Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI...

34
Seminario IEN – Luglio 2005 1 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università di Torino Tre parole chiave: - Proprietà termodinamiche (non di trasporto ecc.) - Solo solidi cristallini (e non-conduttori) - Uso del calcolo ab-initio per ottenerle. Schema della presentazione: - Potenza e incompletezza della termodinamica dei solidi - Macroscopico microscopico : Dai modelli di Einstein e Debye ….. … alla teoria generale della dinamica reticolare dei solidi. - Alcune moderne tecniche per la soluzione ab-initio del problema. Ringraziamenti a M. Catti, B. Civalleri, R. Dovesi, P. Ugliengo, e a tutto il Gruppo di Chimica Teorica

Transcript of Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI...

Page 1: Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università

Seminario IEN – Luglio 2005 1

PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI

Cesare PISANI

Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università di Torino

Tre parole chiave:

- Proprietà termodinamiche (non di trasporto ecc.)

- Solo solidi cristallini (e non-conduttori)

- Uso del calcolo ab-initio per ottenerle.

Schema della presentazione:

- Potenza e incompletezza della termodinamica dei solidi

- Macroscopico microscopico : Dai modelli di Einstein e Debye …..

… alla teoria generale della dinamica reticolare dei solidi.

- Alcune moderne tecniche per la soluzione ab-initio del problema.

Ringraziamenti a M. Catti, B. Civalleri, R. Dovesi, P. Ugliengo, e a tutto il Gruppo di Chimica Teorica

Page 2: Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università

Seminario IEN – Luglio 2005 2

Potenza della termodinamica classica (a)

La termodinamica classica :Sulla base di tre principi di applicabilità universale, stabilisce relazioni (spesso del tutto sorprendenti, a prima vista) tra grandezze macroscopiche di sistemi in equilibrio.

Equazione di Clausius-Clapeyron:

ln (p/p0) = H/R (1/T –1/T0)

da poche misure di tensione di vapore del solido ( ) e del liquido ( ) a diverse temperature,

si ottiene :

il calore molare di sublimazione, il calore molare di evaporazione, (da cui il calore molare di fusione),

ed il punto triplo di coesistenza delle tre fasi ( )

4 5 6 1000 K/T

ln (P/Torr)

-10

-20

-30

Dati sul mercurio

Page 3: Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università

Seminario IEN – Luglio 2005 3

Potenza della termodinamica classica (b)

Un altro esempio di “potenza” della termodinamica classica:

Relazione tra calore specifico a pressione costante (CP) e a volume

costante (CV) per un solido :

CP - CV = 9 2 B V T

: Coefficiente termico di espansione lineare

B : Modulo di elasticità cubica

, B, V, T, CP si possono misurare “facilmente” .

Se ne può ricavare CV , che può essere ottenuto più direttamente da

calcoli teorici.

Page 4: Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università

Seminario IEN – Luglio 2005 4

Potenza … e incompletezza della termodinamica classica

La termodinamica classica è dunque potente ….

… ma è incompleta: per ogni elemento, per ogni sostanza, per ogni miscela, c’è un numero irriducibile di parametri termodinamici che non possono essere dedotti dalle equazioni della termodinamica, ma devono essere ottenuti sperimentalmente:

Psol (T) Hsub Ttriplo, Ptriplo Hfus

Pliq (T) Heva

Page 5: Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università

Seminario IEN – Luglio 2005 5

Incompletezza della termodinamica classica :le Tabelle di dati

Nelle applicazioni termodinamiche sono perciò fondamentali le

Tabelle di Dati, compendio critico di un enorme lavoro sperimentale.

Il loro aggiornamento è difficile e poco rimunerativo …

… e non sempre è possibile!

(Esempi : astrofisica, geologia dell’interno della terra,…)

“NIST-JANAF Thermochemical Tables. IV Edition”, M.W. Chase, Jr.,

Journal of Physical and Chemical Reference, Monograph 9 (1998) .

Può essere richiesto all’American Institute of Physics.

Page 6: Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università

Seminario IEN – Luglio 2005 6

Utilità (necessità?) di un ponte tra descrizione microscopica (fisica atomica…) e macroscopica (temperatura, entropia…)

Perché il punto di fusione dell’oro, Z=79, è 1065 °C… …mentre quello del suo vicino nella tavola periodica, il mercurio, Z=80, è -40 °C ?

