Geometria e Algebra -...

90
Geometria e Algebra

Transcript of Geometria e Algebra -...

Page 1: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Geometria e Algebra

Page 2: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

I gruppi di Geometria e di Algebra

Geometria

Gian Pietro Pirola

Francesco Bonsante

Paola Frediani

Alessandro Ghigi

Ludovico Pernazza

??

Algebra

Alberto Canonaco

Page 3: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

I gruppi di Geometria e di Algebra

Geometria

Gian Pietro Pirola

Francesco Bonsante

Paola Frediani

Alessandro Ghigi

Ludovico Pernazza

??

Algebra

Alberto Canonaco

Page 4: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

I gruppi di Geometria e di Algebra

Geometria

Gian Pietro Pirola

Francesco Bonsante

Paola Frediani

Alessandro Ghigi

Ludovico Pernazza

??

Algebra

Alberto Canonaco

Page 5: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

I gruppi di Geometria e di Algebra

Geometria

Gian Pietro Pirola

Francesco Bonsante

Paola Frediani

Alessandro Ghigi

Ludovico Pernazza

??

Algebra

Alberto Canonaco

Page 6: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

I gruppi di Geometria e di Algebra

Geometria

Gian Pietro Pirola

Francesco Bonsante

Paola Frediani

Alessandro Ghigi

Ludovico Pernazza

??

Algebra

Alberto Canonaco

Page 7: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

I gruppi di Geometria e di Algebra

Geometria

Gian Pietro Pirola

Francesco Bonsante

Paola Frediani

Alessandro Ghigi

Ludovico Pernazza

??

Algebra

Alberto Canonaco

Page 8: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

I gruppi di Geometria e di Algebra

Geometria

Gian Pietro Pirola

Francesco Bonsante

Paola Frediani

Alessandro Ghigi

Ludovico Pernazza

??

Algebra

Alberto Canonaco

Page 9: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

I corsi

Istituzioni di Algebra.

Algebra superiore.

Istituzioni di Geometria.

Geometria superiore.

Curve algebriche e superfici di Riemann.

Page 10: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

I corsi

Istituzioni di Algebra.

Algebra superiore.

Istituzioni di Geometria.

Geometria superiore.

Curve algebriche e superfici di Riemann.

Page 11: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

I corsi

Istituzioni di Algebra.

Algebra superiore.

Istituzioni di Geometria.

Geometria superiore.

Curve algebriche e superfici di Riemann.

Page 12: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

I corsi

Istituzioni di Algebra.

Algebra superiore.

Istituzioni di Geometria.

Geometria superiore.

Curve algebriche e superfici di Riemann.

Page 13: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

I corsi

Istituzioni di Algebra.

Algebra superiore.

Istituzioni di Geometria.

Geometria superiore.

Curve algebriche e superfici di Riemann.

Page 14: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

I corsi

Istituzioni di Algebra.

Algebra superiore.

Istituzioni di Geometria.

Geometria superiore.

Curve algebriche e superfici di Riemann.

Page 15: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Istituzioni di Algebra

Page 16: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Istituzioni di Algebra

Docenti: Alberto Canonaco, Gian Pietro Pirola.

Page 17: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Istituzioni di Algebra

Docenti: Alberto Canonaco, Gian Pietro Pirola.

Algebra commutativa (3 crediti, Alberto Canonaco).

Page 18: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Istituzioni di Algebra

Docenti: Alberto Canonaco, Gian Pietro Pirola.

Algebra commutativa (3 crediti, Alberto Canonaco).1 Moduli su un anello commutativo.

Page 19: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Istituzioni di Algebra

Docenti: Alberto Canonaco, Gian Pietro Pirola.

Algebra commutativa (3 crediti, Alberto Canonaco).1 Moduli su un anello commutativo.

Page 20: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Istituzioni di Algebra

Docenti: Alberto Canonaco, Gian Pietro Pirola.

Algebra commutativa (3 crediti, Alberto Canonaco).1 Moduli su un anello commutativo.2 Localizzazione di anelli e di moduli.

Page 21: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Istituzioni di Algebra

Docenti: Alberto Canonaco, Gian Pietro Pirola.

Algebra commutativa (3 crediti, Alberto Canonaco).1 Moduli su un anello commutativo.2 Localizzazione di anelli e di moduli.3 Anelli e moduli artiniani e noetheriani.

Page 22: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Istituzioni di Algebra

Docenti: Alberto Canonaco, Gian Pietro Pirola.

Algebra commutativa (3 crediti, Alberto Canonaco).1 Moduli su un anello commutativo.2 Localizzazione di anelli e di moduli.3 Anelli e moduli artiniani e noetheriani.4 Dimensione di Krull di un anello.

Page 23: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Istituzioni di Algebra

Docenti: Alberto Canonaco, Gian Pietro Pirola.

Algebra commutativa (3 crediti, Alberto Canonaco).1 Moduli su un anello commutativo.2 Localizzazione di anelli e di moduli.3 Anelli e moduli artiniani e noetheriani.4 Dimensione di Krull di un anello.5 Dipendenza integrale.

Page 24: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Istituzioni di Algebra

Docenti: Alberto Canonaco, Gian Pietro Pirola.

Algebra commutativa (3 crediti, Alberto Canonaco).1 Moduli su un anello commutativo.2 Localizzazione di anelli e di moduli.3 Anelli e moduli artiniani e noetheriani.4 Dimensione di Krull di un anello.5 Dipendenza integrale.6 Spettro di un anello; insiemi algebrici affini.

Page 25: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Istituzioni di Algebra

Docenti: Alberto Canonaco, Gian Pietro Pirola.

Algebra commutativa (3 crediti, Alberto Canonaco).1 Moduli su un anello commutativo.2 Localizzazione di anelli e di moduli.3 Anelli e moduli artiniani e noetheriani.4 Dimensione di Krull di un anello.5 Dipendenza integrale.6 Spettro di un anello; insiemi algebrici affini.

Page 26: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Istituzioni di Algebra

Docenti: Alberto Canonaco, Gian Pietro Pirola.

Teoria dei numeri (6 crediti, Gian Pietro Pirola).

Page 27: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Istituzioni di Algebra

Docenti: Alberto Canonaco, Gian Pietro Pirola.

Teoria dei numeri (6 crediti, Gian Pietro Pirola).1 Numeri algebrici. Interi Algebrici, Campi di Numeri.

Page 28: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Istituzioni di Algebra

Docenti: Alberto Canonaco, Gian Pietro Pirola.

Teoria dei numeri (6 crediti, Gian Pietro Pirola).1 Numeri algebrici. Interi Algebrici, Campi di Numeri.2 Anelli di Dedekind. Gruppo delle classi.

Page 29: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Istituzioni di Algebra

Docenti: Alberto Canonaco, Gian Pietro Pirola.

Teoria dei numeri (6 crediti, Gian Pietro Pirola).1 Numeri algebrici. Interi Algebrici, Campi di Numeri.2 Anelli di Dedekind. Gruppo delle classi.3 Rappresentazione geometrica dei numeri algebrici.

