UN MODELLO DI CALCOLO PER MOTORI WANKEL E … · S.P. Cicconardi, M. Marini, A. Perna 1 UN MODELLO...

11
S.P. Cicconardi, M. Marini, A. Perna 1 UN MODELLO DI CALCOLO PER MOTORI WANKEL E COMPRESSORI VOLUMETRICI ROTATIVI S. P. Cicconardi, M. Marini, A. Perna Dipartimento di Ingegneria Industriale, Università di Cassino SOMMARIO Il motore Wankel,, volumetrico e rotativo, ha attirato a lungo l’attenzione dei ricercatori per le sue intrinseche doti di alta potenza specifica e assenza di vibrazioni. La recente evoluzione dei motori alternativi, sollecitata soprattutto dalla necessità di ridurre le emissioni inquinanti, ha posto in secondo piano i motori rotativi che tuttavia mantengono alcune caratteristiche degne d’interesse. Nella memoria viene presentato un modello di calcolo del campo di moto che s’instaura nel motore Wankel. Il reticolo di calcolo, che si muove e si deforma nel tempo ciclicamente, é generato mediante un metodo algebrico descritto nel dettaglio. Il flusso, nel dominio delimitato da rotore e cassa, è calcolato con un metodo esplicito ai volumi finiti.. Un esempio applicativo evidenzia le caratteristiche del metodo sviluppato. 1. INTRODUZIONE Una delle caratteristiche meno attraenti del tradizionale motore a combustione interna è costituita dal fatto che il moto dei pistoni è di tipo rettilineo alternato, richiedendo dunque un complesso sistema biella-manovella per poter essere trasformato in rotatorio. Inoltre, non va dimenticato che il pistone di un motore alternativo è soggetto a sollecitazioni elevatissime, perché deve a ogni inversione del moto decelerare fino a fermarsi per poi accelerare, il che, naturalmente, comporta una rilevante riduzione del rendimento complessivo a causa di vibrazioni, attriti e inerzia. Un motore rotativo dovrebbe essere in grado di offrire una notevole riduzione, sia nelle dimensioni sia nel numero delle parti in movimento e dovrebbe costituire un'unità motrice leggera e affidabile, capace di funzionare senza dar luogo a vibrazioni di rilievo. Nonostante i potenziali vantaggi offerti dal motore rotativo, finora solo uno dei numerosi motori progettati e realizzati nel corso degli anni può vantare un'applicazione pratica di un certo rilievo: quello ideato e sviluppato dal progettista tedesco Felix Wankel nel 1954. In precedenza questo tecnico si era occupato dello sviluppo di compressori volumetrici rotativi per la Luftwaffe. Appena terminata la Seconda Guerra Mondiale, Felix Wankel entrò a far parte, come progettista, della NSU (una fabbrica tedesca di automobili assorbita in seguito dal gruppo Audi-Volkswagen) ed è qui che gli studi condotti sui compressori rotativi furono applicati alla progettazione di un efficiente motore a combustione interna. Uno dei principali problemi del Wankel è sicuramente la fase di combustione, dal momento che, a differenza di quanto accade nei motori alternativi, la particolare configurazione del “pistone” non consente grossi margini di libertà e le camere di combustione finiscono inevitabilmente con l'essere molto sviluppate in lunghezza e quindi quasi piatte. Questa configurazione non è certo ideale, soprattutto per la notevole distanza tra gli elettrodi della candela e i punti estremi della camera di combustione. Una delle tecniche utilizzate per ridurre questo inconveniente è l’uso di due candele di accensione per ogni rotore. Nel caso particolare della Mazda RX-7 i progettisti hanno ulteriormente perfezionato la tecnica della doppia accensione: infatti, la scintilla della seconda candela scocca qualche istante dopo rispetto alla prima. Questa raffinatezza implica, però, due sistemi di accensione completamente indipendenti. Questo difetto è la causa principale della mancata affermazione del motore Wankel: si determina, infatti, un elevato consumo di carburante, dovuto a una combustione incompleta della miscela aria-benzina. Come fenomeno collaterale, ma tutt'altro che trascurabile di una combustione imperfetta, si ha un elevato livello di emissione nocive, in particolare di idrocarburi incombusti. I vantaggi, a parte quelli già individuati grazie a una meccanica più semplice, sono molteplici. A parità di cilindrata, infatti, il Wankel eroga una potenza superiore a quella di un tradizionale motore a

Transcript of UN MODELLO DI CALCOLO PER MOTORI WANKEL E … · S.P. Cicconardi, M. Marini, A. Perna 1 UN MODELLO...