Page 7: Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università

Seminario IEN – Luglio 2005 7

Termodinamica classica Termodinamica statistica Descrizione macroscopica Descrizione microscopica

La relazione di Boltzmann (1875) fornisce un’interpretazione microscopica dell’entropia (S), e quindi di tutte le grandezze termodinamiche :

S = kB ln (E,V,N)

kB = costante di Boltzmann = numero di microstati

(kB = R (costante dei gas) / NA (Numero d’Avogadro) )

Legge probabilistica di Boltzmann (di più facile applicazione):

pi = exp [- i /(kB T)] /Q ; Q = i exp [-i /(kB T)]

pi = probabilità di occupazione del singolo microstato

i (V,N) = energia del singolo microstato

Q(V,N,T) = funzione di partizione canonica

Fattore di Boltzmann

LUDWIGBOLTZMAN

N1844-1906

La termodinamica statistica stabilisce la connessione tra termodinamica classica e descrizione microscopica del sistema, e apre la strada al calcolo ab initio delle proprietà termodinamiche.

Page 8: Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università

Seminario IEN – Luglio 2005 8

Il principio di equipartizione e la legge di Dulong e Petit

Risultati della termodinamica statistica pre-quantistica:

- La teoria cinetica dei gas e la distribuzione di Maxwell-Boltzmann…

- Il principio di equipartizione dell’energia:

  "L’energia di un sistema si ripartisce uniformemente tra i vari gradi di libertà, e per ognuno vale 1/2 kB T"

Lo si dimostra nell’ipotesi di un continuo di energia per ciascun grado di libertà.

Per una mole di gas di molecole monoatomiche: Emol = 3 NA(1/2 kBT) = 3/2 (kBNA)T =3/2 R T

Nel caso di un oscillatore, l’energia si ripartisce tra quella cinetica, e quella associata alla “tensione” dell’elastico per un totale di kBT per modo di oscillazione. Per

una mole di oscillatori tridimensionali: Emol = 3 NA (kB T) = 3 R T.

Giustifica la “legge” di Dulong e Petit (1819) : “Per i solidi elementari, il calore specifico per grammo-atomo è circa 6 Cal/grado”

(CPmol = dEmol/dT = 3R = 5.96 Cal/K)

Page 9: Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università

Seminario IEN – Luglio 2005 9

Importanza storica della legge di Dulong e Petit

Dal calore specifico (CP) di un campione di un elemento,

- al numero di moli n CP / 3R , - da questo e dal peso W (in grammi) del campione, al peso atomico: w = W / n , - al posto nella tavola periodica (Z).

Page 10: Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università

Seminario IEN – Luglio 2005 10

Calore specifico dei solidi elementari : il modello di Einstein (a)

T/K 650 1300

Curva calcolata [A. Einstein, Ann.Physik 22, 180 (1907)]

Legge Dulong e Petit

Dati sperimentali (diamante)

La legge di Dulong e Petit fallisce alle basse temperature!

Page 11: Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università

Seminario IEN – Luglio 2005 11

Calore specifico dei solidi elementari : il modello di Einstein (b)

La “spiegazione” di Einstein

Un oscillatore di frequenza può solo assumere valori di energia che sono multipli interi di h

h = (h/2) (2 ) = ħ = kB

Secondo la legge probabilistica di Boltzmann, la probabilità di occupazione del livello di energia n

= n ħ alla temperatura T sarà data da pn = exp(-n /T) / [m exp(-m /T)] .

L’energia totale dell’oscillatore alla temperatura T sarà: e(,T) = n pn n = kB f(T/ )

Energia dell'oscillatore alla temperatura T

0

0,5

1

1,5

2

2,5

3

1 6 11 16 21 26

T/ Theta = kT/ h nu 0 1 2 3

T/ = kB T/(ħ)

3

2

1

0

e(,T) = kB f(T/ )

f(T/ ) = 1 / (exp[/T] - 1)

Ammettendo che una mole di cristallo contenga 3NA oscillatori identici:

E(T) = 3NA ħ f(T/ ) = 3 R E /(exp[E/T] - 1)

(T ) 3 R T

(T 0) 3 R E exp[-E/T]

Page 12: Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università

Seminario IEN – Luglio 2005 12

Calore specifico dei solidi elementari : il modello di Einstein (c)

T/K 650 1300

Curva calcolata [A. Einstein, Ann.Physik 22, 180 (1907)]

Legge Dulong e Petit

Dati sperimentali (diamante)

Einstein dimostrò così che gli oscillatori meccanici dovevano essere quantizzati proprio come Planck aveva quantizzato gli oscillatori della radiazione.

