Induzione elettromagnetica - INFN-BObruni/didattica/Esercizi_2011/11.InduzioneEM.pdf · Materiali...

Post on 14-Nov-2018

217 views 0 download

Transcript of Induzione elettromagnetica - INFN-BObruni/didattica/Esercizi_2011/11.InduzioneEM.pdf · Materiali...

Induzione elettromagnetica

n  Legge di Faraday n  Mutua induzione e auto-induzione n  Densita` di energia del campo magnetico

Induzione elettromagnetica Nel 1831 Michael Faraday scopre un nuovo fenomeno

Muovendo un magnete rispetto ad una spira (e viceversa) si genera una corrente nel circuito

Il verso della corrente dipende dal verso del moto e dall’orientamento del magnete

Se facciamo passare della corrente in una spira, vi e` passaggio di corrente in una spira vicina solo al momento della accensione e spegnimento. Va a zero quando la corrente e` stazionaria.

Induzione elettromagnetica Nel 1831 Michael Faraday scopre un nuovo fenomeno

Muovendo un magnete rispetto ad una spira (e viceversa) si genera una corrente nel circuito

Il verso della corrente dipende dal verso del moto e dall’orientamento del magnete

Se facciamo passare della corrente in una spira, vi e` passaggio di corrente in una spira vicina solo al momento della accensione e spegnimento. Va a zero quando la corrente e` stazionaria.

Induzione elettromagnetica Nel 1831 Michael Faraday scopre un nuovo fenomeno

Muovendo un magnete rispetto ad una spira (e viceversa) si genera una corrente nel circuito

Il verso della corrente dipende dal verso del moto e dall’orientamento del magnete

Se facciamo passare della corrente in una spira, vi e` passaggio di corrente in una spira vicina solo al momento della accensione e spegnimento. Va a zero quando la corrente e` stazionaria. (dimostrazione)

Legge di Faraday

! i = !d"(!B)

dt

La variazione temporale del flusso del campo magnetico concatenato ad un circuito genera nel circuito una f.e.m. pari all’opposto della derivata del flusso rispetto al tempo.

La f.e.m. corrisponde alla circuitazione di un campo elettrico (indotto e non conservativo)

Legge di Faraday

! i = !d"(!B)

dt

!E !d!r = " d

dtC!#

"B !!ndA

$(C )#La fem dipende

dal circuito (E non e` conservativo)

Legge di Lenz “ – “

Legge di Lenz n  Per una spira chiusa la f.e.m. indotta genera una corrente elettrica

i =! iR= !

1Rd"(B)dt

n  La corrente genera un campo magnetico indotto

n  Il segno della corrente e` tale che il campo magnetico indotto genera una forza che si oppone alla variazione

Esempio Una spira piana di sezione S e resistenza R e` immersa in un campo magnetico unfiorme che forma un angolo α con la normale alla spira. Il modulo del campo magnetico varia nel tempo secondo una legge periodica: B(t)=B0cos(ωt). Si vuole determinare la corrente i(t) che circola nel circuito.

! = !d"dt

= !ddt

!B #!ndA$ = !

ddtBS cos! = !S cos! dB

dt

= !S cos!(!"B0 sin"t) = SB0 cos! sin"t

i(t) = !R=SB0 cos"R

sin#t = i0 sin!t

Esempio Una spira quadrata di lato L e` immersa in un campo magnetico che varia nel tempo secondo la legge

! = !d"dt

= !ddt

!B #!ndA$ = !

ddt

!B "!ex dA#x

y

z

L

!B(t) = Az sin(!t)

!ex + Bycos(!t)

!ez

= !ddt

Bx dydz0

L

"0

L

" = !A ddt

z dydz0

L

"0

L

"#

$%

&

'(sin(!t)

= !A L3

2ddtsin(!t) = !A L

3

2! cos(!t) i = !

