Powered by FlashBox. Si definisce affinità una corrispondenza biunivoca tra punti dello stesso...

Post on 02-May-2015

220 views 0 download

Transcript of Powered by FlashBox. Si definisce affinità una corrispondenza biunivoca tra punti dello stesso...

Powered by FlashBox

TRASFORMAZIONI NEL PIANO

TRASFORMAZIONI NEL PIANOTRASFORMAZIONI

LINEARIINVERSIONI CIRCOLARI

AffinitàDilatazioni Compressioni InclinazioniSimilitudini

Omotetie Isometrie

Traslazioni RotazioniSimmetrie

Centrali Assiali

AffinitàSi definisce affinità una corrispondenza biunivoca tra punti dello stesso piano che trasformi rette in rette conservando il parallelismo.

può allora essere scritta nella forma matriciale

x’ = Ax + u , in cui u = , è il vettore dell’affinità e

A = è la matrice dell’affinità il cui determinante è

diverso da 0 (condizione di non singolarità della matrice)

x’ = ax + by + py’ = cx + dy + q

a bc d

Associamo a ciascun punto P (x,y) del piano in modo

biunivoco il vettore . L’affinità T di equazioni:

TeoremaData una trasformazione di matrice A e una superficie del piano S, sia S’ la superficie corrispondente. Il rapporto tra S’ e S è pari al modulo del det A.

DefinizioneSi definisce elemento unito un elemento che corrisponde a se stesso nella trasformazione.

Dilatazioni e CompressioniSi definisce dilatazione o compressione di rapporto k lungo l’asse x e di rapporto h lungo l’asse y l’affinità:

x’ = kxy’ = hy

k 00 hdi matrice: det A = kh

k ≠ 0h ≠ 0

00e vettore:

con:

1 00 3di matrice: det A = 3

x’ = xy’ = 3y

1 00 ⅓di matrice: det A = ⅓

x’ = xy’ = ⅓y

Dilatazione

Compressione

Inclinazioni

x’ = x + k yy’ = y

1 k0 1

di matrice:

det A = 1

Si definisce inclinazione lungo l’asse x di coefficiente k la trasformazione che fa corrispondere a ogni punto (x,y) il punto che ha la stessa ordinata y e ascissa proporzionale.

Inclinazioni

x’ = xy’ = kx + y

1 0k 1

di matrice:

det A = 1

Si definisce inclinazione lungo l’asse y di coefficiente k la trasformazione che fa corrispondere a ogni punto (x,y) il punto che ha la stessa ascissa x e ordinata proporzionale.

ESERCIZIO

La trasformazione di matrice muta il quadrato Q di

vertici O(0,0), A(1,0), B(1,1) e C(0,1) nel rettangolo R. Appli-

cando successivamente l’inclinazione di matrice

si ottiene il parallelogramma P. Calcolane l’area.

1 20 1

2 00 1

SimilitudiniLa similitudine è un’affinità tra punti del piano che mantiene costante il rapporto tra segmenti corrispondenti.

Cioè, dati i segmenti AB e CD:

k è detto rapporto di similitudine.

x’ = ax + by + py’ = - bx + ay + q

La cui matrice associata risulta: a b-b a

det A = a² + b² = k²

Diretta

x’ = ax + by + py’ = bx - ay + q

La cui matrice associata risulta: a bb -a

det A = - a² - b² = - k²

Inversa

a = k cos αb = - k sin α

a = - k cos αb = k sin α

OmotetieSiano C un punto del piano e a un numero reale non nullo si definisce omotetia di centro C e rapporto a la corrispondenza biunivoca tra i punti del piano che a ogni punto P fa corrispondere in modo univoco il punto P’ tale che CP’ = a CP.

x’ = ax + xC - axC

y’ = ay + yC - ayC

La matrice associata risulta: a 00 a

det A = a²

E il suo vettore:xC – axC

yC - ayC

IsometrieSi definisce isometria ogni affinità tra i punti del piano che conservi le distanze (k = 1).

La più semplice isometria è l’identità:

x’ = xy’ = y

La cui matrice associata risulta:1 00 1 det A = 1

TRASLAZIONESi definisce traslazione di vettore v la corrispondenza biunivoca tra i punti del piano che a ogni punto P associa il punto P’ tale che PP’ = v

Dato il vettore v = (p;q), risulta:

x’ = x + py’ = y + q

La cui matrice associata risulta:1 00 1 det A = 1

E il cui vettore:

1 00 1

Matrice:

¼1

det A = 1

Vettore:

ESERCIZIO

Dati la traslazione di vettore e il triangolo di vertici A (0,0),

B (1,0) e C (0,3), trovare i vertici di A’B’C’.