Il modello di Einstein diede un forte supporto alla nascente teoria dei quanti.

Ma il modello era solo qualitativamente soddisfacente alle temperature molto basse (T/ < 0.2) ….

Page 13: Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università

Seminario IEN – Luglio 2005 13

Calore specifico dei solidi elementari : il modello di Debye

Se non si ha un solo tipo di oscillatori, ma se ne hanno 3N, ognuno caratterizzato da una sua frequenza i, l’energia totale sarà data da

E(T) = (i=1,3N) (ħi) f(i,T) = d g() f(,T) [ d g() = 3 N ]

Il modello di Debye (1911) propone una forma definita per la distribuzione delle frequenze [g() 2], in base ad alcune ipotesi:

a) un continuo isotropo che supporta delle onde elastiche (fononi)

uk(r,t) = Ak exp [i (kr – k t)]

uk(r,t) : spostamento dall’equilibrio In r al tempo t A : vettore ampiezza-polarizzazionek : vettore d’onda (dà direzione e = 2 / |k|) k : frequenza angolarevk : velocità dell’onda = k / |k|

b) la velocità di propagazione del suono è indipendente dalla frequenza (in un cristallo isotropo ci sono due velocità, trasversale e

longitudinale, ma si adotta un valore medio) k |k|;

c) il carattere atomico del solido entra solo nel determinare il numero totale di modi possibili.

Peter Debye

(Maastricht 1884-Cornell 1966)

Page 14: Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università

Seminario IEN – Luglio 2005 14

. = ½ i [Qi

2 + i2 Qi

2 ] (diagonalizzazione di W : km aki Wkm amj = i

2 ij ;Qi = j aji qj )

Dalla conoscenza della matrice dinamica W si può risalire in linea di principio a tutte le frequenze possibili del solido ... alla distribuzione g() … ... alle proprietà termodinamiche del solido ... alle sue proprietà di interazione con la radiazione!

. = ½ [ i q i

2 + ij qi Wij qj ] (coordinate pesate : qi = ui (Mi) ½ Wij = Vij /(Mi Mj) ½ )

Generalizzazione del modello di Debye (L’approssimazione armonica)

. H = T + V = ½ [ i M i u i

2 + ij Vij ui uj ](Approssimazione armonica)

348 cm-1 969 cm-1

Il cristallo non è un continuo elastico !

Piropo : ( Mg3Al2Si3O12) 4

Page 15: Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università

Seminario IEN – Luglio 2005 15

Limiti della teoria armonica

Limiti della teoria armonica (adotta l’approssimazione di Born-Oppenheimer; ignora l’eccitazione dei modi elettronici; ignora l’anarmonicità del potenziale internucleare):

a) L’espansione termica è nulla;

b) le onde reticolari non interagiscono, e non decadono;

c) la conducibilità termica è infinita;

d) le costanti elastiche sono indipendenti da P e T .

Si può tenere conto di molti effetti anarmonici, introducendo la “costante” di Grüneisen: (V/D dD/dV

Per esempio, la relazione di Grüneisen esprime il coefficiente lineare di espansione termica in termini di e di “grandezze armoniche”: Cv / (3BV)

Page 16: Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università

Seminario IEN – Luglio 2005 16

Dalla molecola …

Wij = Vij /(Mi Mj) ½ i,j = 1, 3 N

2 = A† W A (A matrice unitaria)

…. al cristallo :

Wij(k) =

= m {exp[i kRm] ( 2E0/ ui0ujm/(Mi Mj) ½ )}

i,j = 1,3 n (n : numero di atomi nella cella)

m = 1,L (L : numero di celle nel cristallo)

(k)2 = A(k)† W(k) A(k)

ujm(t) = (Aiv(k) / Mi ) exp[i kRm- v(k) t ]

Il modello del cristallo armonico : la Dinamica Reticolare (Lattice dynamics)

….

