile scegliere la macchina da installare.

Relazione idraulica IIIIIIIImmmmmmmmppppppppiiiiiiiiaaaaaaaannnnnnnnttttttttoooooooo IIIIIIIIddddddddrrrrrrrrooooooooeeeeeeeelllllllleeeeeeeettttttttttttttttrrrrrrrriiiiiiiiccccccccoooooooo ““““““““VVVVVVVVeeeeeeeerrrrrrrrttttttttoooooooovvvvvvvvaaaaaaaa IIIIIIII””””””””

9

Centrale di proCentrale di proCentrale di proCentrale di produzione: descrizione della quota di scaricoduzione: descrizione della quota di scaricoduzione: descrizione della quota di scaricoduzione: descrizione della quota di scarico

A valle delle centrale idroelettrica di produzione, un canale di scarico permette

all’acqua di tornare a scorrere nell’alveo del torrente Vetrova; la quota del pelo libero

dell’acqua in tale canale (appena prima dell’ingresso dell’acqua in alveo) costituisce la

quota da dichiarare ai fini della concessione.

Il canale di scarico presenta una larghezza di 1,20 metri ed una pendenza pari a circa

il 2% che assicura il deflusso delle acque; trattandosi di turbina a reazione, è necessario

prevedere l’annegamento del rilascio della stessa al di sotto della girante nel canale. Si

vuole nel seguito determinare l'altezza del pelo libero nel caso in cui vi siano la portata

media e massima di progetto (rispettivamente pari a Q = 286 l/sec e Q = 670 l/sec).

Per quanto riguarda il calcolo della quota del pelo libero dell’acqua, è stata utilizzata la

formula di Gauckler – Strickler, valida per moto uniforme ma che si applica con buona

precisione anche a condizioni di moto permanente.

2/13/2

iRAKQ hs ⋅⋅⋅=

Q portata fluente attraverso la sezione fluviale considerata (m3/s)

Ks coefficiente di Strickler, parametro che valuta la scabrezza dell’alveo (m1/3/s)

A superficie della sezione fluviale considerata;

Rh raggio idraulico della sezione;

i pendenza media del fondo nel tratto di alveo considerato

Avendo come unica incognita l’altezza del pelo libero, ipotizzando un coefficiente di

Strickler pari a 50 con la portata media, sostituendo i termini nell’uguaglianza si ottiene:

( )

( )

( )

( )2/1

3/2

3/22/1

3/2

3/2

02,022,1

2,12,150

sec286,0

2⋅

⋅+

⋅⋅⋅⋅=⇒⋅

+

⋅⋅⋅⋅=

h

hhmci

hb

hbhbKQ s

Iterando, con portata media, si ottiene h = 30 cm, con portata massima si ottiene

invece un'altezza del pelo libero pari a h = 57 cm.

Relazione idraulica IIIIIIIImmmmmmmmppppppppiiiiiiiiaaaaaaaannnnnnnnttttttttoooooooo IIIIIIIIddddddddrrrrrrrrooooooooeeeeeeeelllllllleeeeeeeettttttttttttttttrrrrrrrriiiiiiiiccccccccoooooooo ““““““““VVVVVVVVeeeeeeeerrrrrrrrttttttttoooooooovvvvvvvvaaaaaaaa IIIIIIII””””””””

10

Rispetto all’estradosso della vasca di scarico al di sotto delle giranti, posto a quota

497,00 m s.l.m., il pelo libero dell’acqua è più alto di “h”: tutto ciò risulta dunque

compatibile con la quota acqua al termine di tale canale di scarico, che coincide

con il livello del torrente Vertova, pari a circa 497,30 m s.l.m.