R

Esempio n  Bobina di N spire, sezione S, resistenza R !B(t) =

!B0tt0

(0 ! t ! t0 ) !B (t) = NSB = NSB0tt0

! I = !d"B

dt= !NSB0t0

i = ! IR= !NSB0Rt0

opposizione alla variazione di B

q = i dt0

t0

! = it0 =NSB0R

carica totale potenza dissipata P = ! I ilavoro W = Pt0

Esempio: spira rotante in un campo magnetico

!(B) = BL2 cos! = BL2 cos"tspira quadrata di lato L

! i = !d"dt

= BL2" sin"t!max = BL

2"

i =! iR

P = ! ii = Ri2 =

! i2

R=!max2

Rsin2"t

Esempio: spira rotante in un campo magnetico

P =!max2

Rsin2"t

!max = BL2"

media su un periodo P =!max2

2Rdal punto di vista della potenza il generatore di corrente alternata equivale a un generatore in cc con f.e.m. efficace

Veff =!max2

Esempio: spira rotante in un campo magnetico

aaaa

t

E0 I

p

P =!max2

Rsin2"t

aa

t

i

I

i =! iR=BL2"R

sin"t

i

Riε

Esempio: principio del motore elettrico Trasformazione di energia

elettrica in energia meccanica

sbarretta mobile percorsa dalla corrente i lunga “l”

!B = B

!ez id

!l = idy

!ey!

F1 = il!ey !!ez = iBl

!ex

! ! I = "d#B

dt= "vBl

!B (t) = v t " l "B

! i = V0 +! IR

=V0 " vBlR

F1 V0

B

F0 i

generatore di f.e.m.

v forza resistente

x

y

z

Esempio: principio del motore elettrico

V0

B

F1 F0 i

v Il generatore tiene costante la f.e.m. V0 e varia solo la corrente

md vdt

= F1 !F0

md vdt

= iBl !F0

d vdt

=V0 ! vBlmR

Bl ! F0m

Esempio: principio del motore elettrico d vdt

=V0 ! vBlmR

Bl ! F0m

=V0BlmR

!F0m! v (Bl)

2

mR

!! " " v

α β

se v(0)=0 !d v

! " " v= dt d v

! ! " v0

v

" = t

!1!log" ! ! v

"= t

Esempio: principio del motore elettrico v(t) = v

!1" e! t /!( ) ! !1 =

B2l 2

mRv!=V0Bl

"RF0B2l 2

n  A regime (t >> τ) la velocita` diventa costante.

n  La forza totale applicata e` nulla, il moto uniforme.

i!=V0 " v! Bl

R=F0Bl

! I ,! = "v! Bl = "V0 +RF0Bl

P!=V0i! = (Ri! "! I ,! )i! = Ri!

2 +F0 v!

potenza dissipata nella resistenza potenza meccanica per vincere F0

Origine fisica della legge di Faraday

n  Come abbiamo visto, ci sono due casi primitivi da considerare q  un conduttore e` in moto relativo rispetto alle

sorgenti di un campo magnetico q  un campo magnetico variabile nel tempo si

concatena con un circuito a riposo

Ancora sul legame E vs B n  Magnete permanente in moto rispetto ad una

spira q  osservatore solidale con il magnete

n  la spira si muove nel campo magnetico del magnete e i suoi elettroni si mettono in moto sotto la forza di Lorentz

n  il campo magnetico spiega tutto q  osservatore solidale con la spira

n  il magnete si muove, il flusso concatenato cambia, nasce una f.e.m. indotta e gli elettroni si mettono in moto

n  introduco il campo elettrico indotto che spiega tutto

n  I campi elettrico e magnetico sono componenti del “tensore del campo elettromagnetico”

Osservatore solidale con il magnete

n  Conduttore in moto relativo rispetto alle sorgenti di un campo magnetico

velocita` v

Forza di Lorentz sugli elettroni

Campo elettromotore !E =!v!!B

Moto degli elettroni lungo la spira

f.e.m. ! i =!E !d!l =

!v"!B( )!#!# !d

"l

= d!l !!v( ) "!B!# = d

!l ! d!rdt

"