Max Born (1882-1960)

M. Born, Dynamik der Kristallgitter (Teubner, 1915)

M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, 1954)

Page 17: Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università

Seminario IEN – Luglio 2005 17

Spettri fononici e densità di stati vibrazionali

Aluminum

GaAs

Baroni, de Gironcoli, Dal Corso, Giannozzi,Rev. Mod. Phys. 73, 515-562 (2001)

Da: Ibach, Lüth, Solid State Physics, Springer (1991)

Page 18: Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università

Seminario IEN – Luglio 2005 18

Calcolo della Matrice Dinamica W(k)

m

exp[i k•Rm]

ui0

ujm

Wij(k) = m {exp[i k • Rm] (2E0/ ui0 ujm )} /( Mi Mj )½

ui ui ui ui

uiuiuiui

uj

uj

uj

uj

uj

uj

uj

uj

Wij(0,0,0) = m { 2E0/ ui0 ujm } /( Mi Mj )½

= { 2e0/ ui uj } /( Mi Mj )½

Wij(,0,0) = { 2e0(SC)/ ui’ uj

’ } /( Mi Mj )½

- { 2e0(SC)/ ui’ uj

’’ } /( Mi Mj )½

+

-ui ui

uiui

uj

uj

uj

uj

uiui

uiui

uj

uj

uj

uj

In ogni caso, il problema è ricondotto al calcolo dell’Hessiano dell’energia per cella dello stato fondamentale di un cristallo periodico, rispetto a spostamenti delle coordinate dei suoi nuclei dalla posizione d’equilibrio ...

Page 19: Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università

Seminario IEN – Luglio 2005 19

La chimica quantistica ab initio… e i grandi programmi molecolari

L’Hamiltoniana non relativistica e l’equazione di Schroedinger:

H = T + Ven + Vee + Vnn

H[Rnuc] m[Rnuc] = Em[Rnuc] m[Rnuc]

La chimica quantistica molecolare (Hartree…Fock…Roothan… Boys… Clementi…Pulay…Pople…)

Dalle equazioni di “campo medio” (HF-SCF: ogni elettrone si muove nel campo dei nuclei e nel campo “medio” degli altri elettroni) …

h i = i i

… ai più sofisticati trattamenti della correlazione elettronica (tecniche coupled-cluster CC-SDT … con amplissime basi variazionali)… ma il costo cresce esponenzialmente …

Importanza dello stato fondamentale : la superficie BO

John Pople

(1925-2004)

J. Pople (Nobel per la chimica 1998) è il principale autore del programma di calcolo GAUSSIAN, per il calcolo ab initio delle proprietà molecolari. Iniziato negli anni 70, GAUSSIAN è oggi anche un grande successo commerciale.

Page 20: Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università

Seminario IEN – Luglio 2005 20

L’approccio DFT (Density Functional Theory)

Una tecnica rivoluzionaria nata dalla fisica dei solidi (teoria del gas d’elettroni), ma che ha le sue origini nel metodo dell’”atomo statistico” di Thomas-Fermi (1927-1928)

Hohenberg e Kohn, Phys. Rev. 136, B864 (1964)

Kohn e Sham, Phys. Rev. 140, A1133 (1965)

Equazioni DFT (Kohn e Sham)Risolvendo in modo auto-consistente le equazioni mono-elettroniche:

ĥKS i = i i (r) = 2 i |i (r)|2

ĥKS (r;[]) = -2/2 + Vext(r) + VHartree(r;[]) + Vxc(r;[]) ,

si ottiene l’esatta densità elettronica dello stato fondamentale del sistema multielettronico, (r) , e, corrispondentemente, l’esatta energia dello stato fondamentale E0[] .

E’ richiesta però la conoscenza del potenziale di correlazione e scambio, Vxc(r;[]) , di cui si sa che è un funzionale di (r), di cui

però si conoscono solo espressioni approssimate.

Walter Kohn

Vienna, 1920

.

.

.

.

Page 21: Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università

Seminario IEN – Luglio 2005 21

Calcolo ab initio di Cristalli

Sistemi infiniti … ma con simmetria traslazionale!

Fattorizzazione nello spazio k …

Con vent’anni di ritardo sui programmi molecolari …

… programmi di calcolo periodici per uso pubblico :CRYSTAL (Torino)

WIEN (Vienna)

ADF-BAND (Amsterdam)

VASP (Vienna)

SIESTA (Oviedo Madrid)

GAUSSIAN (Wallingford, Connecticut)

… ecc., ecc.

Per ogni configurazione dei nuclei [R] (in posizione fissa) , il calcolo ab initio autoconsistente fornisce :

Struttura elettronica (struttura di bande, ecc.)