Relazione idraulica IIIIIIIImmmmmmmmppppppppiiiiiiiiaaaaaaaannnnnnnnttttttttoooooooo IIIIIIIIddddddddrrrrrrrrooooooooeeeeeeeelllllllleeeeeeeettttttttttttttttrrrrrrrriiiiiiiiccccccccoooooooo ““““““““VVVVVVVVeeeeeeeerrrrrrrrttttttttoooooooovvvvvvvvaaaaaaaa IIIIIIII””””””””

11

Dimensionamento vasca di sedimentazioneDimensionamento vasca di sedimentazioneDimensionamento vasca di sedimentazioneDimensionamento vasca di sedimentazione

La lunghezza necessaria di una vasca di sedimentazione o dissabbiatore è definita

sulla base della portata dell’opera di presa e dell’efficienza scelta per il dissabbiatore

(diametro delle particelle che si depositano all’interno del dissabbiatore). La lunghezza

deve essere tale da consentire a tutti i granelli sospesi di depositarsi sul fondo prima di

uscire dal dissabbiatore. Questo accade se il tempo di decantazione tD è equivalente

al tempo di trasporto tt. Il primo è definito come h/vD e il secondo come L/vT:

Perciò la lunghezza minima teorica necessaria per far depositare un granello di

diametro dD è data da:

D

sedvB

QL

⋅≥ max

La larghezza B deve risultare minore del doppio della profondità h. La velocità di

decantazione vD è definita dalla formula di Newton o di Prandtl per le particelle sferiche

in condizioni ideali, come ad esempio in presenza di acqua pura e in assenza di

turbolenza. Essa dipende dalla resistenza di forma della particella che a sua volta

dipende dal numero di Reynolds. Per le situazioni reali non esistono formule e bisogna

procedere in modo sperimentale. Nella pratica viene spesso usata la formula empirica

di Zanke come primo approccio in condizioni di moto laminare:

−⋅⋅+⋅

⋅= 110057.119

100 3dd

vD

Relazione idraulica IIIIIIIImmmmmmmmppppppppiiiiiiiiaaaaaaaannnnnnnnttttttttoooooooo IIIIIIIIddddddddrrrrrrrrooooooooeeeeeeeelllllllleeeeeeeettttttttttttttttrrrrrrrriiiiiiiiccccccccoooooooo ““““““““VVVVVVVVeeeeeeeerrrrrrrrttttttttoooooooovvvvvvvvaaaaaaaa IIIIIIII””””””””

12

dove vD è espressa in mm/s e il diametro del granello in mm.

In condizioni reali, però, alla velocità teorica vD, bisogna sottrarre la componente di

agitazione “w” dell’acqua in movimento, che impedisce la sedimentazione regolare

delle particelle più fini; con la formulazione di Egiazarov, tale componente si esprime:

w = vT / (5,7 + 2,3 h)

Conseguentemente, la lunghezza richiesta in condizioni reali per la sedimentazione di

particelle aventi un dato diametro è:

( )wvB

QL

d

sed−⋅

≥ max

La vasca di sedimentazione è stata qui dimensionata cercando di massimizzare la

pulizia dell’acqua da turbinare: si fissano dunque larghezza (B = 1,50 m) e profondità (H

= 2,00 m) e si ricava la lunghezza necessaria per depurare l’acqua di tutte le particelle

con diametro superiore a 0.40 mm in condizioni di portata massima.

Applicando le formule anzidette, si ottiene:

vT = 0,223 m/sec.

vD = 0,064 m/sec.

w = 0,022 m/sec.

Lsed, agitata > 10,42 m

Pertanto, la lunghezza minima di sedimentazione, considerata la portata massima (670

l/sec), l’altezza d’acqua a meno della zona occupata dalla sedimentazione (Hsed =

2,00 m) e la larghezza del canale (Bsed = 1,50 m) deve essere di Lsed, agitata > 10,42 m.

La vasca in progetto ha una lunghezza complessiva di 12,00 m lineari ed è munita di

piano inclinato e scarico di fondo per il suo svuotamento.