#$

%

&' (!B!)

t

vdt

t+dt

Osservatore solidale con il magnete

dr = v dt

dl dA’n = dl x dr

dA’

dA t t+dt

Φt+dt(B) Φt (B)

dΦ’t (B)

d!l ! d!r = dA'

!n

d!l ! d!r( ) "!B = dA'

!B "!n

= d!' flusso attraverso il parallelogramma d

!l ! d!r

Integrando sulla spira si ha il flusso sulla faccia laterale descritta dal movimento della spira

d!t (!B) = d

!l " d!r( ) #!B"$ =

!B #!n

d %$ dA'

Osservatore solidale con il magnete

d!t (!B) = d

!l " d!r( ) #!B"$ =

!B #!n

d %$ dA'

Dato che il campo magnetico e` solenoidale

!t+dt "!t + d!t = 0

d! " !t+dt #!t = #d!t

! i =!v!!B( )!" #d

"l

=d!t

dt= "d!dt

La f.e.m. indotta e` dovuta alla variazione nel tempo del flusso tagliato dal circuito nel suo moto

dr = v dt

dl dA’n = dl x dr

dA’

dA t t+dt

Φt+dt(B) Φt (B)

dΦ’t (B)

Osservatore solidale con il circuito

n  Il circuito e` fisso. Il campo magnetico varia con il tempo.

Non c’e` forza di Lorentz

Dobbiamo introdurre un campo elettrico indotto

Il campo indotto e` legato alla variazione del campo magnetico

Legge di Faraday: forma differenziale

!E !d!r = " d

dt!#"B !!ndA

$

# = !"!B"t

#!ndA

$

%

=!!"!E( ) # !ndA

$!%

Stokes

!!"!E = # $

!B$t

n  E` possibile definire la tensione tra 2 punti

n  Non coincide con una differenza di potenziale (la tensione dipende dal percorso)

varia solo il campo

Ancora sui conduttori in moto in un campo magnetico

n  Su una generica carica di un conduttore in moto in un campo magnetico agisce la forza di Lorentz:

n  In prima approssimazione la legge di Ohm si modifica come:

!F = q(

!E + !v!

!B) = q

!E*

!J =!

!E*

Ancora sui conduttori in moto in un campo magnetico

n  Dimostriamo matematicamente che se: n  allora:

!E !d!r = " d

dtC"#

!B ! #n dA

$

#

!E* !d!r = " d

dtC (t )"#

!B ! #n dA

$(t )#

Legge di Lenz: conseguenze

n  La f.e.m. indotta genera una corrente che tende ad opporsi alla variazione di flusso

n  In un solenoide percorso da una corrente variabile il flusso varia e l’induzione genera una forza contro-elettromotrice

n  Se la derivata del flusso e` grande (apertura di colpo di un interruttore in un solenoide) si genera una grossa d.d.p. con conseguenze anche pericolose

Legge di Lenz: conseguenze

n  Conduttore perfetto (R=0, superconduttore) q  con R=0 la legge di Ohm direbbe che data una

fem ε piccola a piacere la corrente sarebbe “infinita”

q  Lenz: qualunque variazione di un B produce un B opposto e nessun flusso magnetico penetra nel superconduttore

q  avvicinando un magnete a un superconduttore le correnti di Foucault (“vorticose”) generano un campo che si oppone al movimento [effetto Meissner, levitazione magnetica]

Comportamento magnetico dei materiali - classificazione

!B0 campo magnetico nel vuoto !B

campo magnetico in un materiale corrispondente alle stesse sorgenti esterne

BB0

! µrpermeabilita` magnetica relativa

B ! B0 = (µr !1)B0 = !B0suscettivita` magnetica

Comportamento magnetico dei materiali - classificazione

n  Sostanze diamagnetiche

µr < 1, ! < 0 χ costante al variare di B

il campo esterno genera una variazione del momento angolare orbitale degli elettroni (precessione di Larmor) che induce un campo in opposizione a quello esterno