Energia totale per cella, e0[R] , e il suo gradiente : e0/ ui !

Page 22: Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università

Seminario IEN – Luglio 2005 22

Il metodo Car-Parrinello

Mentre i nuclei si muovono da una posizione R ad una R+dR, gli orbitali di Kohn-Sham si modificano.

L’idea è di studiare contemporaneamente i due moti (lo spostamento dei nuclei e la deformazione degli orbitali), attribuendo una massa fittizia agli orbitali, calcolando la “forza” che agisce sugli orbitali, ed imponendo gli opportuni vincoli.

[R(t) | (t)] FR= -E0(R) | F= -(R)

R(t+dt)= R+vR dt ; vR(t+dt) = vR+FR/M dt | (t+dt)=+ v dt ; v’(t+dt)= v+ F/ dt] .... ecc

In ogni punto della traiettoria dei nuclei, la struttura elettronica si riarrangia “in un colpo solo” senza bisogno di un calcolo autoconsistente!

R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)

Michele Parrinello Messina, 1945

Un’alternativa alla dinamica reticolare: studiare il moto dell’insieme dei nuclei di un sistema, calcolando, ab initio, le forze che agiscono su loro (dinamica molecolare ab initio):

[R(t); vR(t) ] FR= -E0(R)

R(t+dt)=R+vR dt ; vR(t+dt) = vR +(FR/M) dt] .... ecc.

Page 23: Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università

Seminario IEN – Luglio 2005 23

Il metodo Car-Parrinello e la Dinamica molecolare Ab-initio

La Lagrangiana di Car-Parrinello

(“total force”) contiene

sia i gradi di libertà nucleari

(classici) che quelli elettronici

(quantistici-DFT).

- Possibilità di trovare la configurazione d’equilibrio assegnando ai nuclei una velocità iniziale, e poi “raffreddandoli” grazie a termini di attrito inclusi nella Lagrangiana.

- Possibilità di usare le tecniche della dinamica molecolare classica per simulare la termodinamica del sistema (ma le scale dei tempi sono sfavorevoli!)

- Possibilità di calcolare la distribuzione delle frequenze , g(), mediante trasformata di Fourier della funzione di autocorrelazione dei moti nucleari

CPMD (Car-Parrinello Molecular-Dynamics)

R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)

D. Marx, M. Parrinello, J. Chem. Phys. 104, 4077 (1996)

D. Marx, J. Hutter, “Ab Initio Molecular Dynamics, Theory and Implementation” , NIC Series, Vol.3 (2000).

Page 24: Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università

Seminario IEN – Luglio 2005 24

Esempio di un calcolo ab initio di Dinamica Reticolare: Proprietà vibrazionali e grandezze termodinamiche del Piropo

Piropo : ( Mg3 Al2 (Si O4)3 ) 4

Page 25: Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università

Seminario IEN – Luglio 2005 25

The electronic structure and properties of periodic systems

with

CRYSTAL03CRYSTAL03by

V. R. Saunders, R. Dovesi, C. Roetti, R. Orlando,

C. M. Zicovich-Wilson, N. M. Harrison, K. Doll,

B. Civalleri, I. J. Bush, Ph. D’Arco, M. Llunell CLRCUniversityof Torino

www.crystal.unito.itwww.crystal.unito.it

CRYSTAL : pagina web

Page 26: Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università

Seminario IEN – Luglio 2005 26

Input di un calcolo vibrazionale con CRYSTAL : il Piropo

Pyrope B3LYP /NUM 1 /STEP 0.001 /7516p /TDEE 11 TITOLOCRYSTAL SISTEMA 3d0 0 0230 Gruppo spaz.(Ia3d-Cubico)11.522224 parametro cella (A)4 N. atomi irriducibili12 0.125000000 0.000000000 0.250000000 Mg . . . Coord. Fraz.13 0.000000000 0.000000000 0.000000000 Al . . . Coord. Fraz.14 0.375000000 -0.000000000 0.250000000 Si . . . Coord. Fraz. 8 0.032512143 0.050050011 0.653534955 O . . . Coord. Fraz.FREQCALC Richiesta frequenzeNUMDERIV2NOINTENS No intensitàENDFREQENDG............................................................................................................. SET BASE ................................................................................................................. DFT Calcolo DFTB3LYP Tipo di funzionale......................................................................................................... PARAMETRI COMPUTAZIONALI ......................................................................................................... END

