Elettronica I Materiale Didattico

download Elettronica I Materiale Didattico

of 144

Transcript of Elettronica I Materiale Didattico

  • 7/31/2019 Elettronica I Materiale Didattico

    1/144

    prof.ssa S. Rocchi

    ing. M. Poli

    Teaching guide: basic electronics2008-09

  • 7/31/2019 Elettronica I Materiale Didattico

    2/144

    ContentsIntroduzione . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Ringraziamenti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Link a equazioni, figure, lavagne, parti e riferimenti bibliografici . . . . . . . . . . . . . . . . . . . . . . . . 2NOTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    Summary 4Part T1: Notes on Electricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Part T2: Semiconductor physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Part T3: Diode as non-linear device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    Part A1: Diode applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Part T4: MOSFET device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Part T5: Bipolar Junction Transistor (BJT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Part T6: MOSFET and BJT as non-linear devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Part N1: Basics of Electrical Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Part A2: Single stage MOSFET and BJT configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Part E1: Esempio di progettazione di un amplificatore CS . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Part A3: Basic MOSFET-based configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Part T7: Amplifiers frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Part A4: Time-constant method application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Part T8: Ideal voltage amplifier and feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Part A5: Ideal voltage amplifier and feedback applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    Part T9: Stability analysis of feedback amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Part E2: Compensation examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Part T10: Techniques used to analyze feedback amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Part E3: Examples of the Rosenstark and Blackman formulas . . . . . . . . . . . . . . . . . . . . . . . . . 7Part E4: Esercizi su amplificatori, retroazione e compensazione . . . . . . . . . . . . . . . . . . . . . . . . 7

    T1 Notes on Electricity 8Electric field E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Flux of E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Gauss law in vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Meaning of 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9permittivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Electric displacement field (or electric flux density) D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    Electrostatic potential V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Electrostatic potential property (I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Electrostatic potential property (II) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9E V on x dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Potential energy U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Energy conservation law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Example: potential energy barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Metal conductivity schematic picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 (mobility) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11J (current density) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Resistivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

  • 7/31/2019 Elettronica I Materiale Didattico

    3/144

    CONTENTS II

    T2 Semiconductor physics 12Band Theory of Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Insulators, semiconductors and conductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Fermi-Dirac statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Electrical conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    Semiconductors current pictures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Doped semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Conductivity for semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Intrinsic semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Doped semiconductors n-type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Doped semiconductors p-type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15p-n junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Reverse bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Forward bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17p-n diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Diode equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Diode dynamic effects: transaction capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Diode dynamic effects: diffusion capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Actual diode maximum limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Breakdown effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Zener diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    T3 Diode as non-linear device 20Diode as non-linear device: circuit analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Linear piecewise (OFF region) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Equivalent resistance and equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Graphic picture of the diode linear piecewise in OFF region . . . . . . . . . . . . . . . . . . . . . . . . . . 21Linear piecewise (ON region) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Differential conductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    Differential resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21iD in forward region and small signal conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22Norton equivalent circuit (ON region) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22vD in forward region and small signal conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22Thevenin equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22Graphic picture of the diode linear piecewise in ON region . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Graphic picture of the diode linear piecewise in breakdown region . . . . . . . . . . . . . . . . . . . . . . . 24Zener voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Zener resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Zener diode equivalent circuit in breakdown region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Linear piecewise approximation (LPA) for diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25LPA for Zener diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Zener diode equivalent circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25How to choose the right region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

    A1 Diode applications 27Rectifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Bridge rectifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Rectifier with filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Amplitude-modulation detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Zener regulated power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Zener limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    prof. S. Rocchi, ing. M. Poli - Dipartimento di Ingegneria dellInformazione - Universit a degli Studi di Siena

  • 7/31/2019 Elettronica I Materiale Didattico

    4/144

    CONTENTS III

    T4 MOSFET device 30MOSFET as capacitor with capacitance depending on gate voltage . . . . . . . . . . . . . . . . . . . . . . 30MOSFET device structure when inversion layer is present . . . . . . . . . . . . . . . . . . . . . . . . . . . 32Charge in the inversion layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32Medium charge density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32Current iD when inversion layer is present . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32Validity field of (T4.5): triode region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

    Graphics of iD vs. vDS in triode region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34MOSFET as Voltage Controlled Resistor (VCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34MOSFET in saturation region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34Pinch-off point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Saturation region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36MOSFET is a voltage-controlled current generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36Channel modulation effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36Body effect (substrate bias effect) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36Extension to p-channel MOSFETs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37MOSFET-p triode current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37MOSFET-p saturation current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37MOSFET: limits of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    T5 Bipolar Junction Transistor (BJT) 38Bipolar Junction Transistor (BJT): physical structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38Conduction when B-E is forward biased and B-C is reverse biased (graphic picture) . . . . . . . . . . . . 38BJT current when vBE = 0 and vBC = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39iB current when vBE = 0 and vBC = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39iC current when vBE = 0 and vBC = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39iE current when vBE = 0 and vBC = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39BJT current when vBE = 0 and vBC = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39iB current when vBE = 0 and vBC = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39iE current when vBE = 0 and vBC = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39iC current when vBE = 0 and vBC = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40BJT current when vBE = 0 and vBC = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40iC current when vBE = 0 and vBC = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40iE current when vBE = 0 and vBC = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40iB current when vBE = 0 and vBC = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40BJT non-linear circuit model: transport model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40Forward Active Region (FAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41Reverse Active Region (RAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41BJT: Saturation Region (SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41BJT: Interdiction Region (IR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41Graphics pictures of iC vs. iB and vCE in FAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42Early effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43BJT physical limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

    T6 MOSFET and BJT as non-linear devices 44

    MOSFET: LPA with vBS = 0 in triode region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44MOSFET: LPA with vBS = 0 in saturation region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45Geometric interpretation of g0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45Geometric interpretation of gm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45MOSFET: LPA conditions in saturation region (small signal) . . . . . . . . . . . . . . . . . . . . . . . . . 46MOSFET equivalent circuit for id . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46MOSFET equivalent circuit when vBS = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46Evaluation of iD by means of circuit theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46MOSFET parasitic capacitances: triode region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46MOSFET parasitic capacitances: saturation region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47MOSFET linear equivalent circuit in high frequency condition . . . . . . . . . . . . . . . . . . . . . . . . . 48When can parasitic capacitors be neglected? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

    BJT: LPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49BJT equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49BJT: Evaluation of ic and ib by circuit theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49BJT: LPA conditions in FAR region (small signal) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    prof. S. Rocchi, ing. M. Poli - Dipartimento di Ingegneria dellInformazione - Universit a degli Studi di Siena