!0.42 "10!5 Si!0.90 "10!5 H2O

!0.45 "10!8 H

Comportamento magnetico dei materiali - classificazione

n  Sostanze paramagnetiche

µr > 1, ! > 0 correnti amperiane equiverse a quelle di conduzione

! (T ) =C "T

legge di Curie effetti piccoli

! ! 10!4 ÷10!5

Allineamento dei momenti di dipolo magnetico di atomi con elettroni spaiati – principio di esclusione di Pauli

Comportamento magnetico dei materiali - classificazione n  Sostanze ferromagnetiche

! ! 103 ÷105funzione non univoca (isteresi)

! = ! (B)

5 elementi (+composti): Fe, Co, Ni, Ga, Dy

Interazioni tra spin inducono interazione tra momenti magnetici di atomi adiacenti. Per T>Tcurie (=1024 K per il Fe) i legami si spezzano à diamagnetici

Domini di Weiss – fenomeno quantistico, non spiegabile classicamente

Magnetizzazione persistente anche dopo la rimozione del campo esterno

Materiali diamagnetici

n  diamagnetismo q  tutti i materiali sono diamagnetici q  normalmente il diamagnetismo e` mascherato dal

paramagnetismo e ferromagnetismo q  gli elettroni in movimento intorno al nucleo sono dei piccoli

dipoli magnetici (valore medio macroscopico nullo) q  in presenza di un campo magnetico esterno cambia la

velocita` di rotazione degli elettroni e si genera un campo magnetico che si oppone a quello esterno

q  il campo e` molto piccolo; la suscettivita` magnetica dell’acqua e` χ = -9.05 x 10-6

q  un superconduttore ha diamagnetismo perfetto: χ = -1

Esempio: levitazione di una rana

Radboud University Nijmegen, High Field Magnet Laboratory [HFML]

Campo magnetico di 16 T

Diamagnetismo: effetto debole – ma con alti campi magnetici puo` dare effetti spettacolari

Legge di Lenz - conseguenze n  Se si avvicina un magnete ad un conduttore reale, le correnti di Foucault,

(si estinguono dissipate in effetto termico) “frenano” il moto del magnete (~ attrito viscoso)

V = BLdxdt

= BLv i = VR

F1 = !iLB = !B2L2 vR

n  Forza opposta a quella applicata, proporzionale alla velocità

P = dWdt

= F dxdt

= F v = !B2L2 v2

R

x

!F2 = !

!F3

=Vi

n  il flusso concatenato cambia

Mutua induzione e autoinduzione

n  Legge di Faraday q  relazione tra le variazioni di corrente in un circuito

e gli effetti prodotti nel circuito stesso e in quelli vicini

n  Fattorizzazione del flusso del campo magnetico in una parte dipendente dalla corrente e una dalla geometria q  non vale per i materiali ferromagnetici, non lineari

– B non e` proporzionale a i

Mutua induzione e autoinduzione

n  Approssimazioni q  formule valide per i campi stazionari applicate

anche ai campi variabili nel tempo q  buona se la variazione e` lenta rispetto al tempo

td=d/c (d=dimensioni lineari del circuito)

q  condizioni quasi-stazionarie ( con ottima approssimazione)

B i∝

Mutua induzione e autoinduzione

N circuiti

kj

!k (!Bj ) = M jki j

Flusso del campo magnetico generato dal circuito j percorso dalla corrente ij concatenato con il circuito k

! j (!Bk ) = Mkjikcoefficienti di mutua induzione

Mutua induzione e autoinduzione

!k (!Bj ) = M jki j

M jk!" #$=

%!" #$i!" #$=WbA

= H (Henry)

Mutua induzione e autoinduzione

n  Una variazione della corrente in un circuito provoca una variazione anche del flusso del campo magnetico concatenato con il circuito stesso

!k (!Bk ) = Mkkik ! Lkik (Li)

coefficiente di auto-induzione o induttanza del circuito

Mutua induzione e autoinduzione

M jk = Mkj

!B =!!"!A (rigorosamente valida nel caso stazionario)

!A(!r ) =

!Ak (!r ) = µ0

4!k! ikd

!lk!

r "!rkCk

!#k!