Relazione idraulica IIIIIIIImmmmmmmmppppppppiiiiiiiiaaaaaaaannnnnnnnttttttttoooooooo IIIIIIIIddddddddrrrrrrrrooooooooeeeeeeeelllllllleeeeeeeettttttttttttttttrrrrrrrriiiiiiiiccccccccoooooooo ““““““““VVVVVVVVeeeeeeeerrrrrrrrttttttttoooooooovvvvvvvvaaaaaaaa IIIIIIII””””””””

13

SSSScala di risalita ittiofaunacala di risalita ittiofaunacala di risalita ittiofaunacala di risalita ittiofauna

Nel presente progetto si è scelto di non prevedere una scala di risalita dell'ittiofauna:

questa scelta progettuale è motivata dal fatto che il torrente Vertova presenta già per

sua natura una serie di salti naturali e artificiali che pongono un limite alla possibile

risalita dei pesci; il futuro sbarramento in progetto non limiterebbe quindi la possibile

risalita, essendo già essa impedita dalla natura stessa del torrente.

Si puntualizza fin da subito che, qualora l’ufficio Caccia e Pesca della Provincia di

Bergamo (ente deputato al rilascio del parere di conformità dell’opera in progetto)

richiedesse la realizzazione della scala di risalita della fauna ittica, il proponente è

disponibile all’adeguamento degli elaborati e delle previsioni progettuali.

Relazione idraulica IIIIIIIImmmmmmmmppppppppiiiiiiiiaaaaaaaannnnnnnnttttttttoooooooo IIIIIIIIddddddddrrrrrrrrooooooooeeeeeeeelllllllleeeeeeeettttttttttttttttrrrrrrrriiiiiiiiccccccccoooooooo ““““““““VVVVVVVVeeeeeeeerrrrrrrrttttttttoooooooovvvvvvvvaaaaaaaa IIIIIIII””””””””

14

Rilascio del D.M.V.Rilascio del D.M.V.Rilascio del D.M.V.Rilascio del D.M.V.

Poiché il nuovo impianto idroelettrico sfrutta le acque del torrente Vertova, è necessario

rispettare le disposizioni normative contenute nel Piano di Tutela delle Acque

dell’Autorità di Bacino del Fiume Po; in particolare, il deflusso minimo vitale (D.M.V.)

dovuto per le nuove derivazioni deve essere pari al 10% della portata naturale media.

Come definito nella relazione idrologica, l’impianto in progetto deve rilasciare 52 l/sec,

tramite lo sfioro in continuo di una vasca allagata posta davanti all’opera di presa. Si

effettua la verifica dello sfioro con la formula fornita dall’idraulica relativa allo stramazzo

in parete sottile.

La soglia posta sulla parte anteriore dell’opera di presa deve quindi avere una quota,

rispetto alla quota di regolazione della portata derivata dall’impianto, inferiore di 2,2

cm.

p 1.5 m

h 0.022 m

b 6.85 m

H 1.522 m

u 0.541

Q 0.054 mc/s

Relazione idraulica IIIIIIIImmmmmmmmppppppppiiiiiiiiaaaaaaaannnnnnnnttttttttoooooooo IIIIIIIIddddddddrrrrrrrrooooooooeeeeeeeelllllllleeeeeeeettttttttttttttttrrrrrrrriiiiiiiiccccccccoooooooo ““““““““VVVVVVVVeeeeeeeerrrrrrrrttttttttoooooooovvvvvvvvaaaaaaaa IIIIIIII””””””””

15

Calcolo producibilità impiantoCalcolo producibilità impiantoCalcolo producibilità impiantoCalcolo producibilità impianto

L’acqua raccolta con le opere di presa e convogliata dalla condotta forzata viene

portata alla centrale di produzione e, da qui, procede all’interno della turbina.

Condotta forzataCondotta forzataCondotta forzataCondotta forzata

La scelta progettuale, visto e considerata la portata media e massima di progetto, in

funzione delle perdite di carico e del costo della tubazione, ricade su una condotta

con diametro 800 mm.