Page 27: Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università

Seminario IEN – Luglio 2005 27

Output di un calcolo vibrazionale con CRYSTAL : il Piropo (a) Calcolo della configurazione d’equilibrio

N. OF ATOMS PER CELL 80 COULOMB OVERLAP TOL (T1) 10** -6 NUMBER OF SHELLS 400 COULOMB PENETRATION TOL (T2) 10** -6 NUMBER OF AO 1440 EXCHANGE OVERLAP TOL (T3) 10** -6 N. OF ELECTRONS PER CELL 800 EXCHANGE PSEUDO OVP (F(G)) (T4) 10** -6 CORE ELECTRONS PER CELL 416 EXCHANGE PSEUDO OVP (P(G)) (T5) 10**-12 N. OF SYMMETRY OPERATORS 48 POLE ORDER IN MONO ZONE 4******************************************************************************* TYPE OF CALCULATION : RESTRICTED CLOSED SHELL KOHN-SHAM HAMILTONIAN (EXCHANGE)[CORRELATION] FUNCTIONAL:(BECKE)[LEE-YANG-PARR] SHRINK. FACT.(MONKH.) 2 2 2 NUMBER OF K POINTS IN THE IBZ 3 SHRINKING FACTOR(GILAT NET) 2 NUMBER OF K POINTS(GILAT NET) 3 ******************************************************************************* **SHELLY** SPACE FOR BIEL. INTEGRALS 178.58 MILLION REALS .................................................................................................... CALCOLO DEGLI INTEGRALI ............................................................................................................................................................................................................ SOLUZIONE SCF DEL PROBLEMA HF .....................................................................................................  == SCF ENDED - CONVERGENCE ON ENERGY E(AU) -1.1430377057796E+04 CYCLES 22 TOTAL ENERGY(DFT)(AU)( 22) -1.1430377057796E+04 DE 1.1E-09 DP 1.0E-08  TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT EDFT TELAPSE 15517.88 TCPU 13125.72

Page 28: Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università

Seminario IEN – Luglio 2005 28

Output di un calcolo vibrazionale con CRYSTAL : il Piropo (b) La matrice dinamica e la sua diagonalizzazione

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT EDFT TELAPSE 15517.88 TCPU 13125.72 .............................................................................................................CALCOLO MATRICE DINAMICA........................................................................................................  TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT SYMM TELAPSE 195956.94 TCPU 176845.51 HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH EIGENVALUES (EV) OF THE MASS WEIGHTED HESSIAN MATRIX AND HARMONIC FREQUENCIES. IRREP LABELS REFER TO SYMMETRY REPRESENTATION ANALYSIS; A AND I INDICATE WHETHER THE MODE IS ACTIVE OR INACTIVE, RESPECTIVELY, FOR IR AND RAMAN; IR INTENSITIES IN BRACKETS. HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH MODES EV FREQUENCIES IRREP IR INTENS RAMAN (AU) (CM**-1) (THZ) (KM/MOL) 1- 3 -0.00000014 -1.9405 -0.0582 (F1U) A ( 0.00) I 4- 6 0.00056088 121.7414 3.6497 (F2G) I ( 0.00) A 7- 9 0.00067331 133.3869 3.9988 (F1U) A ( 0.00) I 10- 12 0.00067744 133.7954 4.0111 (F2U) I ( 0.00) I 13- 15 0.00076276 141.9707 4.2562 (F1U) A ( 0.00) I 16- 16 0.00076435 142.1186 4.2606 (BU ) I ( 0.00) I 17- 19 0.00106289 167.5904 5.0242 (F1G) I ( 0.00) I 20- 22 0.00114312 173.8005 5.2104 (F1G) I ( 0.00) I...............................................................................