S.P. Cicconardi, M. Marini, A. Perna 1

UN MODELLO DI CALCOLO PER MOTORI WANKEL E COMPRESSORI VOLUMETRICI ROTATIVI

S. P. Cicconardi, M. Marini, A. Perna

Dipartimento di Ingegneria Industriale, Università di Cassino

SOMMARIO Il motore Wankel,, volumetrico e rotativo, ha attirato a lungo l’attenzione dei ricercatori per le sue intrinseche doti di alta potenza specifica e assenza di vibrazioni. La recente evoluzione dei motori alternativi, sollecitata soprattutto dalla necessità di ridurre le emissioni inquinanti, ha posto in secondo piano i motori rotativi che tuttavia mantengono alcune caratteristiche degne d’interesse. Nella memoria viene presentato un modello di calcolo del campo di moto che s’instaura nel motore Wankel. Il reticolo di calcolo, che si muove e si deforma nel tempo ciclicamente, é generato mediante un metodo algebrico descritto nel dettaglio. Il flusso, nel dominio delimitato da rotore e cassa, è calcolato con un metodo esplicito ai volumi finiti.. Un esempio applicativo evidenzia le caratteristiche del metodo sviluppato. 1. INTRODUZIONE Una delle caratteristiche meno attraenti del tradizionale motore a combustione interna è costituita dal fatto che il moto dei pistoni è di tipo rettilineo alternato, richiedendo dunque un complesso sistema biella-manovella per poter essere trasformato in rotatorio. Inoltre, non va dimenticato che il pistone di un motore alternativo è soggetto a sollecitazioni elevatissime, perché deve a ogni inversione del moto decelerare fino a fermarsi per poi accelerare, il che, naturalmente, comporta una rilevante riduzione del rendimento complessivo a causa di vibrazioni, attriti e inerzia. Un motore rotativo dovrebbe essere in grado di offrire una notevole riduzione, sia nelle dimensioni sia nel numero delle parti in movimento e dovrebbe costituire un'unità motrice leggera e affidabile, capace di funzionare senza dar luogo a vibrazioni di rilievo. Nonostante i potenziali vantaggi offerti dal motore rotativo, finora solo uno dei numerosi motori progettati e realizzati nel corso degli anni può vantare un'applicazione pratica di un certo rilievo: quello ideato e sviluppato dal progettista tedesco Felix Wankel nel 1954. In precedenza questo tecnico si era occupato dello sviluppo di compressori volumetrici rotativi per la Luftwaffe. Appena terminata la Seconda Guerra Mondiale, Felix Wankel entrò a far parte, come progettista, della NSU (una fabbrica tedesca di automobili assorbita in seguito dal gruppo Audi-Volkswagen) ed è qui che gli studi condotti sui compressori rotativi furono applicati alla progettazione di un efficiente motore a combustione interna. Uno dei principali problemi del Wankel è sicuramente la fase di combustione, dal momento che, a differenza di quanto accade nei motori alternativi, la particolare configurazione del “pistone” non consente grossi margini di libertà e le camere di combustione finiscono inevitabilmente con l'essere molto sviluppate in lunghezza e quindi quasi piatte. Questa configurazione non è certo ideale, soprattutto per la notevole distanza tra gli elettrodi della candela e i punti estremi della camera di combustione. Una delle tecniche utilizzate per ridurre questo inconveniente è l’uso di due candele di accensione per ogni rotore. Nel caso particolare della Mazda RX-7 i progettisti hanno ulteriormente perfezionato la tecnica della doppia accensione: infatti, la scintilla della seconda candela scocca qualche istante dopo rispetto alla prima. Questa raffinatezza implica, però, due sistemi di accensione completamente indipendenti. Questo difetto è la causa principale della mancata affermazione del motore Wankel: si determina, infatti, un elevato consumo di carburante, dovuto a una combustione incompleta della miscela aria-benzina. Come fenomeno collaterale, ma tutt'altro che trascurabile di una combustione imperfetta, si ha un elevato livello di emissione nocive, in particolare di idrocarburi incombusti. I vantaggi, a parte quelli già individuati grazie a una meccanica più semplice, sono molteplici. A parità di cilindrata, infatti, il Wankel eroga una potenza superiore a quella di un tradizionale motore a