La lunghezza della condotta forzata è pari a 780 m lineari circa e, in prima battuta, si

stimano un insieme di perdite concentrate date dallo sgrigliatore, dall’imbocco

dell’acqua nella condotta e da 25 curve a 45° lungo il percorso (k = Ski).

Le perdite di carico distribuite vengono stimate con la formula di Colebrook – White,

utilizzando come coefficiente di scabrezza relativa “E” il valore di 0,02 mm (tubi con

usura media per l’utilizzo nel tempo):

Le perdite di carico concentrate vengono invece valutate con la formula tradizionale:

in cui viene assunto un valore del coefficiente “k” pari a 0,33 per l’imbocco e 0,155 per

ognuna delle curve e 0,80 per la perdita dovuta allo sgrigliatore (ktot = 5,00)

Relazione idraulica IIIIIIIImmmmmmmmppppppppiiiiiiiiaaaaaaaannnnnnnnttttttttoooooooo IIIIIIIIddddddddrrrrrrrrooooooooeeeeeeeelllllllleeeeeeeettttttttttttttttrrrrrrrriiiiiiiiccccccccoooooooo ““““““““VVVVVVVVeeeeeeeerrrrrrrrttttttttoooooooovvvvvvvvaaaaaaaa IIIIIIII””””””””

16

Come ribadito precedentemente, in questa fase, le perdite di carico concentrate

vengono stimate e si lascia alla fase di progettazione esecutiva una maggior

precisione del calcolo.

Centrale di produzioneCentrale di produzioneCentrale di produzioneCentrale di produzione

Si rimanda alla fase esecutiva un maggior dettaglio sul calcolo e sulla tipologia della

macchina da installare (valutazioni più accurate permetteranno eventualmente di

capire se macchine tipologicamente o meccanicamente diverse possano essere più

appropriate all’impianto in autorizzazione); la curva di rendimento standard della

singola macchina è:

Ricavando i rendimenti di funzionamento dal grafico sopra riportato in funzione delle

portate stimate con la curva di probabilità allegata alla relazione idrologica, si ottiene

la stima sulla producibilità dell’impianto con un tempo di funzionamento di 5.876 ore

(pari a circa il 67% delle ore annuali, considerando un tempo di fermo impianto).

L’energia prodotta dall’impianto è ridotta inoltre di un ulteriore 5% per considerare le

perdite dovute ai rendimenti elettrici di alternatore e trasformatore (hel = 95%).

Relazione idraulica IIIIIIIImmmmmmmmppppppppiiiiiiiiaaaaaaaannnnnnnnttttttttoooooooo IIIIIIIIddddddddrrrrrrrrooooooooeeeeeeeelllllllleeeeeeeettttttttttttttttrrrrrrrriiiiiiiiccccccccoooooooo ““““““““VVVVVVVVeeeeeeeerrrrrrrrttttttttoooooooovvvvvvvvaaaaaaaa IIIIIIII””””””””