Page 30: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Istituzioni di Algebra

Docenti: Alberto Canonaco, Gian Pietro Pirola.

Teoria dei numeri (6 crediti, Gian Pietro Pirola).1 Numeri algebrici. Interi Algebrici, Campi di Numeri.2 Anelli di Dedekind. Gruppo delle classi.3 Rappresentazione geometrica dei numeri algebrici.4 Teorema delle unita di Dirichlet.

Page 31: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Istituzioni di Algebra

Docenti: Alberto Canonaco, Gian Pietro Pirola.

Teoria dei numeri (6 crediti, Gian Pietro Pirola).1 Numeri algebrici. Interi Algebrici, Campi di Numeri.2 Anelli di Dedekind. Gruppo delle classi.3 Rappresentazione geometrica dei numeri algebrici.4 Teorema delle unita di Dirichlet.5 Teoria di Galois per campi di numeri.

Page 32: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Istituzioni di Algebra

Docenti: Alberto Canonaco, Gian Pietro Pirola.

Teoria dei numeri (6 crediti, Gian Pietro Pirola).1 Numeri algebrici. Interi Algebrici, Campi di Numeri.2 Anelli di Dedekind. Gruppo delle classi.3 Rappresentazione geometrica dei numeri algebrici.4 Teorema delle unita di Dirichlet.5 Teoria di Galois per campi di numeri.

Page 33: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Istituzioni di Algebra

Docente: Gian Pietro Pirola.

Teoria dei numeri.1 Numeri algebrici. Interi Algebrici, Campi di Numeri.2 Anelli di Dedekind. Gruppo delle classi.3 Rappresentazione geometrica dei numeri algebrici.4 Teorema delle unita di Dirichlet.5 Teoria di Galois per campi di numeri.6 Introduzione alla teoria di Minkowski e al teorema di Riemann Roch.

Page 34: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Algebra superiore

Docente: Gian Pietro Pirola.

Teoria dei numeri.1 Numeri algebrici. Interi Algebrici, Campi di Numeri.2 Anelli di Dedekind. Gruppo delle classi.3 Rappresentazione geometrica dei numeri algebrici.4 Teorema delle unita di Dirichlet.5 Teoria di Galois per campi di numeri.6 Introduzione alla teoria di Minkowski e al teorema di Riemann Roch.

Page 35: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Istituzioni di Algebra / Algebra superiore

L’anno prossimo:

Page 36: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Istituzioni di Algebra / Algebra superiore

L’anno prossimo:

1 Prima parte: probabilmente uguale (??).

Page 37: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Istituzioni di Algebra / Algebra superiore

L’anno prossimo:

1 Prima parte: probabilmente uguale (??).

2 Seconda parte:geometria algebrica??algebre di Lie??rappresentazioni di gruppi??

Page 38: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Istituzioni di Geometria

Page 39: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Istituzioni di Geometria

Docente: Francesco Bonsante.

Page 40: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Istituzioni di Geometria

Docente: Francesco Bonsante.

Prima parte (3 crediti).Introduzione alle varieta differenziabili.

Page 41: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Istituzioni di Geometria

Docente: Francesco Bonsante.

Prima parte (3 crediti).Introduzione alle varieta differenziabili.

1 Varieta differenziabili. Spazio tangente e cotangente. Sottovarieta.

Page 42: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Istituzioni di Geometria

Docente: Francesco Bonsante.

Prima parte (3 crediti).Introduzione alle varieta differenziabili.

1 Varieta differenziabili. Spazio tangente e cotangente. Sottovarieta.2 Campi vettoriali. Forme differenziali.

Page 43: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Istituzioni di Geometria

Docente: Francesco Bonsante.

Prima parte (3 crediti).Introduzione alle varieta differenziabili.

1 Varieta differenziabili. Spazio tangente e cotangente. Sottovarieta.2 Campi vettoriali. Forme differenziali.3 Elementi di topologia differenziale:

lemma di Sard, formula di Stokes, coomologia di de Rham.

Page 44: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Istituzioni di Geometria

Docente: Francesco Bonsante.

Seconda parte (6 crediti).Topologia delle varieta e dei fibrati vettoriali.

Page 45: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Istituzioni di Geometria

Docente: Francesco Bonsante.

Seconda parte (6 crediti).Topologia delle varieta e dei fibrati vettoriali.

1 Dualita di Poincare. Sottovarieta e dualita.

Page 46: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Istituzioni di Geometria

Docente: Francesco Bonsante.

Seconda parte (6 crediti).Topologia delle varieta e dei fibrati vettoriali.

1 Dualita di Poincare. Sottovarieta e dualita.2 Fibrati. Fibrati vettoriali reali e complessi.

Page 47: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Istituzioni di Geometria

Docente: Francesco Bonsante.

Seconda parte (6 crediti).Topologia delle varieta e dei fibrati vettoriali.

1 Dualita di Poincare. Sottovarieta e dualita.2 Fibrati. Fibrati vettoriali reali e complessi.3 Intorno tubolari e dualita. Classe di Eulero.

Page 48: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Istituzioni di Geometria

Docente: Francesco Bonsante.

Seconda parte (6 crediti).Topologia delle varieta e dei fibrati vettoriali.

1 Dualita di Poincare. Sottovarieta e dualita.2 Fibrati. Fibrati vettoriali reali e complessi.3 Intorno tubolari e dualita. Classe di Eulero.4 Teoria dei fasci. Coomologia di Cech. Fasci localmente costanti e

fibrati piatti.

Page 49: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Istituzioni di Geometria

Docente: Francesco Bonsante.

Seconda parte (6 crediti).Topologia delle varieta e dei fibrati vettoriali.

1 Dualita di Poincare. Sottovarieta e dualita.2 Fibrati. Fibrati vettoriali reali e complessi.3 Intorno tubolari e dualita. Classe di Eulero.4 Teoria dei fasci. Coomologia di Cech. Fasci localmente costanti e

fibrati piatti.5 Classi di Chern e di Pontrjagin. Classificazione dei fibrati vettoriali

complessi. Connessioni, curvatura e classi caratteristiche.

Page 50: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Geometria superiore

Docente: Francesco Bonsante.

1 Dualita di Poincare. Sottovarieta e dualita.2 Fibrati. Fibrati vettoriali reali e complessi.3 Intorno tubolari e dualita. Classe di Eulero.4 Teoria dei fasci. Coomologia di Cech. Fasci localmente costanti e

fibrati piatti.5 Classi di Chern e di Pontrjagin. Classificazione dei fibrati vettoriali

complessi. Connessioni, curvatura e classi caratteristiche.

Page 51: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Istituzioni di Geometria / Geometria superiore

L’anno prossimo:

Page 52: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Istituzioni di Geometria / Geometria superiore

L’anno prossimo:

1 Prima parte: probabilmente uguale (??).

Page 53: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Istituzioni di Geometria / Geometria superiore

L’anno prossimo:

1 Prima parte: probabilmente uguale (??).

2 Seconda parte: probabilmente geometria Riemanniana (??).

Page 54: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Curve algebriche e superfici di Riemann

Page 55: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Curve algebriche e superfici di Riemann

Docente: ??