  • 7/31/2019 Elettronica I Materiale Didattico

    5/144

    CONTENTS IV

    N1 Basics of Electrical Theory 51Quadripoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51Differential input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51Single input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51Differential output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Single output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Single-input, single-output linear quadripoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

    Input and output impedances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Voltage, current and power gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Differential-input single-output linear quadripoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Common mode and differential mode voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Common mode and differential mode gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Common-mode rejection ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Differential mode and common mode input impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Unidirectional Linear Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55Voltage amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55Trans-impedance amplifier (current-to-voltage converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56Trans-conductance amplifier (voltage-to-current converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . 56Current amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Maximum voltage transfer to the input impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Maximum current transfer to the input impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Maximum voltage transfer to the load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58Maximum current transfer to the load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58Maximum voltage transfer from the input to the load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59Maximum current transfer from the input to the load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59The Miller theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60Miller theorem demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60Miller effect for capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

    A2 Single stage MOSFET and BJT configurations 62Common source (CS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62CS: biasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

    Sensitivity (definition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63CS: The design problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64CS: Small-signal (LPA) equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64CS: Norton equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65CS: equivalent conductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66CS: voltage amplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66CS: simplifying hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66CS: estimation of the maximum voltage amplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67Common drain (CD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67CD: biasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67CD: small-signal equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68CD: short-circuit id = ieq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68CD: output equivalent conductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68CD: voltage amplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69Common gate (CG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69CG: biasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69CG: small-signal equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70CG: short-circuit id = ieq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70CG: output equivalent conductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71CG: current amplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71CG: input conductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72CG: voltage amplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72MOSFET configurations summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72Common emitter (CE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73CE: Biasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

    CE: The design problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74CE: Small-signal circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

    prof. S. Rocchi, ing. M. Poli - Dipartimento di Ingegneria dellInformazione - Universit a degli Studi di Siena

  • 7/31/2019 Elettronica I Materiale Didattico

    6/144

    CONTENTS V

    E1 Esempio di progettazione di un amplificatore CS 76Specifiche di progetto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76Dati . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77Analisi preliminare del circuito . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77Circuito equivalente per lo studio della polarizzazione . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77Corrente erogata dai generatori di polarizzazione . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78Circuito equivalente di piccolo segnale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

    Guadagno di tensione . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79Conversione delle specifiche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79Verifica di centro banda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80Sommario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

    A3 Basic MOSFET-based configurations 82Diode-connected MOSFET connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82Current mirror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82Current mirrors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83Differential amplifier (DA): large differential signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83DA: iD1 = f1(vd)iD2 = f2(vd) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84DA: plots of iD1 and iD2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85DA: plots of vO1 and vO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

    DA: verification of the saturation region for M1 and M2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86DA: evaluation of vO1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86DA: biasing equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86DA: biasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86DA: small signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87DA: common-mode small signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87DA: differential-mode small signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88DA: complete vo1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88DA: CMRR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89DA: common source configuration with RS = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

    T7 Amplifiers frequency response 90

    Frequency response (definition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90Bode plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91Band-pass filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91Reduction of a third order system to first order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92Reduction of a n-th order system to first order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92Time-constant method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93Note on time-constant method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

    A4 Time-constant method application 94Time-constant method example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94Output short-circuit current of circuit in Fig. A4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94Output equivalent impedance of circuit in Fig. A4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95Norton equivalent of circuit in Fig. A4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

    Transfer function of circuit in Fig. A4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96Time-constant method applied to circuit in Fig. A4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96Evaluation of R01 by means of the time-constant method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96Evaluation of R02 by means of the time-constant method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97Evaluation of R12 by means of the time-constant method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97Evaluation of coefficient a1 by means of the time-constant method . . . . . . . . . . . . . . . . . . . . . . 98Evaluation of coefficient a2 by means of the time-constant method . . . . . . . . . . . . . . . . . . . . . . 98

    T8 Ideal voltage amplifier and feedback 99Basic configuration of actual operation amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99Ideal operation amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99Ideal operation amplifier: parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99Ideal operation amplifier: virtual short circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100Negative feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100Closed-loop gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

    prof. S. Rocchi, ing. M. Poli - Dipartimento di Ingegneria dellInformazione - Universit a degli Studi di Siena

  • 7/31/2019 Elettronica I Materiale Didattico

    7/144

    CONTENTS VI

    Negative feedback circuits based on the ideal operation amplifier . . . . . . . . . . . . . . . . . . . . . . . 101Feedback analysis of circuits based on the ideal operation amplifier . . . . . . . . . . . . . . . . . . . . . . 101Closed-loop ideal gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101Sensitivity of AV0 with respect to A0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101Sensitivity of AV0 with respect to B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101Noise suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102Feedback with non-linear amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

    Bandwidth extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103Gain-bandwidth product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103Transition angular frequency and gain-bandwidth product . . . . . . . . . . . . . . . . . . . . . . . . . . . 103The bifilar model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104Voltage (shunt) sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104Current (series) sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105Voltage (series) mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105Current (shunt) mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

    A5 Ideal voltage amplifier and feedback applications 106Voltage follower based on OA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106Non-inverting amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107Inverting amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

    Inverting adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108Subtractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

    T9 Stability analysis of feedback amplifiers 109Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109Single-pole amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109Two-pole amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109Amplifiers with at least three poles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110The loop gain modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110The loop gain phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110Characteristic equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110Loop gain phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

    Loop gain modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111Gain and phase margins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112System with phase margin equal to 90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112System with phase margin equal to 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113System with phase margin equal to 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113What is the best phase margin? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114Compensation by reduction of the loop gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114Narrow-banding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115Pole dominant compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116Miller compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117Comparing the effectiveness of the pole dominant compensantion and the Miller compensantion . . . . . . 1 1 9

    E2 Compensation examples 121Compensation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121Bode plots for the original and compensated systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122Compensation example on a simple 3-stage amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122Miller compensation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

    T10 Techniques used to analyze feedback amplifiers 125Rosenstarks formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125Return ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125Asymptotic gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126Direct gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126Blackmans formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

    prof. S. Rocchi, ing. M. Poli - Dipartimento di Ingegneria dellInformazione - Universit a degli Studi di Siena

  • 7/31/2019 Elettronica I Materiale Didattico

    8/144

    CONTENTS VII

    E3 Examples of the Rosenstark and Blackman formulas 127Return ratio example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127Asymptotic gain example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127Direct gain example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128Rosenstarks formula example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128Blackmans formula example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128Blackmans formula example: evaluation of Tsc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