S.P. Cicconardi, M. Marini, A. Perna 2

alternativo dal momento che in 2 giri dell'albero motore di un birotore avvengono 6 accensioni contro le 4 di un 4 cilindri alternativo. La NSU Wankel Spider, ad esempio, con il suo monorotore di soli 498 cm3 raggiungeva una velocità massima superiore ai 150 km/h. E ancora, la più recente Mazda RX-7, dotata di un propulsore birotore con cilindrata totale di 1308 cm3, ha prestazioni quasi identiche alla Porsche 924S, eppure quest'ultima è dotata di un motore a pistoni alternativi di ben 2479 cm3. Nel motore rotativo Wankel non ci sono valvole di alcun tipo: l'entrata della miscela aria-benzina e la fuoruscita dei gas combusti sono controllate direttamente dal rotore, che scopre alternativamente le luci di aspirazione e di scarico secondo una sequenza ben precisa, così come avviene in un motore a 2 tempi. Viene così eliminata la necessità di un qualsiasi sistema di comando della distribuzione, e ciò si traduce in una maggiore semplicità meccanica: basti dire che, rispetto a un equivalente motore a quattro tempi alternativo, il Wankel ha appena la metà dei componenti in movimento. Esso, inoltre, è più leggero e più compatto, anche se, ovviamente, il motore rotativo ha bisogno di quasi tutti gli accessori necessari per far funzionare un propulsore tradizionale: sistemi di avviamento, di raffreddamento, di accensione, di alimentazione, ecc. Una volta corredato con tutti questi accessori, il Wankel perde buona parte dei suoi vantaggi in termini di leggerezza e di minor ingombro, ma conserva comunque caratteristiche decisamente interessanti e, cioè, dolcezza di funzionamento e assenza pressoché totale di vibrazioni. Queste qualità vengono ancor più esaltate nelle versioni birotore, ossia con due rotori sfasati di 180°. Non essendoci componenti in moto alternato, le fonti di vibrazioni del Wankel sono già molto ridotte e l’impiego di due rotori contribuisce in maniera determinante a bilanciare le forze dinamiche generate dai rotori stessi. Molte delle considerazioni effettuate a proposito del motore Wankel possono essere riferite anche ai compressori volumetrici rotativi, che presentano vantaggi analoghi rispetto ai compressori a stantuffo ed un più esteso campo d’applicazione, che comprende i casi in cui sono richieste elevate pressioni. In generale le macchine operatrici volumetriche rotative, caratterizzate da una molteplicità di geometrie (compressori Roots, a vite, a lobi ecc…) sono molto diffuse. Così come per il motore Wankel la definizione della geometria dei contorni è un passo cruciale ed è stato oggetto di numerosi studi volti a produrre dei metodi generali ed automatizzabili per la loro definizione accurata (Feng, 1993). Nel seguito viene presentato un metodo algebrico per generare reticoli di calcolo ed un modello di calcolo del flusso su griglie mobili che può essere applicato alle geometrie delle macchine volumetriche motrici, come il motore Wankel, ma anche operatrici. 2. LA GEOMETRIA ED IL RETICOLO DI CALCOLO La geometria della camera di combustione di un motore Wankel è definita attraverso i contorni della cassa statorica ed i contorni del rotore. Per lo statore si ha l'equazione seguente:

( ) ( ) ( ) ( ) ( ) ( ) ) ( ACRAEY ACRAEX 1sen3sen1cos3cos1 ++=++= I parametri geometrici R (raggio), E (eccentricità) e C (gioco) definiscono il “manovellismo” del motore Wankel mentre A è l’angolo corrente che varia tra 0 e 2π. Per quanto riguarda il rotore, esso è delimitato da tre facce e ruota. Di questo possiamo tenere conto considerando tre coppie di coordinate, indicate rispettivamente con X2, Y2 oppure X3,Y3 oppure X4,Y4. Le due equazioni che descrivono il contorno del rotore sono denotate da ”i” che può assumere il valore 2, 3 o 4. L’angolo θ varia nel tempo come la giacitura del lato che delimita il rotore.. Assumendo una velocità di rotazione costante pari a Ω, vale la relazione θ = Ωt.