Page 56: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Curve algebriche e superfici di Riemann

Docente: ??

Superfici di Riemann. Curve algebriche.

Page 57: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Curve algebriche e superfici di Riemann

Docente: ??

Superfici di Riemann. Curve algebriche.

Divisori e funzioni meromorfe.

Page 58: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Curve algebriche e superfici di Riemann

Docente: ??

Superfici di Riemann. Curve algebriche.

Divisori e funzioni meromorfe.

Fasci e coomologia. Fibrati vettoriali olomorfi.

Page 59: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Curve algebriche e superfici di Riemann

Docente: ??

Superfici di Riemann. Curve algebriche.

Divisori e funzioni meromorfe.

Fasci e coomologia. Fibrati vettoriali olomorfi.

Forme differenziali olomorfe e meromorfe.

Page 60: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Curve algebriche e superfici di Riemann

Docente: ??

Superfici di Riemann. Curve algebriche.

Divisori e funzioni meromorfe.

Fasci e coomologia. Fibrati vettoriali olomorfi.

Forme differenziali olomorfe e meromorfe.

Teorema di Riemann-Roch.

Page 61: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Curve algebriche e superfici di Riemann

Docente: ??

Superfici di Riemann. Curve algebriche.

Divisori e funzioni meromorfe.

Fasci e coomologia. Fibrati vettoriali olomorfi.

Forme differenziali olomorfe e meromorfe.

Teorema di Riemann-Roch.

La Jacobiana di una curva.

Page 62: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Programma di Curve algebriche e superfici di Riemann

Docente: ??

Superfici di Riemann. Curve algebriche.

Divisori e funzioni meromorfe.

Fasci e coomologia. Fibrati vettoriali olomorfi.

Forme differenziali olomorfe e meromorfe.

Teorema di Riemann-Roch.

La Jacobiana di una curva.

Teorema di Abel.

Page 63: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

RicercaGeometria algebrica e complessa (Pirola, Frediani, Ghigi)

Page 64: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

RicercaGeometria algebrica e complessa (Pirola, Frediani, Ghigi)

Curve algebriche e spazio dei moduli.

Page 65: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

RicercaGeometria algebrica e complessa (Pirola, Frediani, Ghigi)

Curve algebriche e spazio dei moduli.

Costruzione di famiglie di curve interessanti.

Page 66: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

RicercaGeometria algebrica e complessa (Pirola, Frediani, Ghigi)

Curve algebriche e spazio dei moduli.

Costruzione di famiglie di curve interessanti.

Rette in Cn+1 Pn(C).

Page 67: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

RicercaGeometria algebrica e complessa (Pirola, Frediani, Ghigi)

Curve algebriche e spazio dei moduli.

Costruzione di famiglie di curve interessanti.

Rette in Cn+1 Pn(C).

Tutte le curve di genere g Mg .

Page 68: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

RicercaGeometria algebrica e complessa (Pirola, Frediani, Ghigi)

Curve algebriche e spazio dei moduli.

Costruzione di famiglie di curve interessanti.

Rette in Cn+1 Pn(C).

Tutte le curve di genere g Mg .

Mg :={curve di genere g}

isomorfismo

Page 69: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

RicercaGeometria algebrica e complessa (Pirola, Frediani, Ghigi)

Teoria di Hodge e applicazione dei periodi.

Page 70: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

RicercaGeometria algebrica e complessa (Pirola, Frediani, Ghigi)

Teoria di Hodge e applicazione dei periodi.118 6 Riemann Surfaces

Fig. 6.1 Genus-2 surface.

There is another standard model for these surfaces [99] that is also quite useful(for instance for computing the fundamental group). A genus-g surface can be con-structed by gluing the sides of a 2g-gon. It is probably easier to visualize this inreverse. After cutting the genus-2 surface of Figure 6.1 along the indicated curves,it can be opened up to an octagon (see Figure 6.2).

Fig. 6.2 Genus-2 surface cut open.

The topological Euler characteristic of the space X is

e(X) =∑(−1)i dim Hi(X ,R).

From Exercise 4.5.5, we have the following lemma:

Lemma 6.1.2. If X is a union of two open sets U and V , then e(X) = e(U)+e(V)−e(U ∩V ).

Corollary 6.1.3. If X is a manifold of genus g, then e(X) = 2−2g, and the first Bettinumber is given by dimH1(X ,R) = 2g.

Proof. This will be left for the exercises. When g = 2, this gives dimH1(X ,R) = 4. We can find explicit generators by

taking the fundamental classes of the curves a1,a2,b1,b2 in Figure 6.1, after choos-ing orientations. To see that these generate, H1(X ,R), it suffices to prove that theyare linearly independent. For this, consider the pairing

(α,β ) �→∫

Xα ∧β

∫aj

ωk = δjk , Bjk :=

∫bj

ωk ,

B = BT , ImB > 0.

Page 71: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

RicercaGeometria algebrica e complessa (Pirola, Frediani, Ghigi)

Superfici algebriche: classificazione, fibrazioni, topologia.

Page 72: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

RicercaGeometria algebrica e complessa (Pirola, Frediani, Ghigi)

Superfici algebriche: classificazione, fibrazioni, topologia.

Una superficie K3.

1 + x4 + y4 + z4 + a(x2 + y2 + z2 + 1)2 = 0, a = −0.49

Page 73: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

RicercaGeometria algebrica e complessa (Pirola, Frediani, Ghigi)

Teoria di Galois geometrica.

Page 74: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

RicercaGeometria algebrica e complessa (Pirola, Frediani, Ghigi)

Teoria di Galois geometrica.

X :=

1.1. Riemann Surfaces 5

Fig. 1.4.

Fig. 1.5.

1.1.3. Closed Riemann Surfaces

A Riemann surface homeomorphic to a sphere with 9 handles as in Fig. 1.6 is called a closed Riemann surface of genus g. The Riemann sphere is of genus 0, and a torus is of genus 1. It is well-known that every compact Riemann surface is a closed Riemann surface of finite genus. A non-compact Riemann surface is called an open Riemann surface.

Take a point Po on a closed Riemann surface R of genus 9 and cut R along simple closed curves AI, Bl, ... , Ag, Bg with base point Po as in Fig. 1.6. Then we get a domain homeomorphic to a convex polygon with 4g sides (Fig. 1.7).

The fundamental group 'lT1 (R, Po) of R with base point Po is generated by the homotopy classes [AI], [BI l, ... , [Ag], [Bg] induced from AI, B I , ... , Ag, Bg and satisfies the fundamental relation

9

II[Aj][Bj][Aj]-I[Bj]-1 = 1 (the unit). j=l

We call {[Ajl,[Bj]H=1 or {Aj,Bj H=l a canonical system of generators of 'lT1(R,po).

1.1. Riemann Surfaces 5

Fig. 1.4.

Fig. 1.5.

1.1.3. Closed Riemann Surfaces

A Riemann surface homeomorphic to a sphere with 9 handles as in Fig. 1.6 is called a closed Riemann surface of genus g. The Riemann sphere is of genus 0, and a torus is of genus 1. It is well-known that every compact Riemann surface is a closed Riemann surface of finite genus. A non-compact Riemann surface is called an open Riemann surface.