17

QZ

mL c

on

dk

me

dD

hc

Dh

dv

con

dD

hto

tZ

mt

L ril

asc

ioh

rila

scio

Zv

, fo

nd

o a

lve

oZ

vD

H

0.0

50

53

0.3

07

36

50

.00

30

.00

90

.09

90

.01

15

30

.29

1.2

00

.09

74

97

.00

49

7.1

03

3.1

9

0.1

10

53

0.3

07

36

50

.01

20

.03

70

.21

90

.04

95

30

.25

1.2

00

.16

24

97

.00

49

7.1

63

3.0

9

0.1

70

53

0.3

07

36

50

.02

90

.08

10

.33

80

.11

05

30

.19

1.2

00

.21

64

97

.00

49

7.2

23

2.9

7

0.2

30

53

0.3

07

36

50

.05

30

.14

00

.45

80

.19

35

30

.11

1.2

00

.26

54

97

.00

49

7.2

73

2.8

4

0.2

90

53

0.3

07

36

50

.08

50

.21

40

.57

70

.29

95

30

.00

1.2

00

.31

14

97

.00

49

7.3

13

2.6

9

0.3

50

53

0.3

07

36

50

.12

40

.30

20

.69

60

.42

65

29

.87

1.2

00

.35

54

97

.00

49

7.3

63

2.5

2

0.4

10

53

0.3

07

36

50

.17

00

.40

50

.81

60

.57

45

29

.73

1.2

00

.39

74

97

.00

49

7.4

03

2.3

3

0.4

70

53

0.3

07

36

50

.22

30

.52

10

.93

50

.74

45

29

.56

1.2

00

.43

84

97

.00

49

7.4

43

2.1

2

0.5

30

53

0.3

07

36

50

.28

30

.65

11

.05

40

.93

55

29

.37

1.2

00

.47

84

97

.00

49

7.4

83

1.8

9

0.5

90

53

0.3

07

36

50

.35

10

.79

51

.17

41

.14

65

29

.15

1.2

00

.51

74

97

.00

49

7.5

23

1.6

4

0.6

50

53

0.3

07

36

50

.42

60

.95

21

.29

31

.37

85

28

.92

1.2

00

.55

54

97

.00

49

7.5

63

1.3

7

0.6

70

53

0.3

07

36

50

.45

31

.00

71

.33

31

.46

05

28

.84

1.2

00

.56

84

97

.00

49

7.5

73

1.2

7

QD

Hh

ma

cch

ine

he

lett

rico

PQ

dis

p (

t)Q

pro

b (

t)%

fe

rmo

t fu

nz

(ore

)t f

un

z% (

ore

)P

rod

uz.

0.0

50

33

.19

8.0

0%

95

%1

.24

70

.61

%8

.49

%5

.00

%8

32

27

06

87

4

0.1

10

33

.09

34

.00

%9

5%

11

.53

62

.12

%7

.26

%5

.00

%8

32

26

04

69

69

0.1

70

32

.97

54

.00

%9

5%

28

.21

54

.86

%6

.08

%5

.00

%8

32

25

06

14

27

5

0.2

30

32

.84

70

.00

%9

5%

49

.28

48

.78

%5

.33

%5

.00

%8

32

24

44

21

85

8

0.2

90

32

.69

81

.00

%9

5%

71

.56

43

.45

%4

.70

%5

.00

%8

32

23

91

27

96

7

0.3

50

32

.52

88

.00

%9

5%

93

.34

38

.75

%4

.05

%5

.00

%8

32

23

37

31

46

2

0.4

10

32

.33

91

.00

%9

5%

11

2.4

13

4.7

0%

3.5

9%

5.0

0%

83

22

29

93

35

79

0.4

70

32

.12

92

.00

%9

5%

12

9.4

33

1.1

1%

3.1

0%

5.0

0%

83

22

25

83

33

70

0.5

30

31

.89

92

.00

%9

5%

14

4.9

02

8.0

1%

2.9

1%

5.0

0%

83

22

24

33

51

51

0.5

90

31

.64

92

.00

%9

5%

16

0.0

42

5.1

0%

2.9

1%

5.0

0%

83

22

24

33

88

23

0.6

50

31

.37

91

.00

%9

5%

17

2.9

12

2.1

8%

0.9

7%

5.0

0%

83

22

81

13

98

2

0.6

70

31

.27

88

.00

%9

5%

17

1.8

32

1.2

1%

21

.21

%5

.00

%8

32

21

76

53

03

32

9

56

16

39

kW

h/a

nn

o

Relazione idraulica IIIIIIIImmmmmmmmppppppppiiiiiiiiaaaaaaaannnnnnnnttttttttoooooooo IIIIIIIIddddddddrrrrrrrrooooooooeeeeeeeelllllllleeeeeeeettttttttttttttttrrrrrrrriiiiiiiiccccccccoooooooo ““““““““VVVVVVVVeeeeeeeerrrrrrrrttttttttoooooooovvvvvvvvaaaaaaaa IIIIIIII””””””””

18

Analisi idraulica dell’interventoAnalisi idraulica dell’interventoAnalisi idraulica dell’interventoAnalisi idraulica dell’intervento

In questo paragrafo si espongono le considerazioni relative al calcolo della portata di

massima piena, dato necessario per le verifiche idrauliche che verranno condotte per

l’ottenimento dei pareri in una fase più avanzata del procedimento.