Per distribuzione di correnti in circuiti filiformi

Mutua induzione e autoinduzione n  Flusso concatenato con il circuito j

! j =!"#!Ak( ) $ !nj dA

% j

&k' =

!Ak !d

!l j

C j!"

k#

=!Aj !d

!l j

C j!" +

µ04!

ikd!l j !d!lk

!rj #!rkCk

!"C j!"

k$ j%

! Li j + M jkikk" j#

Simmetrico rispetto allo scambio degli indici

Mjk dipendono solo da forma e posizione dei circuiti

Mutua induzione e autoinduzione n  Due soli circuiti

M12 = M21 ! Mn  Legge di Faraday

! I = !d"dt

= !M didt

Esempio: solenoidi accoppiati

N avvolgimenti, sezione A

NE avvolgimenti, sezione S > A El

BE =µ0iNE

lE

I coefficienti di mutua induzione sono simmetrici. Conviene calcolare il coefficiente del grande rispetto al piccolo perche` il suo campo magnetico ha una espressione semplice.

! = NABE = µ0ANNE

lEi

M

Esempio: due spire concentriche

i(t) = i0 sin!t

i(t)

ε? R

r

r << R

Flusso concatenato con la spira piccola (B ~ costante sulla spira piccola)

B = µ0i2R

! = ! r2B = µ0! r2

2Ri ! ! = "M di

dt= "(

µ0" r2

2R)i0# cos#t

Esempio: filo parallelo a una spira rettangolare

d!(r) = Bfiloadr =µ0i2! r

adr

! = d!d

d+b

" =µ0a2!ln(1+ b

d)i

r bd

spira di dimensioni a, b

Flusso del campo generato dal filo attraverso la spira (piu` semplice)

b

adr

dr

M

Induttanza n  Coefficiente di proporzionalita` tra la corrente

che circola in un circuito e il flusso del campo magnetico da essa generato concatenato con il circuito stesso

! I = !Ldidt

Esempio: solenoide lungo l, N spire, sezione A (approssimazione “infinito”)

B = µ0Nil

! = NAB = µ0N2Al

i Lsolenoide =µ0N

2Al

Serie e parallelo di induttanze

n  In un circuito un induttore e` un elemento che possiede una induttanza di valore dato e di solito molto piu` grande di quella degli altri elementi presenti

n  La resistenza di un induttore e` idealmente

nulla, in pratica spesso trascurabile n  Due o piu` induttori possono essere collegati

in serie o parallelo, originando un induttore equivalente

Serie di induttanze

L1 L2

ε1 ε2 f.e.m. indotte

Se disaccoppiate

! = !L1di1dt

! L2di2dt

= !(L1 + L2 )didt

N induttanze disaccoppiate in serie

L = Lii=1

N

!

Serie di induttanze

L1 L2

ε1 ε2 f.e.m. indotte

Se il coefficiente di mutua induzione M non e` trascurabile

L = L1 + L2 ± 2M(segno positivo per correnti equiverse nelle due induttanze)

M 2 ! kL1L2 (0 " k " 1)

Parallelo di induttanze

L1 L2

i2i1i

i = i1 + i2! = !L di

dt= !L di1

dt! L di2

dtdi1dt

= !!L1

di2dt

= !!L2

induttanze disaccoppiate

1L=1L1+1L2

Parallelo di induttanze

L1 L2

i2i1i

i = i1 + i2! = !L di

dt= !L di1

dt! L di2

dtdi1dt

= !!L1

di2dt

= !!L2

N induttanze disaccoppiate

L!1 = Li!1

i=1

N

"