    Blackmans formula example: evaluation of Toc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129Blackmans formula example: evaluation of R0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129Blackmans formula example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

    E4 Esercizi su amplificatori, retroazione e compensazione 130Esercizio A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130Esercizio B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130Esercizio C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131Esercizio D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131Esercizio E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131Esercizio F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132Esercizio G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

    prof. S. Rocchi, ing. M. Poli - Dipartimento di Ingegneria dellInformazione - Universit a degli Studi di Siena

  • 7/31/2019 Elettronica I Materiale Didattico

    9/144

    Teaching guide: basic electronicsAnno 2007-08

    Introduzione

    Il materiale di studio e sostanzialmente un ipertesto organizzato in lavagne dovela parte descrittiva e essenziale, sono stati introdotti alcuni commenti raggiungibiliattraverso link.Fa parte del materiale una versione stampabile dellipertesto (in formato PDF) incui i commenti sono evidenti.Nel quadro 1 e riportata una sintesi del percorso didattico organizzato secondo unfilo logico in cui le singole parti sono numerate e richiamate con il corrispondentenumero scritto sopra e sotto la freccia quando da queste occorre prelevare concetti enozioni utili alla comprensione della parte considerata. Per esempio per comprenderela parte 4 sulla struttura e funzionamento del MOSFET occorre conoscere la fisicadei semiconduttori trattata nella parte 2.Si differenziano le parti applicative (app*,*) in cui sono riportate tipologie di circuitiper riflettere svolgendo esercizi.Lipertesto e organizzato secondo lo stesso filo logico, sopra le frecce che sisusseguono lungo il percorso sono riportate le formule e/o le figure utili per compren-

    dere i diversi passaggi. Le definizioni, le dimostrazioni iniziano con un quadratinonero e terminano con le definizioni, le tesi, i commenti finali evidenziati con unrettangolo di contorno.

    Lo studente, a lezione, dovrebbe avere una stampa delle lavagne, in cui volu-tamente sono lasciati spazi bianchi per commenti. Comunque si suggerisce diassociare ad ogni lavagna una o piu pagine di commenti desunti dalla lezione deldocente o da integrazioni e riflessioni in fase di studio. In questo modo lo studentepotra costruire un proprio libro per Elettronica I.

    Ringraziamenti

    La prima versione dellipertesto di Elettronica I (elettronicaI 2007.*), sviluppato sec-ondo il filo logico descritto, e frutto di incontri e letture di documenti sugli strumentidella Ricerca Metodologica Disciplinare sviluppati dal Prof. Filippo Ciampolini (Uni-versita di Bologna) al quale sono rivolti i nostri piu sentiti ringraziamenti.

  • 7/31/2019 Elettronica I Materiale Didattico

    10/144

    Istruzioni per lutilizzo dellipertesto

    Link aequazioni,

    figure,lavagne, partie riferimentibibliografici

    Il materiale di studio e consultabile come un qualsiasi ipertesto. Le equazioni, lefigure, i riferimenti a lavagne, i riferimenti a parti e i riferimenti bibliografici sono linkper consentire una navigazione dinamica e interattiva. Il seguente simbolo rappresentaun link a lavagna.

    Dopo aver fatto click su un link e sufficiente premere il tasto BACKSPACE(versione HTML) o il pulsante INDIETRO del browser (versione HTML) o iltasto VISTA PRECEDENTE (versione PDF) per tornare alla pagina che si stavaconsultando prima della pressione sul link.

  • 7/31/2019 Elettronica I Materiale Didattico

    11/144

    Istruzioni per lutilizzo dellipertesto 3

    Inoltre per alcune lavagne sono presenti dei commenti in piu lingue identificati dabandiere in fondo alle lavagne stesse (si guardi la figura sottostante). Basta fare clicksulla bandiera della lingua voluta per far apparire o scomparire il commento.

    Nella versione PDF i commenti iniziano con il simbolo

    e sono scritti in corsivo.

    NOTA

    A causa delle nuove politiche di protezione di Internet Explorer, gli studentiche usano tale browser devono autorizzare la visualizzazione del contenuto bloccato

    facendo click sulla barra gialla che compare in alto alla pagina e selezionandoConsenti contenuto bloccato... (si guardi limmagine sottostante).

    prof. S. Rocchi, ing. M. Poli - Dipartimento di Ingegneria dellInformazione - Universit a degli Studi di Siena

  • 7/31/2019 Elettronica I Materiale Didattico

    12/144

    Summary

    Part T1:Notes on

    Electricity

    E (Electric Field),V (Electrostatic Potential),J (Current Density), (Conductivity), (Resistivity).

    Part T2: Se-miconductor

    physics

    T1 Band Theory, Conductivity of Doped Semiconductors, p-n Junction, Diode,Zener Diode.

    Part T3:Diode as

    non-lineardevice

    T2

    Diode Equation Approximation, Linear Circuit Models of two terminals device.

    Analysis methodology of circuits with diodes.

    Part A1:Diode

    applications

    T3 Diode applications.

    Part T4:MOSFET

    device

    T2 MOSFET as capacitor, Ohmic and Saturation Regions, Modulation channeleffect, Body effect.

    Part T5:Bipolar

    JunctionTransistor

    (BJT)

    T2T4

    Bipolar Junction Transistor (BJT), Forward and Reverse Active Regions, Satu-ration Region... Base width modulation effect parasitic capacitors. Comparisonwith MOSFET.

  • 7/31/2019 Elettronica I Materiale Didattico

    13/144

    Summary 5

    Part T6:MOSFET

    and BJT asnon-linear

    devices

    T2,T4T5

    MOSFET equations approximations, Linear Circuit Models, Analysis method-ology of circuits with MOSFET (CS configuration as example of biasing circuitand small signal equivalent circuits). Parasitic capacitors. BJT equationsapproximations, Linear Circuit Models, Analysis methodology of circuits withBJT (CE configuration as example of biasing circuit and small signal equivalentcircuits).

    Part N1:Basics ofElectrical

    Theory

    Notes on two-port networks (Quadripoles). The Miller theorem.

    Part A2:Single stage

    MOSFETand BJT

    configura-tions

    T6N1

    MOSFET: CS, CD and CG configurations: voltage gain, current gain, inputand output conductances. BJT: CE configuration: voltage gain, current gain,input and output conductances.

    Part E1:Esempio di

    proget-

    tazione di unamplificatoreCS

    T6A2

    Esempio di progettazione con MOSFET.

    Part A3:Basic

    MOSFET-based

    configura-

    tions

    T6,A2N1

    MOSFET: diode configuration, current mirror, differential amplifier.