Take a point Po on a closed Riemann surface R of genus 9 and cut R along simple closed curves AI, Bl, ... , Ag, Bg with base point Po as in Fig. 1.6. Then we get a domain homeomorphic to a convex polygon with 4g sides (Fig. 1.7).

The fundamental group 'lT1 (R, Po) of R with base point Po is generated by the homotopy classes [AI], [BI l, ... , [Ag], [Bg] induced from AI, B I , ... , Ag, Bg and satisfies the fundamental relation

9

II[Aj][Bj][Aj]-I[Bj]-1 = 1 (the unit). j=l

We call {[Ajl,[Bj]H=1 or {Aj,Bj H=l a canonical system of generators of 'lT1(R,po).

Page 75: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

RicercaGeometria algebrica e complessa (Pirola, Frediani, Ghigi)

Teoria di Galois geometrica.

X :=

1.1. Riemann Surfaces 5

Fig. 1.4.

Fig. 1.5.

1.1.3. Closed Riemann Surfaces

A Riemann surface homeomorphic to a sphere with 9 handles as in Fig. 1.6 is called a closed Riemann surface of genus g. The Riemann sphere is of genus 0, and a torus is of genus 1. It is well-known that every compact Riemann surface is a closed Riemann surface of finite genus. A non-compact Riemann surface is called an open Riemann surface.

Take a point Po on a closed Riemann surface R of genus 9 and cut R along simple closed curves AI, Bl, ... , Ag, Bg with base point Po as in Fig. 1.6. Then we get a domain homeomorphic to a convex polygon with 4g sides (Fig. 1.7).

The fundamental group 'lT1 (R, Po) of R with base point Po is generated by the homotopy classes [AI], [BI l, ... , [Ag], [Bg] induced from AI, B I , ... , Ag, Bg and satisfies the fundamental relation

9

II[Aj][Bj][Aj]-I[Bj]-1 = 1 (the unit). j=l

We call {[Ajl,[Bj]H=1 or {Aj,Bj H=l a canonical system of generators of 'lT1(R,po).

1.1. Riemann Surfaces 5

Fig. 1.4.

Fig. 1.5.

1.1.3. Closed Riemann Surfaces

A Riemann surface homeomorphic to a sphere with 9 handles as in Fig. 1.6 is called a closed Riemann surface of genus g. The Riemann sphere is of genus 0, and a torus is of genus 1. It is well-known that every compact Riemann surface is a closed Riemann surface of finite genus. A non-compact Riemann surface is called an open Riemann surface.

Take a point Po on a closed Riemann surface R of genus 9 and cut R along simple closed curves AI, Bl, ... , Ag, Bg with base point Po as in Fig. 1.6. Then we get a domain homeomorphic to a convex polygon with 4g sides (Fig. 1.7).

The fundamental group 'lT1 (R, Po) of R with base point Po is generated by the homotopy classes [AI], [BI l, ... , [Ag], [Bg] induced from AI, B I , ... , Ag, Bg and satisfies the fundamental relation

9

II[Aj][Bj][Aj]-I[Bj]-1 = 1 (the unit). j=l

We call {[Ajl,[Bj]H=1 or {Aj,Bj H=l a canonical system of generators of 'lT1(R,po).

4 1. Teichmiiller Space of Genus 9

mapping. This R is the Riemann surface of w = vz. (See Ahlfors [A-4J, Chap. 8; Jones and Singerman [A-48], Chap. 4; and Springer [A-99], Chap. 1.)

Note that the Riemann surface R of the algebraic function w = vz is also regarded as the algebraic curve defined by the equation w2 = z.

Finally, we see elliptic curves, i.e., tori from the viewpoint of algebraic curves. For any complex number >.(f. 0,1), let R be the algebraic curve defined by the equation

w 2 = z(z - l)(z - >.). (1.1)

In other words, R consists of all points (z, w) E C x C satisfying algebraic equation (1.1) and the point Poo = (00,00). We can define the complex structure of R by the complex structure of the z-sphere so that the projection 1f': R -+

C, 1f'(z, w) = z, is holomorphic. This R is a two-sheeted branched covering surface over the z-sphere with branch· points 0, 1, >., and 00. The mapping f: R -+ C, f(z, w) = w, is holomorphic. This function f is written as w = Jz(z - 1)(z - >.) and R is a Riemann surface on which the algebraic function w = Jz(z - 1)(z - >.) is single-valued.

The Riemann surface R defined by algebraic equation (1.1) is regarded topo­logically as a surface illustrated in Fig. 1.5. Take two copies of the Riemann spheres Sl, S2 with cuts between ° and 1, and between>. and 00 (Fig. 1.3). Place them face to face (Fig. 1.4), and join along their cuts (Fig. 1.5). The resulting surface is homeomorphic to the Riemann surface R. Hence, R looks like the surface of a doughnut. We call such a Riemann surface a torus. A torus is also called an elliptic curve; this name comes from the elliptic integral (see §1.4).

00 00

Fig. 1.3.

4 1. Teichmiiller Space of Genus 9

mapping. This R is the Riemann surface of w = vz. (See Ahlfors [A-4J, Chap. 8; Jones and Singerman [A-48], Chap. 4; and Springer [A-99], Chap. 1.)

Note that the Riemann surface R of the algebraic function w = vz is also regarded as the algebraic curve defined by the equation w2 = z.

Finally, we see elliptic curves, i.e., tori from the viewpoint of algebraic curves. For any complex number >.(f. 0,1), let R be the algebraic curve defined by the equation

w 2 = z(z - l)(z - >.). (1.1)

In other words, R consists of all points (z, w) E C x C satisfying algebraic equation (1.1) and the point Poo = (00,00). We can define the complex structure of R by the complex structure of the z-sphere so that the projection 1f': R -+

C, 1f'(z, w) = z, is holomorphic. This R is a two-sheeted branched covering surface over the z-sphere with branch· points 0, 1, >., and 00. The mapping f: R -+ C, f(z, w) = w, is holomorphic. This function f is written as w = Jz(z - 1)(z - >.) and R is a Riemann surface on which the algebraic function w = Jz(z - 1)(z - >.) is single-valued.

The Riemann surface R defined by algebraic equation (1.1) is regarded topo­logically as a surface illustrated in Fig. 1.5. Take two copies of the Riemann spheres Sl, S2 with cuts between ° and 1, and between>. and 00 (Fig. 1.3). Place them face to face (Fig. 1.4), and join along their cuts (Fig. 1.5). The resulting surface is homeomorphic to the Riemann surface R. Hence, R looks like the surface of a doughnut. We call such a Riemann surface a torus. A torus is also called an elliptic curve; this name comes from the elliptic integral (see §1.4).

00 00

Fig. 1.3.

= 2×

4 1. Teichmiiller Space of Genus 9

mapping. This R is the Riemann surface of w = vz. (See Ahlfors [A-4J, Chap. 8; Jones and Singerman [A-48], Chap. 4; and Springer [A-99], Chap. 1.)

Note that the Riemann surface R of the algebraic function w = vz is also regarded as the algebraic curve defined by the equation w2 = z.