( ) ( ) ) ( XYE YYXEX ROROiROROi 23

sen3

coscos3

sen3

cossen

+=

+

+=

ϑϑϑϑϑϑ

I vari lati del rotore si distinguono specificando nei termini XR0, YR0 appena introdotti: il campo di variazione di V è da π/6 a π/2 per i=2, da 5π/6 a 7π/6 per i=3, da 3π/2 a 11π/6 per i=4.

)36

sen6

cos6

sen6

cos ( πXπY Y πYπXX RRRORRRO

=

+

=

( ) ( ) ( ) ( ) ( ) ( ) xR PVVVREEVV

RE-VRX −

−+= 2cos3cos3sen9122sen6sen32cos

21

22

22

S.P. Cicconardi, M. Marini, A. Perna 3

( ) ( ) ( ) ( ) ( ) ( ) yR PVVVR

EEVVREVRY −

−+++= 2sen3cos3sen9122cos6sen32sen

21

22

22 (3')

Con i termini PX e PY si si tiene conto di incavi nel profilo limite di Wankel che sono di grande utilità in prossimità del punto morto superiore in cui si sviluppa la combustione.

( )VPPx 2cos= ( )VPPy 2sen= Il termine P ha un'espressione complessa per fare in modo che l’incavo sia delimitato: essa viene riportata per esteso nell'appendice A.

Fig.1: Geometria del motore Wankel

Per un dominio spaziale che varia nel tempo, quale quello di un motore Wankel, la generazione del reticolo comporta la seguente trasformazione di coordinate:

( ) ( )ξ,η,τ X,Y,t →← Ciò significa che il dominio delimitato dallo statore e dalla faccia del rotore, che si modifica nel tempo di forma e posizione, viene trasformato in un dominio fisso rettangolare a maglia uniforme (fig. 2). Tale trasformazione si ottiene con sistemi ellittici (Marini, 1991) che sono accurati e flessibili ma richiedono tempi relativamente lunghi che risultano critici in un calcolo come il presente.

Fig. 2: Dominio fisico e dominio trasformato Pertanto è stata adottato un metodo di generazione di tipo algebrico che,con tempi di calcolo estremamente ridotti (Yang e Shih, 1986), consente comunque di ottenere reticoli ortogonali sui contorni evitando le forti distorsioni locali che si otterrebbero nel caso di geometrie complesse.

S.P. Cicconardi, M. Marini, A. Perna 4

Si consideri il dominio in un istante t=τ, con la mappatura che fa corrispondere a tale dominio fisico quello rettangolare trasformato ξη. Il lato AB corrisponde al contorno η=0; lungo di esso ξ varia da 0 (in A) ad 1 (in B). Il lato (CD) corrisponde al contorno η=1; lungo di esso ξ varia da 0 (in D) ad 1 (in C). Siccome il contorno AB appartiene al contorno del rotore e si fissa l’attenzione sul lato 2, tale contorno fisicamente corrisponde alle coordinate (X2,Y2); il contorno CD appartiene allo statore e lo descrivono le coordinate (X1,Y1).

( ) ( ) ( ) ( )ξ,τY,τξ,ηYY ξ,τX,τξ,ηXX 2222 00 ====== ( ) ( ) ( ) ( )ξ,τY,τξ,ηYY ξ,τX,τξ,ηXX 1111 11 ======

ξ varia tra 0 ed 1 e dipende da A e V che intervengono nella definizione di statore e rotore (vedi fig.1)

LT

LAA

AAξ

−−

−=1 LT

LVV

VVξ

−−

−=1 (4)

Per chiarire la cosa è opportuno esaminare in dettaglio che succede al variare dei parametri nei due contorni estremi corrispondenti a statore e rotore. Per lo statore:

32

36πA A πA LTL +=−=

ϑ

Lo statore ovviamente è fermo ma la porzione di esso interessata al dominio di calcolo mobile con il rotore varia. All’istante iniziale in cui τ=0 e corrispondentemente θ=0:

AL= π/6 AT=π/6+2π/3=5π/6 Facendo variare A tra AL e AT a questo punto si ottengono tutti i punti intermedi, ad esempio:

ξ=1 se A= AL= π/6, ξ=0.5 se A= π/2, ξ=0 se A= AT= 5π/6 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ACRAE,ξ,YACRAE,ξ,X sen3sen01cos3cos01 ++=++=

Il rotore invece chiaramente si sposta, o meglio si sposta il lato 2. In questo caso si ha: VL= π/6 e VT=π/2. Si noti che θ non compare espressamente, ma interviene poi nelle espressioni (2). Anche qui ξ varia tra 0 ed 1 secondo quanto evidenziato dall’esempio:

ξ=1 se V= VL= π/6; ξ=0.5 se V= π/3; ξ=0 se V= VT= π/2 Nel caso in cui θ=0 e η=0, si ottiene la seguente equazione per il lato 2 del rotore: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0sen0cos0cos000sen0cos0sen00 RORORORO XYE,ξ,YYXE,ξ,X −+=++=

In queste due equazioni XR0 ed YR0 si ottengono dalle (3) e seguenti. Avendo individuato i punti che definiscono i due contorni principali, si genera il reticolo unendo tali punti per ricavare la magliatura completa, inizialmente con la semplice interpolazione di Lagrange.

( ) ( ) ( ) ( )ξ,τηXξ,τX-ηξ,η,τX 121 += ( ) ( ) ( ) ( )ξ,τηYξ,τY-ηξ,η,τY 121 += Tale interpolazione non è soddisfacente in quanto collega semplicemente con dei tratti rettilinei i punti di definizione sui contorni di coordinate X1,Y1 e X2,Y2; il grigliato che ne deriva può essere molto distorto e soprattutto non è affatto ortogonale sul contorno. Questi limiti possono essere superati con una interpolazione di tipo diverso nota come interpolazione di Hermite. La formula da utilizzare è la seguente:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ηhη

,τξ,ηXηhη

,τξ,ηXηhξ,τXηhξ,τXξ,η,τX 43211210

∂=∂

+∂=∂

++=

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ηhη

,τξ,ηYηhη

,τξ,ηYηhξ,τYηhξ,τYξ,η,τY 43211210

∂=∂

+∂=∂

++=

In queste equazioni alcuni termini sono noti, altri no. In particolare prima si sono calcolati X1,Y1,X2,Y2, restano da valutare h1,h2,h3,h4 e le quattro derivate sui contorni ad η=cost. I termini h sono funzioni di η determinati a partire da precise condizioni al contorno:

( ) ( )( ) ( ) 1100

0110

22

11========

η h ηhη h ηh

Queste altre condizioni per assicurare una variazione graduale sui contorni: ( ) ( ) ( ) ( )

010

010 2211 =

==

==

==

=dηηdh

dηηdh

dηηdh

dηηdh

Per i coefficienti moltiplicativi delle derivate si nota che, sui contorni η=cost, entrambi debbono annullarsi affinché le assunzioni fatte a proposito di h1 ed h2 sui contorni abbiano significato. Pertanto:

S.P. Cicconardi, M. Marini, A. Perna 5

( ) ( ) ( ) ( ) 01000100 4433 ======== η h ηhη h ηh Inoltre:

( ) ( ) ( ) ( )0

101

10 4343 ==

==

==

==

dηηdh

dηηdh

dηηdh

dηηdh

Secondo quanto specificato sui contorni si ottengono le seguenti funzioni: ( ) ( ) 23

223

1 32132 ηηηhηηηh +−=+−= ( ) ( ) 23

423

3 2 ηηηhηηηηh −=+−= Le derivate che compaiono nella generazione con interpolazione di Hermite, possono essere esplicitate con la condizione che le maglie del reticolo siano ortogonali lungo i contorni. Essa si traduce innanzitutto nelle seguenti eguaglianze:

( ) ( ) ( ) ( )ηξ,τX

η,τξ,ηY

ηξ,τY

η,τξ,ηX

∂∂

−=∂=∂

∂∂

−=∂=∂ 22 00

Possiamo sostituire tali relazioni con queste altre che consentono maggiori gradi di libertà, utili nella creazione di reticoli soddisfacenti anche in geometrie abbastanza complicate

( ) ( ) ( ) ( ) ( ) ( )ηξ,τX

ξKη

,τξ,ηYηξ,τY

ξKη

,τξ,ηX∂

∂=

∂=∂

∂∂

−=∂=∂ 2

22

200

Lungo l’altro contorno valgono relazioni simili, in base alla condizione di ortogonalità: ( ) ( ) ( ) ( ) ( ) ( )

ηξ,τX

ξKη

,τξ,ηYηξ,τY

ξKη

,τξ,ηX∂

∂=

∂=∂

∂∂

−=∂=∂ 1

11

111

Le funzioni K1(ξ) e K2(ξ) vengono scelte in modo empirico per evitare che le linee coordinate s'intersechino all'interno del “dominio fisico”.