    Part T7:Amplifiersfrequencyresponse

    T4T5

    Bandwidth, pole-dominant approximation, time-constant method.

    prof. S. Rocchi, ing. M. Poli - Dipartimento di Ingegneria dellInformazione - Universit a degli Studi di Siena

  • 7/31/2019 Elettronica I Materiale Didattico

    14/144

  • 7/31/2019 Elettronica I Materiale Didattico

    15/144

    Summary 7

    Part E3:Examples of

    theRosenstark

    andBlackman

    formulas

    T10 Examples of the Rosenstark and Blackman formulas.

    Part E4:Esercizi su

    amplificatori,retroazione e

    compen-sazione

    T7,T8T9,T10

    Esercizi su amplificatori, retroazione e compensazione.

    prof. S. Rocchi, ing. M. Poli - Dipartimento di Ingegneria dellInformazione - Universit a degli Studi di Siena

  • 7/31/2019 Elettronica I Materiale Didattico

    16/144

    Part T1

    Notes on ElectricitySee [?]

    Electric fieldE

    E = limQ0

    F

    Q

    F

    Q

    P

    (Static conditions)

    The electric field vector E in a point is the electric force per unit charge exerted ona probe placed in the same point and whose charge tend to 0.

    Flux ofE(T1.1) Sclosed =

    Sclosed

    E n dS

    Gauss law invacuum

    Sclosed

    E

    =

    Q

    0

    experimentallyassumed

    S

    E

    n

    Q2

    Q1

    Q3

    Q5

    Q4 Q6

    Q7

    Figure T1.1

    where the electrical permittivity in vacuum (0) is equal to 0 = 8.85412 1012

    Fm

    Example (Fig. T1.1)Sclosed

    E n S = Sclosed

    En S =Q

    1+ Q

    2+ Q

    3+ Q

    50

  • 7/31/2019 Elettronica I Materiale Didattico

    17/144

    Notes on Electricity 9

    Meaning of 0

    Joint constant between dimensions of Sclosed

    E

    and Q

    (T1.1) [Force] [Surface][Charge]

    =[Charge]

    [0] [0] =

    C2

    [N m2]

    permittivity

    for homogeneous and infinite (i.e., unbounded) media

    (T1.2) Sclosed

    E

    = Q Sclosed

    E

    =Q

    where = r 0 r > 1

    Electricdisplacement

    field (orelectric fluxdensity) D

    In most ordinary materials D = E

    Electrostaticpotential V

    (T1.3) VP = WPO

    E

    where WPO

    E

    is the work (the amount of energy) transferred by E along an arbitrary

    path connecting points P and O.

    Electrostatic

    potentialproperty (I)

    WPO

    + WOP

    = 0

    WPO

    = WOP

    VPO = VOPO

    P

    Figure T1.2

    Electrostatic

    potentialproperty (II)

    (T1.4) WPP

    = VP O + VOP

    (T1.4) WPP

    = VP O VPO (T1.5)

    O

    P

    P

    b

    c

    a

    Figure T1.3

    prof. S. Rocchi, ing. M. Poli - Dipartimento di Ingegneria dellInformazione - Universit a degli Studi di Siena

  • 7/31/2019 Elettronica I Materiale Didattico

    18/144

    Notes on Electricity 10

    E V on xdimension

    (T1.5) WPP = V (V + V)(T1.3) WPP = Ex x

    WPP = Exx

    Ex = V

    x

    (T1.6) Ex = limx0

    Vx

    = d Vd x

    V

    P xP

    V+V

    E

    Ex

    Figure T1.4

    Potential

    energy U

    U = qV

    if q = qel = 1.6 1019 C

    q 1 V = 1 eV = 1.6 1019 J(1 eV is a very small amount of energy)

    Energyconservation

    law

    W = U + EC where EC =1

    2mv2

    Example:potential

    energy barrier

    (T1.6) V (x) = E x + CONSTU(x) = q V (x)U(0) = 0

    U(0) +1

    2mv20 = W

    x0 : vx0 = 0

    U(x0) + 0 = W

    Ec must be positive so U(x) is a potentialenergy barrier for electrons; in the figure elec-trons cannot be at a distance greater than x0from electrode P.

    x0

    d

    P P

    .

    E

    V

    x

    V (x)

    x

    U(x)

    W

    x0

    P

    EC

    Figure T1.5

    Metalconductivity

    schematicpicture

    + + + + +

    + + + + +

    Bound iones

    Free electrons

    + + + + +

    + + + + +

    ..

    .

    Figure T1.6

    prof. S. Rocchi, ing. M. Poli - Dipartimento di Ingegneria dellInformazione - Universit a degli Studi di Siena

  • 7/31/2019 Elettronica I Materiale Didattico

    19/144

  • 7/31/2019 Elettronica I Materiale Didattico

    20/144

    Part T2

    Semiconductor physicsSee [?]

    Band Theory

    of Solids

    Plot of the available energies for electrons in the materials. The available energylevels form bands instead of discrete energies.

    Conduction

    For the conduction process is crucial whether or not electrons are in the con-duction band and the energy gap amplitude (Eg) between the valence band and theconduction band.

    Insulators, se-miconductors

    andconductors

    Valence band

    Conduction band

    Eg 5 eV

    Insulators

    Valence band

    Conduction band

    Eg 1 eV

    Semiconductors

    Valence band

    Conduction band

    Conductors.

    .

    Eg = 4 eV is the energy threshold between insulators and semiconductors.

  • 7/31/2019 Elettronica I Materiale Didattico

    21/144

    Semiconductor physics 13

    Fermi-Diracstatistics

    Conduction band and Valence band

    Although the number of states in the bands is actually infinite, in an unchargedmaterial the number of electrons is equal to the number of protons in the atoms, i.e.not all the possible states are occupied by electrons at any time.The probability of a given energy level to be occupied by an electron is given by:

    (T2.1) f(E) =1

    1 + eEEF

    kT

    f(E) =1

    1 + e

    E

    EF1

    EFkT

    0 1 2 3 4 5 6

    0

    1

    2

    3

    4

    5

    6

    0 1 2 3 4 5 6

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2 EF/kT = 100

    EF/kT = 0.1

    EF/kT = 1

    E/EF

    f(E)

    where k is the Boltzmann constant (k = 1.380 1023 J/K), T is the temper-ature in Kelvin, EF is the Fermi energy.

    Electricalconductivity

    Electrons must move between states to conduct an electrical current, so due tothe Pauli exclusion principle full bands do not contribute to the electrical conductivity.