Finally, we see elliptic curves, i.e., tori from the viewpoint of algebraic curves. For any complex number >.(f. 0,1), let R be the algebraic curve defined by the equation

w 2 = z(z - l)(z - >.). (1.1)

In other words, R consists of all points (z, w) E C x C satisfying algebraic equation (1.1) and the point Poo = (00,00). We can define the complex structure of R by the complex structure of the z-sphere so that the projection 1f': R -+

C, 1f'(z, w) = z, is holomorphic. This R is a two-sheeted branched covering surface over the z-sphere with branch· points 0, 1, >., and 00. The mapping f: R -+ C, f(z, w) = w, is holomorphic. This function f is written as w = Jz(z - 1)(z - >.) and R is a Riemann surface on which the algebraic function w = Jz(z - 1)(z - >.) is single-valued.

The Riemann surface R defined by algebraic equation (1.1) is regarded topo­logically as a surface illustrated in Fig. 1.5. Take two copies of the Riemann spheres Sl, S2 with cuts between ° and 1, and between>. and 00 (Fig. 1.3). Place them face to face (Fig. 1.4), and join along their cuts (Fig. 1.5). The resulting surface is homeomorphic to the Riemann surface R. Hence, R looks like the surface of a doughnut. We call such a Riemann surface a torus. A torus is also called an elliptic curve; this name comes from the elliptic integral (see §1.4).

00 00

Fig. 1.3.

Page 76: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

RicercaGeometria algebrica e complessa (Pirola, Frediani, Ghigi)

Teoria di Galois geometrica.

X :=

1.1. Riemann Surfaces 5

Fig. 1.4.

Fig. 1.5.

1.1.3. Closed Riemann Surfaces

A Riemann surface homeomorphic to a sphere with 9 handles as in Fig. 1.6 is called a closed Riemann surface of genus g. The Riemann sphere is of genus 0, and a torus is of genus 1. It is well-known that every compact Riemann surface is a closed Riemann surface of finite genus. A non-compact Riemann surface is called an open Riemann surface.

Take a point Po on a closed Riemann surface R of genus 9 and cut R along simple closed curves AI, Bl, ... , Ag, Bg with base point Po as in Fig. 1.6. Then we get a domain homeomorphic to a convex polygon with 4g sides (Fig. 1.7).

The fundamental group 'lT1 (R, Po) of R with base point Po is generated by the homotopy classes [AI], [BI l, ... , [Ag], [Bg] induced from AI, B I , ... , Ag, Bg and satisfies the fundamental relation

9

II[Aj][Bj][Aj]-I[Bj]-1 = 1 (the unit). j=l

We call {[Ajl,[Bj]H=1 or {Aj,Bj H=l a canonical system of generators of 'lT1(R,po).

1.1. Riemann Surfaces 5

Fig. 1.4.

Fig. 1.5.

1.1.3. Closed Riemann Surfaces

A Riemann surface homeomorphic to a sphere with 9 handles as in Fig. 1.6 is called a closed Riemann surface of genus g. The Riemann sphere is of genus 0, and a torus is of genus 1. It is well-known that every compact Riemann surface is a closed Riemann surface of finite genus. A non-compact Riemann surface is called an open Riemann surface.

Take a point Po on a closed Riemann surface R of genus 9 and cut R along simple closed curves AI, Bl, ... , Ag, Bg with base point Po as in Fig. 1.6. Then we get a domain homeomorphic to a convex polygon with 4g sides (Fig. 1.7).

The fundamental group 'lT1 (R, Po) of R with base point Po is generated by the homotopy classes [AI], [BI l, ... , [Ag], [Bg] induced from AI, B I , ... , Ag, Bg and satisfies the fundamental relation

9

II[Aj][Bj][Aj]-I[Bj]-1 = 1 (the unit). j=l

We call {[Ajl,[Bj]H=1 or {Aj,Bj H=l a canonical system of generators of 'lT1(R,po).

4 1. Teichmiiller Space of Genus 9

mapping. This R is the Riemann surface of w = vz. (See Ahlfors [A-4J, Chap. 8; Jones and Singerman [A-48], Chap. 4; and Springer [A-99], Chap. 1.)

Note that the Riemann surface R of the algebraic function w = vz is also regarded as the algebraic curve defined by the equation w2 = z.

Finally, we see elliptic curves, i.e., tori from the viewpoint of algebraic curves. For any complex number >.(f. 0,1), let R be the algebraic curve defined by the equation

w 2 = z(z - l)(z - >.). (1.1)

In other words, R consists of all points (z, w) E C x C satisfying algebraic equation (1.1) and the point Poo = (00,00). We can define the complex structure of R by the complex structure of the z-sphere so that the projection 1f': R -+

C, 1f'(z, w) = z, is holomorphic. This R is a two-sheeted branched covering surface over the z-sphere with branch· points 0, 1, >., and 00. The mapping f: R -+ C, f(z, w) = w, is holomorphic. This function f is written as w = Jz(z - 1)(z - >.) and R is a Riemann surface on which the algebraic function w = Jz(z - 1)(z - >.) is single-valued.

The Riemann surface R defined by algebraic equation (1.1) is regarded topo­logically as a surface illustrated in Fig. 1.5. Take two copies of the Riemann spheres Sl, S2 with cuts between ° and 1, and between>. and 00 (Fig. 1.3). Place them face to face (Fig. 1.4), and join along their cuts (Fig. 1.5). The resulting surface is homeomorphic to the Riemann surface R. Hence, R looks like the surface of a doughnut. We call such a Riemann surface a torus. A torus is also called an elliptic curve; this name comes from the elliptic integral (see §1.4).

00 00

Fig. 1.3.

4 1. Teichmiiller Space of Genus 9

mapping. This R is the Riemann surface of w = vz. (See Ahlfors [A-4J, Chap. 8; Jones and Singerman [A-48], Chap. 4; and Springer [A-99], Chap. 1.)

Note that the Riemann surface R of the algebraic function w = vz is also regarded as the algebraic curve defined by the equation w2 = z.

Finally, we see elliptic curves, i.e., tori from the viewpoint of algebraic curves. For any complex number >.(f. 0,1), let R be the algebraic curve defined by the equation

w 2 = z(z - l)(z - >.). (1.1)

In other words, R consists of all points (z, w) E C x C satisfying algebraic equation (1.1) and the point Poo = (00,00). We can define the complex structure of R by the complex structure of the z-sphere so that the projection 1f': R -+

C, 1f'(z, w) = z, is holomorphic. This R is a two-sheeted branched covering surface over the z-sphere with branch· points 0, 1, >., and 00. The mapping f: R -+ C, f(z, w) = w, is holomorphic. This function f is written as w = Jz(z - 1)(z - >.) and R is a Riemann surface on which the algebraic function w = Jz(z - 1)(z - >.) is single-valued.