Page 29: Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università

Seminario IEN – Luglio 2005 29

Output di un calcolo vibrazionale con CRYSTAL : il Piropo (c) I modi vibrazionali

MODES EV FREQUENCIES IRREP IR INTENS RAMAN (AU) (CM**-1) (THZ) (KM/MOL)

............................................................................... 130- 132 0.00838329 470.6647 14.1102 (F1U) A ( 0.00) I............................................................................... 204- 206 0.02982293 887.7270 26.6134 (F2U) I ( 0.00) I............................................................................... 238- 240 0.04532283 1094.3665 32.8083 (F2G) I ( 0.00) A *******************************************************************************

Mg Al Si O

Page 30: Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università

Seminario IEN – Luglio 2005 30

Output di un calcolo vibrazionale con CRYSTAL : il Piropo (d) Le proprietà termodinamiche

******************************************************************************* HARMONIC VIBRATIONAL CONTRIBUTIONS TO THE TOTAL GIBBS FREE ENERGY AT GIVEN TEMPERATURE AND PRESSURE: AU/CELL EV/CELL KJ/MOL TOT ELECTRONIC: -11430.377057795691 -311036.372526242514 -30010450.73600307 ZERO PNT CORR : 0.269269799562 7.327203753917 706.96775912 AT (T = 298.00 K, P = 0.10132500E+00 MPA): AU/CELL EV/CELL KJ/MOL THERMAL CORR : 0.338781113953 9.218702780445 889.46968933 FREE ENER CORR: -0.113902632831 -3.099448212246 -299.05132035 TOT FREE ENER : -11429.882909515007 -311022.926067920343 -30009153.34987497 OTHER THERMODINAMIC FUNCTIONS: MHARTREE/(CELL*K) MEV/(CELL*K) J/(MOL*K) ENTROPY : 0.382283251187 10.402456115461 1003.68453455 HEAT CAPACITY : 0.479085362385 13.036575477188 1257.83844168  *******************************************************************************

Evib0= ½ i hi

T= 25C, P=1 Atm

EvibT =i hi f(i,T)

TS

G = E –TS + (PV)

S CV =(E/T)V

Page 31: Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università

Seminario IEN – Luglio 2005 31

Output di un calcolo vibrazionale con CRYSTAL : il Piropo (d) Le proprietà termodinamiche

*******************************************************************************

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT END TELAPSE 195957.67 TCPU 176846.24

NODE 0 CPU TIME = 176846.240

NODE 1 CPU TIME = 174290.600

NODE 2 CPU TIME = 191022.160

NODE 3 CPU TIME = 192015.670

NODE 4 CPU TIME = 192886.750

NODE 5 CPU TIME = 186277.880

NODE 6 CPU TIME = 185812.970

NODE 7 CPU TIME = 192542.900

NODE 8 CPU TIME = 191082.550

NODE 9 CPU TIME = 191716.420

TOTAL CPU TIME = 1874494.140

1874494.140/10 = 187450 sec / (nodo–Athlon 2800) = 2d 5h

Page 32: Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università

Seminario IEN – Luglio 2005 32

Termodinamica ab-initio dei solidi: Lavori in corso e prospettive

Approccio “Dinamica Reticolare”

- Valutazione completa dello spettro fononico

- Calcolo delle intensità delle transizioni Raman (k=0)

- Inclusione di effetti anarmonici (il modello quasi-armonico permette di ottenere la costante di Grüneisen, da calcoli vibrazionali per diversi volumi del cristallo)

- Valutazione “post-HF” degli effetti di correlazione elettronica sulle frequenze

Approccio “Dinamica Molecolare ab-initio”

- Allungamento della scala dei tempi

- Modelli più adeguati …

I “grandi programmi” e il ruolo della programmazione

Page 33: Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università

Seminario IEN – Luglio 2005 33

e per finire …

Princeton, 1945

Albert Einstein (1879-1955)

Page 34: Seminario IEN – Luglio 20051 PROPRIETÀ TERMODINAMICHE AB INITIO DEI SOLIDI Cesare PISANI Dipartimento di Chimica IFM e Centro di Eccellenza NIS, Università

Seminario IEN – Luglio 2005 34

Schema di un calcolo ab initio di Dinamica reticolare

Definizione del cristallo : Atomi costituenti, gruppo spaziale, geometria iniziale

Definizione delle condizioni del calcolo: Hamiltoniana [HF, DFT (a,b,c…)]

Base rappresentativa

Tolleranze varie

PARTE A : Calcolo self-consistent:

Determinazione della configurazione d’equilibrio (R0) e corrispondente energia (E00)

PARTE B : Calcolo dell’ effetto dello spostamento dei nuclei >>>> matrice Dinamica W(k)

PARTE C : Calcolo e caratterizzazione dei modi di vibrazione (fononi)

Calcolo delle grandezze termodinamiche (contributo vibrazionale)