A’ (xA’, yA’) = (xA + p, yA + q) = (9, -1)

B’ (xB’, yB’) = (xB + p, yB + q) = (10, -1)

C’ (xC’, yC’) = (xC + p, yC + q) = (9, 2)

9-1

ROTAZIONESiano O un punto del piano e θ un numero reale. Si chiama rotazione di centro O e di angolo θ la corrispondenza biunivoca tra i punti del piano che associa il punto O il punto O stesso e che ogni punto P distinto da O associa il punto P’ tale che PÔP’ = θ.

x’ = x cos θ – y sin θy’ = x sin θ + y cos θ

La cui matrice associata risulta:cos -sinsin cos det A = 1

0 -11 0 det A = 1

Matrice:

ESERCIZIO

Dati la rotazione di angolo θ = 90° e il triangolo di vertici A (0,0),

B (1,0) e C (0,3), trovare i vertici di A’B’C’.

A’ (xA’, yA’) = (xA cos θ - yA sin θ, xA sinθ + yA cos θ) = (0, 0)

B’ (xB’, yB’) = (xB cos θ - yB sin θ, xB sinθ + yB cos θ) = (0, 1)

C’ (xC’, yC’) = (xC cos θ - yC sin θ, xC sinθ + yC cos θ) = (-3, 0)

SIMMETRIA CENTRALESi definisce simmetria centrale Sc rispetto a C la corrispondenza biunivoca tra punti del piano che associa a ogni punto P il punto P’ tale che C sia il punto medio di PP’

x’ = 2 xC - xy’ = 2 yC - y

La cui matrice associata risulta: -1 0 0 -1

det A = 1

2 xC

2 yC

E il suo vettore:

det A = 1-1 0 0 -1

21

Matrice: Vettore:

ESERCIZIODati la simmetria centrale di vettore e il triangolo di vertici

A (0,0), B (1,0) e D (0,3), trovare i vertici di A’B’D’.

C (½ 8, ½ 4) = (4, 2)

A’ (xA’, yA’) = (2 xC - xA, 2 yC - yA) = (8, 4)

B’ (xB’, yB’) = (2 xC - xB, 2 yC - yB) = (7, 4)

D’ (xD’, yD’) = (2 xC - xD, 2 yC - yD) = (8, 1)

84

SIMMETRIA ASSIALESi definisce simmetria rispetto a r l’affinità Sr che lascia uniti i punti P che appartengono ad r e che trasforma ogni punto P che non appartiene ad r in P’ tale che r sia l’asse di PP’.

Di matrice:

det A = -1e vettore:

Caso particolare: y = k

x’ = xy’ = - y + 2 k

1 0 0 -1det A = -1

Caso degenere: x = k

x’ = - x + 2 ky’ = y

-1 0 0 1

det A = -1

02k

2k0

Caso particolare: y = x

x’ = yy’ = x

0 11 0

det A = -1

00

ESERCIZIODati la simmetria assiale di asse x = 4 e il triangolo di vertici

A (0,0), B (1,0) e C (0,3), trovare i vertici di A’B’C’.

A’ (xA’, yA’) = (- xA + 8, yA) = (8, 0)

B’ (xB’, yB’) = (- xB + 8, yB) = (7, 0)

C’ (xC’, yC’) = (- xC + 8, yC) = (8, 3)

Composizionedi trasformazioni

La composizione o prodotto di due affinità T1 e T2, rispettivamente di matrici A1 e A2 e vettori u1 e u2, è l’affinità T2T1, la cui matrice è A = A2A1 e il cui vettore è u = A2u1+u2.

T1: x’= A1 x + u1 e T2: x’= A2 x + u2 x Applico T1: x’= A1 x + u1 Applico T2: x’’= A2 (A1 x + u1) + u2 = A2 A1 x + A2 u1 + u2

MATRICE VETTORE

ESERCIZIOTrasformare la circonferenza x²+y²-2x=0 applicando prima T:

e poi T’: . Ripetere l’esercizio applicando prima T’ e poi T.x’ = 3xy’ = 2y

x’ = 2xy’ = -y

Trasformazione inversaL’inversa di un’affinità T di matrice A e vettore u è l’affinità di matrice A-1 e vettore v = -A-1 u.

x’= A x + u Moltiplico per A-1 A-1x’= A-1A x + A-1u A-1A = IA-1x’= I x + A-1u Isolo xx = A-1x’ - A-1u

MATRICE VETTORE

ESERCIZI TRATTIDALL’ESAME DI STATO

Edit by FlashBox