The Riemann surface R defined by algebraic equation (1.1) is regarded topo­logically as a surface illustrated in Fig. 1.5. Take two copies of the Riemann spheres Sl, S2 with cuts between ° and 1, and between>. and 00 (Fig. 1.3). Place them face to face (Fig. 1.4), and join along their cuts (Fig. 1.5). The resulting surface is homeomorphic to the Riemann surface R. Hence, R looks like the surface of a doughnut. We call such a Riemann surface a torus. A torus is also called an elliptic curve; this name comes from the elliptic integral (see §1.4).

00 00

Fig. 1.3.

= 2×

4 1. Teichmiiller Space of Genus 9

mapping. This R is the Riemann surface of w = vz. (See Ahlfors [A-4J, Chap. 8; Jones and Singerman [A-48], Chap. 4; and Springer [A-99], Chap. 1.)

Note that the Riemann surface R of the algebraic function w = vz is also regarded as the algebraic curve defined by the equation w2 = z.

Finally, we see elliptic curves, i.e., tori from the viewpoint of algebraic curves. For any complex number >.(f. 0,1), let R be the algebraic curve defined by the equation

w 2 = z(z - l)(z - >.). (1.1)

In other words, R consists of all points (z, w) E C x C satisfying algebraic equation (1.1) and the point Poo = (00,00). We can define the complex structure of R by the complex structure of the z-sphere so that the projection 1f': R -+

C, 1f'(z, w) = z, is holomorphic. This R is a two-sheeted branched covering surface over the z-sphere with branch· points 0, 1, >., and 00. The mapping f: R -+ C, f(z, w) = w, is holomorphic. This function f is written as w = Jz(z - 1)(z - >.) and R is a Riemann surface on which the algebraic function w = Jz(z - 1)(z - >.) is single-valued.

The Riemann surface R defined by algebraic equation (1.1) is regarded topo­logically as a surface illustrated in Fig. 1.5. Take two copies of the Riemann spheres Sl, S2 with cuts between ° and 1, and between>. and 00 (Fig. 1.3). Place them face to face (Fig. 1.4), and join along their cuts (Fig. 1.5). The resulting surface is homeomorphic to the Riemann surface R. Hence, R looks like the surface of a doughnut. We call such a Riemann surface a torus. A torus is also called an elliptic curve; this name comes from the elliptic integral (see §1.4).

00 00

Fig. 1.3.

f : X2:1−−−→ S2 = P1(C),

Page 77: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

RicercaGeometria algebrica e complessa (Pirola, Frediani, Ghigi)

Teoria di Galois geometrica.

X :=

1.1. Riemann Surfaces 5

Fig. 1.4.

Fig. 1.5.

1.1.3. Closed Riemann Surfaces

A Riemann surface homeomorphic to a sphere with 9 handles as in Fig. 1.6 is called a closed Riemann surface of genus g. The Riemann sphere is of genus 0, and a torus is of genus 1. It is well-known that every compact Riemann surface is a closed Riemann surface of finite genus. A non-compact Riemann surface is called an open Riemann surface.

Take a point Po on a closed Riemann surface R of genus 9 and cut R along simple closed curves AI, Bl, ... , Ag, Bg with base point Po as in Fig. 1.6. Then we get a domain homeomorphic to a convex polygon with 4g sides (Fig. 1.7).

The fundamental group 'lT1 (R, Po) of R with base point Po is generated by the homotopy classes [AI], [BI l, ... , [Ag], [Bg] induced from AI, B I , ... , Ag, Bg and satisfies the fundamental relation

9

II[Aj][Bj][Aj]-I[Bj]-1 = 1 (the unit). j=l

We call {[Ajl,[Bj]H=1 or {Aj,Bj H=l a canonical system of generators of 'lT1(R,po).

1.1. Riemann Surfaces 5

Fig. 1.4.

Fig. 1.5.

1.1.3. Closed Riemann Surfaces

A Riemann surface homeomorphic to a sphere with 9 handles as in Fig. 1.6 is called a closed Riemann surface of genus g. The Riemann sphere is of genus 0, and a torus is of genus 1. It is well-known that every compact Riemann surface is a closed Riemann surface of finite genus. A non-compact Riemann surface is called an open Riemann surface.

Take a point Po on a closed Riemann surface R of genus 9 and cut R along simple closed curves AI, Bl, ... , Ag, Bg with base point Po as in Fig. 1.6. Then we get a domain homeomorphic to a convex polygon with 4g sides (Fig. 1.7).

The fundamental group 'lT1 (R, Po) of R with base point Po is generated by the homotopy classes [AI], [BI l, ... , [Ag], [Bg] induced from AI, B I , ... , Ag, Bg and satisfies the fundamental relation

9

II[Aj][Bj][Aj]-I[Bj]-1 = 1 (the unit). j=l

We call {[Ajl,[Bj]H=1 or {Aj,Bj H=l a canonical system of generators of 'lT1(R,po).

4 1. Teichmiiller Space of Genus 9

mapping. This R is the Riemann surface of w = vz. (See Ahlfors [A-4J, Chap. 8; Jones and Singerman [A-48], Chap. 4; and Springer [A-99], Chap. 1.)

Note that the Riemann surface R of the algebraic function w = vz is also regarded as the algebraic curve defined by the equation w2 = z.

Finally, we see elliptic curves, i.e., tori from the viewpoint of algebraic curves. For any complex number >.(f. 0,1), let R be the algebraic curve defined by the equation

w 2 = z(z - l)(z - >.). (1.1)

In other words, R consists of all points (z, w) E C x C satisfying algebraic equation (1.1) and the point Poo = (00,00). We can define the complex structure of R by the complex structure of the z-sphere so that the projection 1f': R -+

C, 1f'(z, w) = z, is holomorphic. This R is a two-sheeted branched covering surface over the z-sphere with branch· points 0, 1, >., and 00. The mapping f: R -+ C, f(z, w) = w, is holomorphic. This function f is written as w = Jz(z - 1)(z - >.) and R is a Riemann surface on which the algebraic function w = Jz(z - 1)(z - >.) is single-valued.

The Riemann surface R defined by algebraic equation (1.1) is regarded topo­logically as a surface illustrated in Fig. 1.5. Take two copies of the Riemann spheres Sl, S2 with cuts between ° and 1, and between>. and 00 (Fig. 1.3). Place them face to face (Fig. 1.4), and join along their cuts (Fig. 1.5). The resulting surface is homeomorphic to the Riemann surface R. Hence, R looks like the surface of a doughnut. We call such a Riemann surface a torus. A torus is also called an elliptic curve; this name comes from the elliptic integral (see §1.4).

00 00

Fig. 1.3.

4 1. Teichmiiller Space of Genus 9

mapping. This R is the Riemann surface of w = vz. (See Ahlfors [A-4J, Chap. 8; Jones and Singerman [A-48], Chap. 4; and Springer [A-99], Chap. 1.)

Note that the Riemann surface R of the algebraic function w = vz is also regarded as the algebraic curve defined by the equation w2 = z.