    Semiconduc-tors

    (T2.1)

    E

    EF

    Valenceband

    Conductionband

    T = 0 K

    f(E)

    E

    EF

    Valenceband

    Conductionband

    Medium temp.

    f(E)

    E

    EF

    Valenceband

    Conductionband

    High temp.

    f(E)

    The electrons population in a given energy state depends on the Fermi function andon the electrons density in that state. In the gap there are no electrons because thedensity state is zero. At T = 0 K and for energies higher than the Fermi level, theFermi function is zero (see figure) and so there are no electrons in the conductionband even though many free states are available.

    prof. S. Rocchi, ing. M. Poli - Dipartimento di Ingegneria dellInformazione - Universit a degli Studi di Siena

  • 7/31/2019 Elettronica I Materiale Didattico

    22/144

    Semiconductor physics 14

    Semiconduc-tors current

    pictures

    If a voltage is applied to the semiconductor, for T > 0 K we have:

    Si Si Si SiSi

    Si Si

    Electrons current

    Holes current

    Si SiSi

    Si Si Si SiSi

    e hole+

    .

    .

    +

    V.B.+ + + + + +

    holes

    C.B.

    electrons

    .

    .

    Doped semi-conductors

    .

    .

    n-type

    P

    Si

    SiSi

    Si

    donor impuritycontributes to free

    electrons

    p-type

    B

    Si

    SiSi

    Si

    acceptor impuritycreates holes

    F L

    Valenceband

    Conductionband

    F LValence

    band

    Conductionband

    prof. S. Rocchi, ing. M. Poli - Dipartimento di Ingegneria dellInformazione - Universit a degli Studi di Siena

  • 7/31/2019 Elettronica I Materiale Didattico

    23/144

  • 7/31/2019 Elettronica I Materiale Didattico

    24/144

  • 7/31/2019 Elettronica I Materiale Didattico

    25/144

  • 7/31/2019 Elettronica I Materiale Didattico

    26/144

    Semiconductor physics 18

    Diodedynamiceffects:

    diffusioncapacitance

    Forward biasing: the number of electrons crossing the junction depends on theforward voltage and the time before an electron recombines with a hole is finite,conseguently a capacitive effect arises.

    CD =Q

    vQ = iDT

    where T is the time before an electron recombines with a hole.

    CD =

    TiDv = T

    TSevDVT

    VT

    (T2.6) CD TiDVT

    Actual diodemaximum

    limits

    Maximum reverse voltage: vbreakdown (reverse biasing)

    Maximum power dissipation: PD = vD iD (forward biasing)

    Breakdowneffect

    Breakdown effect is due to two different phenomena:

    Zener breakdown occurs predominantly with heavily doped junction regions and a

    low reverse voltage (< 6 V). The high E removes electrons that can pass throughthe junction [?].

    Avalanche breakdown occurs at high reverse voltage ( 6 V): free electronsnear the junction acquire high kinetic energy (being in a uniform acceleration field)and so a high speed. As these high-speed electrons move through the material theyinevitably strike atoms knocking an electron free from it. Both electrons are thenaccelerated by the electric field and strike other atoms knocking additional electronsfree and so on. In this way the reverse current rapidly increases [ ?].

    Reverse bias

    .

    .

    - +

    p n+

    +

    -

    -

    +-+

    E

    prof. S. Rocchi, ing. M. Poli - Dipartimento di Ingegneria dellInformazione - Universit a degli Studi di Siena

  • 7/31/2019 Elettronica I Materiale Didattico

    27/144

    Semiconductor physics 19

    Zener diode

    From a technological point of view, the Zener diodes are built so that thebreakdown effect is possible at a sufficiently low reverse voltage thus preventing theovercoming of the maximum PD.

    .

    .

    iD [A]

    vD [V]

    forward biasreverse bias

    breakdownregion

    -+

    iD

    vD

    prof. S. Rocchi, ing. M. Poli - Dipartimento di Ingegneria dellInformazione - Universit a degli Studi di Siena

  • 7/31/2019 Elettronica I Materiale Didattico

    28/144

    Part T3

    Diode as non-linear device

    Diode asnon-linear

    device: circuitanalysis

    The diode equation (T2.4) can be expanded in Taylor series, linear circuit lawsare usable when the series can be limited to the first order:

    (T2.4) iD = iD0 +d iDd vD

    vD=VD0

    (vD VD0 ) +1

    2

    d2 iDd v2D

    vD=VD0

    (vD VD0 )2 +

    Linearpiecewise

    (OFF region)

    VD0 = V

    D0= 0V vD VD0 = vD = vd = vD

    iD = 0 +

    a

    ISVT vD +b

    12 ISV2T v2Dif a b (i.e., a 10 b IS

    VTvD 10

    2

    ISV2T

    v2D vD VT5

    = 5mV) then

    (T3.1) iD ISVT

    vD

    Equivalentresistance and

    equivalentcircuit

    (T3.1) rOF F = vDiD

    =VTIS

    rOF FiD

    vD

  • 7/31/2019 Elettronica I Materiale Didattico

    29/144

  • 7/31/2019 Elettronica I Materiale Didattico

    30/144

    Diode as non-linear device 22

    iD in forwardregion and

    small signalconditions

    (T3.2) vd = vD VD0(T3.3) iD = ID0 +

    ID0VT

    vD VD0

    iD = ID0

    1 V

    D0

    VT + g vD

    Nortonequivalent

    circuit (ONregion)

    Ieq = ID0

    1 V

    D0

    VT

    .

    .

    1

    gvDIeq

    iD

    vD in forwardregion and

    small signalconditions

    T hevenintheorem

    Veq = Ieqg

    = ID0

    1 V

    D0

    VT

    1

    g

    Veq = ID0

    VT VD0VT

    VTID0

    = VD0 VT

    (T3.6) vD = Veq +iDg

    Theveninequivalent

    circuit

    (T3.6)

    .

    .

    +

    Veq

    1/g

    iD

    vD

    prof. S. Rocchi, ing. M. Poli - Dipartimento di Ingegneria dellInformazione - Universit a degli Studi di Siena

  • 7/31/2019 Elettronica I Materiale Didattico

    31/144

    Diode as non-linear device 23

    Graphicpicture of the

    diode linearpiecewise inON region

    .

    .

    A V

    d0; I

    d0B (V ; 0)

    2103

    0.5103

    1103

    A

    B

    0.62 0.65

    iD [A]

    vD [V]

    iD (A) vD [V]

    5 104 0.621

    103 0.63

    2 103 0.655 103 0.67

    Figure T3.2

    (T3.7) tg iDvD

    iDvD

    VD0

    = g

    (T3.6),Fig. T3.2 V = Veq = VD0 VT (T3.8)

    ID0 =2 103Ag=0.08S V = 0.62Vr=1/g = 12.5

    prof. S. Rocchi, ing. M. Poli - Dipartimento di Ingegneria dellInformazione - Universit a degli Studi di Siena

  • 7/31/2019 Elettronica I Materiale Didattico

    32/144

    Diode as non-linear device 24

    Graphicpicture of the

    diode linearpiecewise inbreakdown

    region

    See Breakdown effect ( pag. 18)

    .