( ) ( ) ( ) ( )[ ] ( ) ( )[ ] 221

22121 2 ξ,τYξ,τYξ,τXξ,τX ξKξK −+−==

A questo punto si possono calcolare anche le altre derivate che intervengono nella interpolazione di Hermite, ed effettuare finalmente la generazione algebrica del reticolo

( ) ( )ξA

AY

ξξ,τY

ξA

AX

ξξ,τX

∂∂

∂∂

=∂

∂∂∂

∂∂

=∂

∂ 1111

Ricordando le due espressioni di X1 ed Y1 (1) e la definizione di ξ (4) si può procedere al calcolo della derivata. Rielaborando l’ultima relazione si cerca un’espressione del tipo A=f(ξ)

( )LTT AAξAA −−= Essendo poi AT-AL=2π/ 3 risulta δA/δξ=-2π/3. In appendice B sono sviluppate in dettaglio le derivate δX1/ δA e δY1/ δA, δX2/ δV e δY2/ δV ecc, nel caso presente della generazione di un reticolo per la camera di un motore Wankel. Evidentemente il metodo di generazione di reticoli di calcolo ha una validità generale e può essere applicato ad altre geometrie i cui contorni siano noti parametricamente. 3. IL MODELLO DI CALCOLO Le equazioni che governano un flusso bidimensionale comprimibile, scritte in forma conservativa, sono:

TyG

xF

tQ

=∂∂

+∂∂

+∂∂

essendo:

[ ] [ ]TT upEuvpuuFEvuQ )(,,,,,, 2 ++== ρρρρρρρρ

[ ] [ ]TTTvpEpvuvvG 0,cos,cos,0)(,,, 2 βτατρρρρ =++=

u e v sono le componenti di velocità secondo x e y, ρ la densità, E l'energia interna comprensiva del termine cinetico, p la pressione statica, τ la tensione di taglio di origine viscosa, α e β gli angoli tra la direzione locale della velocità e d x ed y rispettivamente. L'integrazione nel tempo di tali equazioni è stata effettuata con uno schema Runge-Kutta multipasso, mentre le derivate spaziali sono state calcolate con i volumi finiti in versione "cell-vertex"(Cravero e Satta, 1995). La discretizzazione con i

S.P. Cicconardi, M. Marini, A. Perna 6

volumi finiti non necessita di alcuna trasformazione di coordinate, pertanto la trattazione della precedente sezione va considerata come una procedura per disporre opportunamente i punti di calcolo nel piano fisico xy. Nel caso di una griglia mobile una forma integrale delle equazioni di Eulero, trascurando il termine viscoso (He e Denton, 1994), è la seguente:

( ) ( )[ ] 0=∫∫ ∫ −+−+∂∂

∆VA

mgmg dyQvGdxQuFdxdyQt

Compaiono le componenti ugm e vgm con cui la griglia si muove localmente nelle direzioni x ed y rispettivamente. Tale movimento comporta dei flussi aggiuntivi nei bilanci di massa, energia e quantità di moto come evidenzia l'equazione appena riportata. Si è adottato uno schema a due passi per far avanzare la soluzione nel tempo da n ad n+1:

( ) ( )

−∑

∆−−∆−

∆−

∆=

++

+ nn

ijjjgmiigm

nn

nnnDxQvGyQuF

S

t

S

SQQ21

21

21

21

( ) ( )

−∑

∆−−∆−

∆−

∆=

++

+++ 2

121

111 nn

ijjjgmiigmnn

nnnDxQvGyQuF

S

t

S

SQQ

Essendo lo schema di calcolo di tipo esplicito il passo di avanzamento temporale è determinato in base alla nota condizione di Courant-Friederichs-Lewy. Il passo ∆t, comune a tutti i punti perché il campo di moto calcolato abbia significato fisico, consente di ricavare la rotazione ∆θ = Ω∆t e quindi il nuovo reticolo ruotato rispetto a quello proprio dell'istante n. In realtà occorrono tre reticoli per ciascun passo, corrispondenti ai tre livelli temporali n, n+1/2 e n+1. Essi sono costruiti con il generatore algebrico descritto in precedenza, in corrispondenza delle rotazioni θn , θn +∆θ/2, θn +∆θ: per questa ragione è essenziale che i tempi di generazione del reticolo siano ridotti il più possibile. Il calcolo ai volumi finiti è effettuato con l'approccio cell-vertex, attraverso una supercella di quattro elementi che diventa di due oppure un solo elemento per punti che giacciono sui contorni solidi. L'area finita ∆Sij che interviene nello schema di avanzamento nel tempo è illustrata in fig.3. Nello stesso tempo debbono essere modificati i termini dissipativi del secondo e quarto ordine del termine D (Cravero e Satta, 1995) negli stessi punti sui contorni che risultano estremi.