Per valutare il comportamento dell’acqua in condizioni di portata di massima piena

duecentenaria bisogna utilizzare le formulazioni teoriche presenti in letteratura per il

calcolo della pioggia di forte intensità, del tempo di corrivazione e della portata di

piena stessa.

Piogge di forte intensitàPiogge di forte intensitàPiogge di forte intensitàPiogge di forte intensità

Per il calcolo delle piogge di forte intensità si è fatto riferimento a “Studi e analisi per il

Piano Territoriale di Coordinamento Provinciale”, nel quale sono riportati i valori

dell’altezza di precipitazione per alcune stazioni pluviografiche delle provincie di Brescia

e Bergamo: in particolare, la più vicina al tratto d’interesse è la stazione di Clusone (Bg).

Valori determinati con analisi statistiche sia dallo studio citato, che dal progetto Vapi:

Si conduce ora un’analisi statistica con il metodo di Gumbel per determinare i

coefficienti “a” e “n” che definiscono la pioggia di massima intensità per i diversi tempi

di ritorno in funzione del tempo di corrivazione (tc).

Relazione idraulica IIIIIIIImmmmmmmmppppppppiiiiiiiiaaaaaaaannnnnnnnttttttttoooooooo IIIIIIIIddddddddrrrrrrrrooooooooeeeeeeeelllllllleeeeeeeettttttttttttttttrrrrrrrriiiiiiiiccccccccoooooooo ““““““““VVVVVVVVeeeeeeeerrrrrrrrttttttttoooooooovvvvvvvvaaaaaaaa IIIIIIII””””””””

19

La legge di pioggia utilizzata è quella relativa al tempo di ritorno di 200 anni.

Tempo di corrivazioneTempo di corrivazioneTempo di corrivazioneTempo di corrivazione

Il tempo di corrivazione può essere calcolato con l’utilizzo di svariate formulazioni

matematiche:

- formula di Giandotti: fra le più accreditate è, però, valida per bacini imbriferi di

grandi dimensioni (170 < A < 70.000 km2);

- formula di Giandotti modificata (Aronica – Paltrinieri): valida per bacini imbriferi di

piccole dimensioni (A < 10 km2);

- formula di Tournon: valida per bacini imbriferi di medie dimensioni (30 < A < 170

km2);

Relazione idraulica IIIIIIIImmmmmmmmppppppppiiiiiiiiaaaaaaaannnnnnnnttttttttoooooooo IIIIIIIIddddddddrrrrrrrrooooooooeeeeeeeelllllllleeeeeeeettttttttttttttttrrrrrrrriiiiiiiiccccccccoooooooo ““““““““VVVVVVVVeeeeeeeerrrrrrrrttttttttoooooooovvvvvvvvaaaaaaaa IIIIIIII””””””””

20

- formula di Fattorelli - Marchi: valida per bacini imbriferi di medie dimensioni (7 < A

< 200 km2);

Si valuta dunque il tempo di corrivazione con l’ultima formulazione, adatta all’analisi

del bacino imbrifero oggetto d’interesse, avente dimensioni pari a 11,95 km2.