    .

    ID0

    iD [A]

    vD [V]

    VZtg

    Figure T3.3

    (T3.7) without considering the analytic expression of iD in breakdown zone, theangular coefficient of the geometric tangent in ID0 can be outlined; tg = gZ =

    1

    rZ(T3.6)

    Veq = vD when iD

    0

    Zener voltage graphically Veq = VZ

    Zenerresistance

    (T3.5),(T3.7) rZ = 1tg

    Zener diodeequivalent

    circuit inbreakdown

    region

    (T3.5),(T3.6) vD = VZ + iDrZ (T3.9)

    actually iD is negative

    .

    .

    +

    VZ

    rZ

    iD

    vD

    prof. S. Rocchi, ing. M. Poli - Dipartimento di Ingegneria dellInformazione - Universit a degli Studi di Siena

  • 7/31/2019 Elettronica I Materiale Didattico

    33/144

    Diode as non-linear device 25

    Linearpiecewise ap-proximation

    (LPA) fordiodes

    Generally the three linear piecewise are extended for larger values of vD (largesignal conditions)

    region condition

    (T3.1).

    .

    I OFF vD = rOF FiD; iD 0A for Vbr. < vD < V (T3.10)

    (T3.5),(T3.7)

    (T3.6) .

    .

    II ON vD = V + rONiD for vD > V (T3.11)

    LPA for Zenerdiodes

    region condition

    (T3.10).

    .

    I OFF vD = rOF FiD; iD 0A for VZ < vD < V

    (T3.11).

    .

    II ON vD = V + rONiD for vD > V

    (T3.8)

    .

    .

    III Zener vD =

    VZ + rZ iD for vD

    VZ (T3.12)

    Zener diodeequivalent

    circuits

    iD

    vD

    region condition

    .

    .

    I OFF

    rOF FiD

    vD

    VZ vD < V

    .

    .

    II ON

    ViD rON

    vD

    vD V

    .

    .

    III Zener

    iD

    vD

    vD VZ

    VZiD rZ

    iZ

    vD

    prof. S. Rocchi, ing. M. Poli - Dipartimento di Ingegneria dellInformazione - Universit a degli Studi di Siena

  • 7/31/2019 Elettronica I Materiale Didattico

    34/144

    Diode as non-linear device 26

    How tochoose the

    right region

    .

    .

    BEGIN

    Choose a

    region

    simpler, but it

    could be time

    consuming

    randomly

    Slitly more

    complex because

    a preliminary

    circuit analysis is

    required, but less

    time consuming

    by means of circuit

    considerations

    Insert in the circuit

    the equivalent

    circuit associated

    with the choosenregion

    Solve the linear

    circuit obtained after

    substitution

    Are constraints of

    the choosen region

    verified?

    NO

    The right operating

    region was choosen

    YES

    END

    prof. S. Rocchi, ing. M. Poli - Dipartimento di Ingegneria dellInformazione - Universit a degli Studi di Siena

  • 7/31/2019 Elettronica I Materiale Didattico

    35/144

    Part A1

    Diode applications

    Rectifier vI vO

    vI

    t

    vO

    t

    Bridge

    rectifier

    vI

    vO

    vI

    t

    vOt

  • 7/31/2019 Elettronica I Materiale Didattico

    36/144

    Diode applications 28

    Rectifier withfilter

    vI vO

    vI

    t

    vOt

    Amplitude-modulation

    detector

    The circuit schematic is the same of the rectifier with filter but with a differentRC time constant: the RC time constant must be higher compared with the periodof the carrier, and it must be lower compared to the period of the modulated signal.

    Zenerregulated

    power supply

    prof. S. Rocchi, ing. M. Poli - Dipartimento di Ingegneria dellInformazione - Universit a degli Studi di Siena

  • 7/31/2019 Elettronica I Materiale Didattico

    37/144

    Diode applications 29

    Zener limiter

    vI vO

    vI

    t

    vOtV

    VZ

    vI vO

    vI

    t

    vOt

    (VZ+V)

    VZ+V

    prof. S. Rocchi, ing. M. Poli - Dipartimento di Ingegneria dellInformazione - Universit a degli Studi di Siena

  • 7/31/2019 Elettronica I Materiale Didattico

    38/144

    Part T4

    MOSFET device

    MOSFET ascapacitor with

    capacitancedepending on

    gate voltage

    vG

    GATE

    OXIDE SiO2

    P-SUBSTRATE (BODY)

    SUBSTRATEMETAL CONTACT

    tox

    L

    W

    L

    WGATE

    MAP VIEW

    1 vG < 0

    holes move towards the surface that becomes a zone where electrons can move.

    Ceq1 =oxA

    tox

    tox is the SiO2 thicknessox is the SiO2 electrical constantA = L W is the gate area

    vG

    GATE

    OXIDE SiO2

    P-SUBSTRATE (BODY)

    SUBSTRATEMETAL CONTACT

    tox

    L

    W

    2 0 < vG < Vth (Vth 1V)

    Near the surface a depletion charge zone is created (negative ions). In this regionelectrons cant move.

    Ceq2 =oxA

    tox + tdp vG

    GATE

    OXIDE SiO2

    P-SUBSTRATE (BODY)

    SUBSTRATEMETAL CONTACT

    tox

    L

    W

    + + + + +

    tdp

  • 7/31/2019 Elettronica I Materiale Didattico

    39/144

    MOSFET device 31

    3 vG Vth

    INVERSION LAYERFree electrons in the p-substrate move towards the surface under the oxide.

    Ceq3 =oxA

    tox= Ceq1 = Cox

    vG

    GATE

    OXIDE SiO2

    P-SUBSTRATE (BODY)

    SUBSTRATEMETAL CONTACT

    tox

    L

    W

    ++++++++++

    til (inversion zone)

    Figure T4.1

    (T4.1) QIN V = Cox (vG Vth) = Cox (vOX Vth) (vG = vOX )

    Ceq

    vG

    Cox

    Ceq2

    VT

    prof. S. Rocchi, ing. M. Poli - Dipartimento di Ingegneria dellInformazione - Universit a degli Studi di Siena

  • 7/31/2019 Elettronica I Materiale Didattico

    40/144

    MOSFET device 32

    MOSFETdevice

    structurewhen

    inversion layeris present

    x

    i(x)

    SOURCEn+ DRAINn+

    SiS

    DiD

    GATE

    B

    DEPLETION ZONE

    BODY

    P-SUBSTRATE

    vGS+

    vDS+

    vBS

    +

    Figure T4.2

    A position on the inversion layer is characterizedby v(x) and i(x) where v(0) = v(S) 0, further-more iD = iS .