Finally, we see elliptic curves, i.e., tori from the viewpoint of algebraic curves. For any complex number >.(f. 0,1), let R be the algebraic curve defined by the equation

w 2 = z(z - l)(z - >.). (1.1)

In other words, R consists of all points (z, w) E C x C satisfying algebraic equation (1.1) and the point Poo = (00,00). We can define the complex structure of R by the complex structure of the z-sphere so that the projection 1f': R -+

C, 1f'(z, w) = z, is holomorphic. This R is a two-sheeted branched covering surface over the z-sphere with branch· points 0, 1, >., and 00. The mapping f: R -+ C, f(z, w) = w, is holomorphic. This function f is written as w = Jz(z - 1)(z - >.) and R is a Riemann surface on which the algebraic function w = Jz(z - 1)(z - >.) is single-valued.

The Riemann surface R defined by algebraic equation (1.1) is regarded topo­logically as a surface illustrated in Fig. 1.5. Take two copies of the Riemann spheres Sl, S2 with cuts between ° and 1, and between>. and 00 (Fig. 1.3). Place them face to face (Fig. 1.4), and join along their cuts (Fig. 1.5). The resulting surface is homeomorphic to the Riemann surface R. Hence, R looks like the surface of a doughnut. We call such a Riemann surface a torus. A torus is also called an elliptic curve; this name comes from the elliptic integral (see §1.4).

00 00

Fig. 1.3.

= 2×

4 1. Teichmiiller Space of Genus 9

mapping. This R is the Riemann surface of w = vz. (See Ahlfors [A-4J, Chap. 8; Jones and Singerman [A-48], Chap. 4; and Springer [A-99], Chap. 1.)

Note that the Riemann surface R of the algebraic function w = vz is also regarded as the algebraic curve defined by the equation w2 = z.

Finally, we see elliptic curves, i.e., tori from the viewpoint of algebraic curves. For any complex number >.(f. 0,1), let R be the algebraic curve defined by the equation

w 2 = z(z - l)(z - >.). (1.1)

In other words, R consists of all points (z, w) E C x C satisfying algebraic equation (1.1) and the point Poo = (00,00). We can define the complex structure of R by the complex structure of the z-sphere so that the projection 1f': R -+

C, 1f'(z, w) = z, is holomorphic. This R is a two-sheeted branched covering surface over the z-sphere with branch· points 0, 1, >., and 00. The mapping f: R -+ C, f(z, w) = w, is holomorphic. This function f is written as w = Jz(z - 1)(z - >.) and R is a Riemann surface on which the algebraic function w = Jz(z - 1)(z - >.) is single-valued.

The Riemann surface R defined by algebraic equation (1.1) is regarded topo­logically as a surface illustrated in Fig. 1.5. Take two copies of the Riemann spheres Sl, S2 with cuts between ° and 1, and between>. and 00 (Fig. 1.3). Place them face to face (Fig. 1.4), and join along their cuts (Fig. 1.5). The resulting surface is homeomorphic to the Riemann surface R. Hence, R looks like the surface of a doughnut. We call such a Riemann surface a torus. A torus is also called an elliptic curve; this name comes from the elliptic integral (see §1.4).

00 00

Fig. 1.3.

f : X2:1−−−→ S2 = P1(C), C(z) ⊂ C(X ) := {funzioni meromorfe su X}

Page 78: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

RicercaGeometria algebrica e complessa (Pirola, Frediani, Ghigi)

Teoria di Galois geometrica.

X :=

1.1. Riemann Surfaces 5

Fig. 1.4.

Fig. 1.5.

1.1.3. Closed Riemann Surfaces

A Riemann surface homeomorphic to a sphere with 9 handles as in Fig. 1.6 is called a closed Riemann surface of genus g. The Riemann sphere is of genus 0, and a torus is of genus 1. It is well-known that every compact Riemann surface is a closed Riemann surface of finite genus. A non-compact Riemann surface is called an open Riemann surface.

Take a point Po on a closed Riemann surface R of genus 9 and cut R along simple closed curves AI, Bl, ... , Ag, Bg with base point Po as in Fig. 1.6. Then we get a domain homeomorphic to a convex polygon with 4g sides (Fig. 1.7).

The fundamental group 'lT1 (R, Po) of R with base point Po is generated by the homotopy classes [AI], [BI l, ... , [Ag], [Bg] induced from AI, B I , ... , Ag, Bg and satisfies the fundamental relation

9

II[Aj][Bj][Aj]-I[Bj]-1 = 1 (the unit). j=l

We call {[Ajl,[Bj]H=1 or {Aj,Bj H=l a canonical system of generators of 'lT1(R,po).

1.1. Riemann Surfaces 5

Fig. 1.4.

Fig. 1.5.

1.1.3. Closed Riemann Surfaces

A Riemann surface homeomorphic to a sphere with 9 handles as in Fig. 1.6 is called a closed Riemann surface of genus g. The Riemann sphere is of genus 0, and a torus is of genus 1. It is well-known that every compact Riemann surface is a closed Riemann surface of finite genus. A non-compact Riemann surface is called an open Riemann surface.

Take a point Po on a closed Riemann surface R of genus 9 and cut R along simple closed curves AI, Bl, ... , Ag, Bg with base point Po as in Fig. 1.6. Then we get a domain homeomorphic to a convex polygon with 4g sides (Fig. 1.7).

The fundamental group 'lT1 (R, Po) of R with base point Po is generated by the homotopy classes [AI], [BI l, ... , [Ag], [Bg] induced from AI, B I , ... , Ag, Bg and satisfies the fundamental relation

9

II[Aj][Bj][Aj]-I[Bj]-1 = 1 (the unit). j=l

We call {[Ajl,[Bj]H=1 or {Aj,Bj H=l a canonical system of generators of 'lT1(R,po).

4 1. Teichmiiller Space of Genus 9

mapping. This R is the Riemann surface of w = vz. (See Ahlfors [A-4J, Chap. 8; Jones and Singerman [A-48], Chap. 4; and Springer [A-99], Chap. 1.)

Note that the Riemann surface R of the algebraic function w = vz is also regarded as the algebraic curve defined by the equation w2 = z.

Finally, we see elliptic curves, i.e., tori from the viewpoint of algebraic curves. For any complex number >.(f. 0,1), let R be the algebraic curve defined by the equation

w 2 = z(z - l)(z - >.). (1.1)

In other words, R consists of all points (z, w) E C x C satisfying algebraic equation (1.1) and the point Poo = (00,00). We can define the complex structure of R by the complex structure of the z-sphere so that the projection 1f': R -+

C, 1f'(z, w) = z, is holomorphic. This R is a two-sheeted branched covering surface over the z-sphere with branch· points 0, 1, >., and 00. The mapping f: R -+ C, f(z, w) = w, is holomorphic. This function f is written as w = Jz(z - 1)(z - >.) and R is a Riemann surface on which the algebraic function w = Jz(z - 1)(z - >.) is single-valued.

The Riemann surface R defined by algebraic equation (1.1) is regarded topo­logically as a surface illustrated in Fig. 1.5. Take two copies of the Riemann spheres Sl, S2 with cuts between ° and 1, and between>. and 00 (Fig. 1.3). Place them face to face (Fig. 1.4), and join along their cuts (Fig. 1.5). The resulting surface is homeomorphic to the Riemann surface R. Hence, R looks like the surface of a doughnut. We call such a Riemann surface a torus. A torus is also called an elliptic curve; this name comes from the elliptic integral (see §1.4).