Con la formula di Fattorelli – Marchi si ottiene tc = 2,50 h

Superficie del bacino 11.95 km2

Lunghezza del percorso idraulico 5.91 kmAltitudine max percorso idraulico 800.00 mAltitudine min percorso idraulico 531.00 m

Pendenza media del percorso idraulico (ik*) 45.52 m/km

Altitudine max del bacino 1750.00 mAltitudine bacino alla sezione 531.65 m

Altitudine media del bacino 1140.83 mDislivello medio del bacino 609.18 m

Pendenza media del bacino (im) 35.24%

Relazione idraulica IIIIIIIImmmmmmmmppppppppiiiiiiiiaaaaaaaannnnnnnnttttttttoooooooo IIIIIIIIddddddddrrrrrrrrooooooooeeeeeeeelllllllleeeeeeeettttttttttttttttrrrrrrrriiiiiiiiccccccccoooooooo ““““““““VVVVVVVVeeeeeeeerrrrrrrrttttttttoooooooovvvvvvvvaaaaaaaa IIIIIIII””””””””

21

Portata di massima pienaPortata di massima pienaPortata di massima pienaPortata di massima piena

Per il calcolo della portata di massima piena si utilizza la formula razionale:

dove h(t,T) è l’altezza di precipitazione determinata dalla legge di pioggia, S è la

superficie del bacino imbrifero e tc è il tempo di corrivazione come determinato al

paragrafo precedente; “c”, infine, è un coefficiente di deflusso che tiene conto della

superficie boscata e del grado di permeabilità del terreno: si utilizza c = 0,20

(corrispondente ad un terreno boscato mediamente permeabile.

Per ciascun tempo di ritorno, si ottiene dunque:

10 anni: h(t,T) = 71,78 mm Qmax = 27,52 m3/sec

30 anni: h(t,T) = 72,05 mm Qmax = 27,62 m3/sec

50 anni: h(t,T) = 72,17 mm Qmax = 27,67 m3/sec

100 anni: h(t,T) = 72,33 mm Qmax = 27,73 m3/sec

200 anni: h(t,T) = 72,48 mm Qmax = 27,79 m3/sec

Salvo maggiori approfondimenti che determinino portate di massima piena diverse, le

verifiche condotte utilizzeranno dunque 27,79 m3/sec. come portata di calcolo per

l’evento di massima piena duecentenaria.

Relazione idraulica IIIIIIIImmmmmmmmppppppppiiiiiiiiaaaaaaaannnnnnnnttttttttoooooooo IIIIIIIIddddddddrrrrrrrrooooooooeeeeeeeelllllllleeeeeeeettttttttttttttttrrrrrrrriiiiiiiiccccccccoooooooo ““““““““VVVVVVVVeeeeeeeerrrrrrrrttttttttoooooooovvvvvvvvaaaaaaaa IIIIIIII””””””””

22

Dati di concessioneDati di concessioneDati di concessioneDati di concessione

In questa sezione viene riportato uno schema semplificato delle quote dell’acqua con

le quali l’impianto lavora in condizioni di portata media e vengono poi riassunti, in

funzione di quanto illustrato nei paragrafi precedenti e nella relazione idrologica

allegata al presente progetto, i dati salienti riguardanti la richiesta di concessione:

Portata media di concessione 286 l/sec. (pari a 2,86 moduli)

Portata massima di concessione 670 l/sec. (pari a 6,70 moduli)

Quota pelo libero opera di presa 531,30 m s.l.m.

Quota pelo libero rilascio (Qm torrente Vertova) 497,30 m s.l.m.

Salto lordo (al pelo libero dell’acqua nell’alveo

del torrente Vertova)

34,00 m

Relazione idraulica IIIIIIIImmmmmmmmppppppppiiiiiiiiaaaaaaaannnnnnnnttttttttoooooooo IIIIIIIIddddddddrrrrrrrrooooooooeeeeeeeelllllllleeeeeeeettttttttttttttttrrrrrrrriiiiiiiiccccccccoooooooo ““““““““VVVVVVVVeeeeeeeerrrrrrrrttttttttoooooooovvvvvvvvaaaaaaaa IIIIIIII””””””””

23

Potenza media di concessione 95,33 kW

Potenza massima di concessione 216,76 kW

Gruppo turbina installato 1 x Francis

Produzione attesa (con Tf = 88% Ttot) 560’000 kWh / anno

Rogno, 29/03/2016

Il progettista

Dott. Ing. Pietro Spatti