    G B

    D

    S

    G

    D

    S

    Symbols

    (T2.4)vBS : n+ source - p substrate and n+ drain - p substrate diodes are reversebiased.

    Charge in theinversion layer

    (T4.1)Fig. T4.2

    Q(x) = W L oxtox

    (vOX (x) VTn) = W L Cox (vOX (x) VTn) (T4.2)

    where Cox =oxtox

    F

    m2

    Mediumcharge density

    Fig. T4.1 (T4.3) v = QW L til

    where til is the thickness of the inversion zone (Fig. T4.1).

    Current iDwhen

    inversion layeris present

    i(x) = J(x) W til

    where J(x) is the current density.

    (T1.9)(T4.3)

    i(x) =Q

    W L tilvd W til =

    Q(x)vdL

    (T4.2) i(x) = W L oxtox

    (vOX (x) VTn)vdL

    prof. S. Rocchi, ing. M. Poli - Dipartimento di Ingegneria dellInformazione - Universit a degli Studi di Siena

  • 7/31/2019 Elettronica I Materiale Didattico

    41/144

    MOSFET device 33

    (T1.7) i(x) = W oxtox

    (vOX (x) VTn) (n E(x))

    where n is the electrons (n carriers) mobility.

    (T1.6) i(x) = W oxtox

    Cox(vOX (x) VTn) n

    d v(x)

    d x

    with

    (T4.4) vOX (x) = vGS v(x) v(x) = vGS vOX (x)

    (T4.4) i(x) = W Cox (vGS v(x) VTn) nd v(x)

    d x

    i(x)d x = n W Cox (vGS v(x) VTn) d v(x)

    by integrating x from 0 to the channel length L and v(x) from 0 to vDS

    L

    0

    i(x)d x =

    n W C

    ox vDS

    0

    [(vGS

    VTn)

    v(x)] d v(x)

    iD L = n W Cox

    (vGS VTn) vDS

    v2DS2

    being i(x) = iD = constant

    (T4.5) iD = kn

    vGS VTn

    vDS2

    vDS

    with kn = n Cox and kn = k

    n

    W

    L. [kn] =

    A

    V2kn depends on the technology characteristic.

    Validity fieldof (T4.5):

    triode region

    (T4.4) vOX (x) VTnvOX (x) = vGS v(x) VTn

    v(x) as its maximum for x = L where v(x) = vDS

    vGS vDS VTn

    (T4.6) vDS vGS VTn

    prof. S. Rocchi, ing. M. Poli - Dipartimento di Ingegneria dellInformazione - Universit a degli Studi di Siena

  • 7/31/2019 Elettronica I Materiale Didattico

    42/144

    MOSFET device 34

    Graphics ofiD vs. vDS intriode region

    (T4.5) iD = 0 for

    vDS = 0vDS = 2 (vGS VTn)

    d iDd vDS

    = kn [(vGS VTn) vDS ] = 0 vDS = vGS VTn maximum

    0 1 2 3 4 5 6

    0

    1

    2

    3

    4

    5

    6

    vGS

    vDS

    iD/kn

    (T4.6) vGS VTn = vDSiD =

    kn2

    (vGS VTn)2 =kn2

    v2DS

    MOSFET asVoltage

    ControlledResistor(VCR)

    for vDS vGS VTn vDS vGS VTn

    10

    (T4.5) iD kn (vGS VTn) vDSvDSiD

    =1

    kn (vGS VTn)= ReqV CR =

    1

    iD

    vDS vDS=0

    MOSFET insaturation

    region

    Fig. T4.3

    for vDS vGS VTn when vDS = vGS VTn(T4.4)

    vOX (0) = vGSvOX (L) = vGS vDS = VTn

    and

    (T4.2) Q(x)|x=L = 0

    therefore for x = L the inversion layer thickness is 0 and the current reachesits maximum value.

    prof. S. Rocchi, ing. M. Poli - Dipartimento di Ingegneria dellInformazione - Universit a degli Studi di Siena

  • 7/31/2019 Elettronica I Materiale Didattico

    43/144

    MOSFET device 35

    POFF

    SOURCE

    n+DRAIN

    n+

    SiS

    DiD

    GATE

    B

    DEPLETION ZONE

    BODY

    P-SUBSTRATE

    vGS+

    vDS+

    vBS

    +

    Figure T4.3

    for vDS > vGS VTn Find x : vOX (x) = VTn(T4.4) vOX (x) = vGS v(x) = VTn v(x) = vGS VTn < vDS

    and

    (T4.2) Q(x)|x=L = 0

    therefore for x = L the inversion layer thickness is 0 and the current reachesits maximum value.

    POFF

    SOURCE

    n+DRAIN

    n+

    SiS

    DiD

    GATE

    B

    DEPLETION ZONE

    BODY

    P-SUBSTRATE

    vGS +

    vDS+

    vBS

    +

    Figure T4.4

    Pinch-offpoint

    for x = POF F the inversion layer is depleted, but electrons in POF F can stillreach the drain due the electrical field created by the voltagevDS VPOFF = vDS (vGS VTn).

    id does not decrease and therefore the current reaches a saturation value.

    prof. S. Rocchi, ing. M. Poli - Dipartimento di Ingegneria dellInformazione - Universit a degli Studi di Siena

  • 7/31/2019 Elettronica I Materiale Didattico

    44/144

    MOSFET device 36

    Saturationregion

    (T4.6) iD = kn2

    (vGS VTn)2 (T4.7)

    vGSVTn

    iD

    Figure T4.5

    MOSFET is avoltage-

    controlled

    currentgenerator

    0 1 2 3 4 5 6

    0

    1

    2

    3

    4

    5

    6

    vGS

    vDS

    iD/kn

    Figure T4.6

    Channelmodulation

    effect

    Actually for vDS vGS VTn (saturation region) the inversion layer length isLil L(T4.7)

    iD =kn

    2

    W

    Lil (vGS VTn)2

    with Lil 1vDS

    L = Lil + L(vDS )(T4.7) iD = k

    n

    2

    W

    L L(vDS ) (vGS VTn)2

    (T4.8) iD kn

    2

    W

    L kn

    (vGS VTn)2 (1 + vDS ) = kn (vGS VTn)2 (1 + vDS )

    103 < < 101 V1

    Body effect(substratebias effect)

    The substrate tension should be kept as lower as possible to avoid the conduction ofdiodes B-S and B-D. When vBS = 0, the width of the depletion layer and thereforealso the voltage across the oxide are modified due to a change in the charge of thedepletion region. This results in a different threshold voltage