00 00

Fig. 1.3.

4 1. Teichmiiller Space of Genus 9

mapping. This R is the Riemann surface of w = vz. (See Ahlfors [A-4J, Chap. 8; Jones and Singerman [A-48], Chap. 4; and Springer [A-99], Chap. 1.)

Note that the Riemann surface R of the algebraic function w = vz is also regarded as the algebraic curve defined by the equation w2 = z.

Finally, we see elliptic curves, i.e., tori from the viewpoint of algebraic curves. For any complex number >.(f. 0,1), let R be the algebraic curve defined by the equation

w 2 = z(z - l)(z - >.). (1.1)

In other words, R consists of all points (z, w) E C x C satisfying algebraic equation (1.1) and the point Poo = (00,00). We can define the complex structure of R by the complex structure of the z-sphere so that the projection 1f': R -+

C, 1f'(z, w) = z, is holomorphic. This R is a two-sheeted branched covering surface over the z-sphere with branch· points 0, 1, >., and 00. The mapping f: R -+ C, f(z, w) = w, is holomorphic. This function f is written as w = Jz(z - 1)(z - >.) and R is a Riemann surface on which the algebraic function w = Jz(z - 1)(z - >.) is single-valued.

The Riemann surface R defined by algebraic equation (1.1) is regarded topo­logically as a surface illustrated in Fig. 1.5. Take two copies of the Riemann spheres Sl, S2 with cuts between ° and 1, and between>. and 00 (Fig. 1.3). Place them face to face (Fig. 1.4), and join along their cuts (Fig. 1.5). The resulting surface is homeomorphic to the Riemann surface R. Hence, R looks like the surface of a doughnut. We call such a Riemann surface a torus. A torus is also called an elliptic curve; this name comes from the elliptic integral (see §1.4).

00 00

Fig. 1.3.

= 2×

4 1. Teichmiiller Space of Genus 9

mapping. This R is the Riemann surface of w = vz. (See Ahlfors [A-4J, Chap. 8; Jones and Singerman [A-48], Chap. 4; and Springer [A-99], Chap. 1.)

Note that the Riemann surface R of the algebraic function w = vz is also regarded as the algebraic curve defined by the equation w2 = z.

Finally, we see elliptic curves, i.e., tori from the viewpoint of algebraic curves. For any complex number >.(f. 0,1), let R be the algebraic curve defined by the equation

w 2 = z(z - l)(z - >.). (1.1)

In other words, R consists of all points (z, w) E C x C satisfying algebraic equation (1.1) and the point Poo = (00,00). We can define the complex structure of R by the complex structure of the z-sphere so that the projection 1f': R -+

C, 1f'(z, w) = z, is holomorphic. This R is a two-sheeted branched covering surface over the z-sphere with branch· points 0, 1, >., and 00. The mapping f: R -+ C, f(z, w) = w, is holomorphic. This function f is written as w = Jz(z - 1)(z - >.) and R is a Riemann surface on which the algebraic function w = Jz(z - 1)(z - >.) is single-valued.

The Riemann surface R defined by algebraic equation (1.1) is regarded topo­logically as a surface illustrated in Fig. 1.5. Take two copies of the Riemann spheres Sl, S2 with cuts between ° and 1, and between>. and 00 (Fig. 1.3). Place them face to face (Fig. 1.4), and join along their cuts (Fig. 1.5). The resulting surface is homeomorphic to the Riemann surface R. Hence, R looks like the surface of a doughnut. We call such a Riemann surface a torus. A torus is also called an elliptic curve; this name comes from the elliptic integral (see §1.4).

00 00

Fig. 1.3.

f : X2:1−−−→ S2 = P1(C), C(z) ⊂ C(X ) := {funzioni meromorfe su X}

Gal (C (X ) /C (z)) .

Page 79: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

RicercaAlgebra omologica e teoria delle categorie (Canonaco)

Categorie derivate

Page 80: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

RicercaAlgebra omologica e teoria delle categorie (Canonaco)

Categorie derivate

L’assioma dell’ottaedroper le categorietriangolate:

Y ′

g

[1]

��

Z ′

f

>>

[1]

��

X ′j[1]◦i

[1]oo

i[1]

��

Xv◦u //

u

Z

OO

WW

Y

v

>>

j

WW

Page 81: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

RicercaGeometria differenziale (Bonsante)

Geometria iperbolica.

Spazi di Teichmuller.Strettamente collegatoallo spazio dei modulidelle curve algebriche, mada un punto di vistadifferenziale.

Fibrati piatti e varieta dirappresentazioni.

Azioni di gruppi su spazisimmetrici.

Page 82: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

RicercaGeometria differenziale (Bonsante)

Geometria iperbolica.

Spazi di Teichmuller.Strettamente collegatoallo spazio dei modulidelle curve algebriche, mada un punto di vistadifferenziale.

Fibrati piatti e varieta dirappresentazioni.

Azioni di gruppi su spazisimmetrici.

Page 83: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

RicercaGeometria differenziale (Bonsante)

Geometria iperbolica.

Spazi di Teichmuller.Strettamente collegatoallo spazio dei modulidelle curve algebriche, mada un punto di vistadifferenziale.

Fibrati piatti e varieta dirappresentazioni.

Azioni di gruppi su spazisimmetrici.

Page 84: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

RicercaGeometria differenziale (Bonsante)

Geometria iperbolica.

Spazi di Teichmuller.Strettamente collegatoallo spazio dei modulidelle curve algebriche, mada un punto di vistadifferenziale.

Fibrati piatti e varieta dirappresentazioni.

Azioni di gruppi su spazisimmetrici.

Page 85: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

RicercaGeometria differenziale (Bonsante)

Geometria iperbolica.

Spazi di Teichmuller.Strettamente collegatoallo spazio dei modulidelle curve algebriche, mada un punto di vistadifferenziale.

Fibrati piatti e varieta dirappresentazioni.

Azioni di gruppi su spazisimmetrici.

Page 86: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

RicercaGeometria analitica reale (Pernazza)

Geometria analitica reale.

L’ombrello di Whitney: x2 − y2z = 0.

Page 87: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

RicercaGeometria analitica reale (Pernazza)

Geometria analitica reale.

L’ombrello di Whitney: x2 − y2z = 0.

Page 88: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

RicercaGeometria analitica reale (Pernazza)

Geometria analitica reale.

L’ombrello di Whitney: x2 − y2z = 0.

Page 89: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Tematiche di tesi

In tutti gli argomenti di ricerca appena elencati. E in alcuni altri . . .

Page 90: Geometria e Algebra - matematica.unipv.itmatematica.unipv.it/attach/41999A3FAD41066A/file/ALGEBRA_GEOMETRIA.pdf · I gruppi di Geometria e di Algebra Geometria Gian Pietro Pirola

Tematiche di tesi

In tutti gli argomenti di ricerca appena elencati. E in alcuni altri . . .

Negli ultimi anni molti studenti si sono laureati a Pavia su argomenti dicarattere algebrico o geometrico. Vari di questi sono entrati al dottorato aPavia o altrove.