Densita` di energia del campo magnetico

n  Circuito in cui si varia l’intensita` della corrente che vi circola q  nel circuito si genera una f.e.m. autoindotta q  la f.e.m. si oppone alla variazione q  un generatore di f.e.m. esterno deve compiere del

lavoro q  il lavoro compiuto equivale ad un trasferimento di

energia q  questa energia viene immagazzinata nel campo

magnetico

Densita` di energia L

R V

T

n  Apertura e chiusura di T

n  Variazioni di corrente nel circuito

n  f.e.m. di autoinduzione

V +VL = Ri

! V = Ri "VL = Ri + Ldidt

Densita` di energia L

R V

T

V = Ri + L didt

diV ! Ri

=dtL

!1Rln V ! RiV ! Ri0

=t ! t0L

Densita` di energia L

R V

T

!1Rln V ! RiV ! Ri0

=t ! t0L

V ! Ri = (V ! Ri0 )e!RLt (t0 = 0)

Ri =V ! (V ! Ri0 )e!RLt =V (1! e

!RLt)+ Ri0e

!RLt

i(t) = VR(1! e

!RLt)+ i0e

!RLt

Densita` di energia L

R V

T

i(t) = VR(1! e

!RLt)+ i0e

!RLt

n  Chiusura del circuito: i(0)=0

i(t) = VR(1! e

!RLt)

Corrente di regime i(t)! i"=VR

velocita` con cui si raggiunge il valore asintotico regolato dalla costante di tempo del circuito ! = L / R

i!" i(t) extracorrente di chiusura

Densita` di energia L

R V

T

i(t) = VR(1! e

!RLt)+ i0e

!RLt

n  Apertura del circuito: i(0)=V/R

i(t) = VRe!RLt

( )i t extracorrente di apertura

diversa da zero per un breve tempo (qualche R/L)

V = 0

(d.d.p. ai capi dell’interruttore)

Potenza dissipata

n  Dall’istante in cui viene chiuso il circuito

Vi = Li didt+ Ri2 i(t) = V

R(1! e

!RLt)

V = L didt+ Ri = L V

RRLe!RLt"

#$

%

&'+ RV

R(1! e

!RLt)

=Ve!RLt+V (1! e

!RLt)

WL

WGen

= e!RLt

WR

WGen

= 1! e!RLt

Densita` di energia n  Induttanza L percorsa da una corrente i(t) variabile nel

tempo a partire da i(0)=0 n  f.e.m. autoindotta ε che si oppone alla variazione n  Lavoro compiuto nel tempo dt:

dW = !dq = !idt = !L didtidt = !Lidi

lavoro esterno per bilanciare quello del campo autoindotto

dW ext = !dW = Lidi = d(12Li2 )

Densita` di energia n  Lavoro immagazzinato sotto forma di energia

potenziale del campo magnetico

n  Solenoide indefinito

L = µ0AN2

l=µ0AlN

2

l ! l= µ0Vn

2

UB =12Li2

Densita` di energia

L = µ0Vn2 UB =

12Li2

UB =12µ0Vn

2i2 = 12µ0

µ02Vn2i2 = 1

2µ0VB2

uB =dUB

dV=B2

2µ0

densita` di energia immagazzinata in un campo magnetico nel vuoto

Esercizio: cavo coassiale n  Due superficie cilindriche conduttrici coassiali

1r

2r

Immersi in un materiale di permeabilita` magnetica relativa µr

Corrente di uguale intensita` ma versi opposti

01 2 2r

ir r r Br

µµ

π< < = ⋅

( )d r BldrΦ =per una lunghezza l 0

2r li drr

µ µπ

=

0 2

1

ln2r li r

rµ µπ

⇒Φ =0 2

1

ln2

r rdLdl r

µ µπ

=