    (T4.9) VTn = VT0 +

    vSB + 2F

    2F

    being F a physical parameter such that 2F = 0.6 V

    = 0.4 V1/2 a technology related parameter andVT0 = Vth when vBS = 0.

    prof. S. Rocchi, ing. M. Poli - Dipartimento di Ingegneria dellInformazione - Universit a degli Studi di Siena

  • 7/31/2019 Elettronica I Materiale Didattico

    45/144

    MOSFET device 37

    Extension top-channel

    MOSFETs

    (T4.5),(T4.8)(T4.9)

    SOURCE

    p+DRAIN

    p+

    SiS

    DiD

    GATE

    B

    DEPLETION ZONE

    BODY

    N-SUBSTRATE

    vGS+

    vDS+

    vBS

    +

    Figure T4.7

    G B

    D

    S

    G

    D

    SB

    Symbols

    inversion layer is present when vGS < 0 V

    holes (positive charges) produce a current iD < 0 and move from the source

    when vGS < 0 V

    Regions S-B and D-B are diodes

    substrate (body) must not conduct then vBS > 0 V (the substrate tensionshould be kept as higher as possible to avoid the conduction of diodes S-B and S-D).

    VTp < 0 V

    MOSFET-ptriode current

    (T4.10) iSD = kp

    vSG

    VTp vSD2

    vSD

    MOSFET-psaturation

    current

    (T4.11) iSD =kp2

    vSG

    VTp 2 (1 + vSD )

    MOSFET:limits of

    operation

    Due to the MOSFET physical structure, it mainly has the following limits: Gate oxide breakdown (maximum VGS voltage): the gate oxide thickness (tox) isvery thin (in the order of 100 nm or even less for the technologies), so it can onlysustain a limited voltage. Exceeding this limit can result in destruction of the deviceor in the reduction of its lifetime.

    Maximum VDS voltage: the MOSFET device has a maximum specified drain tosource voltage, beyond which breakdown may occur. Exceeding the breakdownvoltage causes the device to turn on, potentially damaging itself and other circuitelements due to excessive power dissipation.

    prof. S. Rocchi, ing. M. Poli - Dipartimento di Ingegneria dellInformazione - Universit a degli Studi di Siena

  • 7/31/2019 Elettronica I Materiale Didattico

    46/144

    Part T5

    Bipolar Junction Transistor (BJT)

    BipolarJunction

    Transistor(BJT):

    physicalstructure

    iC iE

    iB

    C E

    B

    n n+p

    C E

    B B-EB-C

    C EB

    n

    n+

    p

    Si

    tB

    n - p - nE - B - C

    tB=0.1100m

    Figure T5.1

    A BJT cannot be considered as two back-to-back diodes due to the thin thickness ofthe base region (tB ).

    Conductionwhen B-E is

    forward

    biased andB-C is reverse

    biased(graphicpicture)

    C EB

    Energy

    x

    B - C B - E

    Figure T5.2

    vBEvCB

    C E

    B

    n n+p

    C-B-E: energy bands when the BEjunction is forward biased and the BCjunction is reverse biased.

    The forward bias on the BE junc-tion causes electrons to move towardthe base. Some of the electrons willcombine with holes. However, sincethe base region length (tB) is very thin

    and usually smaller than the electronsdiffusion length (mean length withinwhich electrons combine with holes),the percentage of combined electrons isvery small. Thus, most of the electronsreach the boundary of the BC depletionregion. Because the collector is morepositive than the base (the BC junctionis reverse biased), these electrons aredragged into the collector across theBC depletion region.

  • 7/31/2019 Elettronica I Materiale Didattico

    47/144

    Bipolar Junction Transistor (BJT) 39

    BJT currentwhen

    vBE = 0

    andvBC = 0vBE

    C E

    B

    n n+p

    iE

    iB

    iF

    vCB

    iC

    n-p-n BJT

    C

    E

    B

    iC = iF

    iB currentwhen vBE = 0and vBC = 0

    (T5.1) iB =iFF

    20 < F < 500

    iC current

    when vBE = 0and vBC = 0

    iF = iC

    (T2.4) iC IS evBE/VT 1 (T5.2) forward transport current

    iE currentwhen vBE = 0and vBC = 0

    iE = iC + iB

    (T5.3) iE =F + 1

    FIS

    evBE/VT 1

    BJT currentwhen

    vBE = 0and

    vBC = 0vBE

    C E

    B

    n n+p

    iE

    iB

    iR

    vCB

    iC

    iE = iR

    iB currentwhen vBE = 0and vBC = 0

    (T5.1) iB = iRR

    (T5.4) 0 < R < 20

    iE currentwhen vBE = 0and vBC = 0

    iR = iE(T5.2) iR IS

    evBC/VT 1

    (T5.5) inverse transport current

    prof. S. Rocchi, ing. M. Poli - Dipartimento di Ingegneria dellInformazione - Universit a degli Studi di Siena

  • 7/31/2019 Elettronica I Materiale Didattico

    48/144

    Bipolar Junction Transistor (BJT) 40

    iC currentwhen vBE = 0and vBC = 0

    iC = iR iB

    (T5.3) iC = R + 1R

    IS

    evBC/VT 1

    (T5.6)

    BJT currentwhen

    vBE = 0and

    vBC = 0

    (T5.2)(T5.6)

    iC = IS

    evBE/VT 1

    R + 1

    RIS

    evBC/VT 1

    iC = IS

    evBE/VT evBC/VT

    IS

    R

    evBC/VT 1

    iC current

    when vBE = 0and vBC = 0

    (T5.5)

    iC = iT iR

    R (T5.7)

    iE currentwhen vBE = 0and vBC = 0

    (T5.3)(T5.5)

    iE = ISF + 1

    F

    evBE/VT 1

    IS

    evBC/VT 1

    iE = IS

    evBE/VT evBC/VT

    +

    ISF

    evBE/VT 1

    (T5.2) iE = iT + iFF

    (T5.8)

    iB currentwhen vBE = 0and vBC = 0

    iB =iRR

    +iFF

    iB =ISR

    evBC/VT 1

    +

    ISF

    evBE/VT 1

    (T5.9)

    BJT

    non-linearcircuit model:transport

    model

    (T5.1),(T5.7)(T5.4),(T5.9)

    C E

    B

    iC iE

    iB

    iT

    iFF

    iRR

    prof. S. Rocchi, ing. M. Poli - Dipartimento di Ingegneria dellInformazione - Universit a degli Studi di Siena

  • 7/31/2019 Elettronica I Materiale Didattico

    49/144

    Bipolar Junction Transistor (BJT) 41

    ForwardActive Region

    (FAR)