Fig.3: Supercella del calcolo ai volumi finiti nei punti interni (a) e sui contorni (b) e (c)

Sui contorni solidi mobili devono anche essere specificati particolari bilanci affinché siano correttamente trasmesse le condizioni al contorno. In un calcolo non viscoso sono nulli sui contorni solidi i contributi dei termini di flusso che contengono le velocità, non potendo passare attraverso le pareti solide alcuna portata. Tuttavia la pressione, che compare nei bilanci di quantità di moto, è

S.P. Cicconardi, M. Marini, A. Perna 7

trasmessa e nell'equazione dell'energia il termine con la pressione è mantenuto anche sulla parete per tener conto del lavoro scambiato quando essa è mobile. Le velocità ugm e vgm si ottengono semplicemente con le differenze finite essendo noti i reticoli all'istante n ed n+1.

( ) ( )t

yyv

t

xxu

nji

nji

jigm

nji

nji

jigm ∆

−=

−=

++,

1,

,,

1,

,

Il modello qui adottato viene generalmente utilizzato nel calcolo di flussi ad alta velocità in cui le variazioni di densità del fluido dipendono dagli effetti di comprimibilità legati al numero di Mach. Nel caso presente le velocità in gioco sono modeste e la densità varia in relazione al volume a disposizione durante la rotazione. 4. APPLICAZIONI Il metodo di generazione algebrico dei reticoli ed il risolutore esplicito ai volumi finiti sviluppato per griglie mobili è stato applicato ad un motore Wankel di caratteristiche geometriche e regime di funzionamento fissati. Si tratta di un motore trascinato che ruota con una velocità costante pari a 5000 giri/min, caratterizzato dai seguenti valori dei parametri geometrici fondamentali: raggio R pari a 0.1045 m, eccentricità E pari a 0.015 m e il gioco C pari a 0.005 m. Inizialmente si è supposto che le luci di ammissione e di scarico fossero mantenute chiuse e si è studiato il moto fluido entro una delle camere del motore. Il reticolo di calcolo consta di 21 nodi in direzione ξ a di 13 nodi in direzione η, tale magliatura è da ritenersi sufficiente per un calcolo di tipo non viscoso (Yang e Shih, 1986). Gli infittimenti del reticolo presso le pareti, parimenti necessari nel caso di un calcolo viscoso, sono ottenibili modificando le eq.(4) che nel caso presente individuano una dipendenza lineare tra A e ξ e tra V e ξ.I reticoli di calcolo per l'angolo θ=0° e θ=270° sono mostrati nelle fig.4 e 5: tali geometrie corrispondono rispettivamente all'area minima e massima della camera mobile del motore Wankel. Si noti l'ortogonalità delle maglie trasversali (ξ=cost) del reticolo sul contorno rotorico e statorico (η=cost.).

Il Fig.4 : Reticolo di calcolo per θ=0° Fig.5 : Reticolo di calcolo per θ=270°

Si assume che l'aria inizialmente sia in condizioni quasi statiche ad una temperatura e pressione fissata; nel caso presente il rotore è nella posizione di fig.5 (θ=270°) e l’aria si muove lentamente in modo uniforme(Ma=0.1). Istantaneamente l'albero del motore si mette a ruotare a 5000 giri/min, facendo ruotare a sua volta la faccia del rotore e muoversi e deformarsi la camera del motore Wankel, oggetto del calcolo. Vi è quindi un transitorio privo di preciso significato fisico in quanto l'accelerazione non può essere fisicamente infinita. Tuttavia, tale transitorio è di modesta entità come dimostra il diagramma della densità media del fluido di fig.6. Vi sono delle oscillazioni ma in breve la media si assesta sull'andamento dato dalla geometria del Wankel e dalla conservazione della massa. La densità è in forma adimensionale.

S.P. Cicconardi, M. Marini, A. Perna 8

Fig.6: Andamento della densità media del fluido durante le rotazione

A titolo di esempio sono riportati diagrammi vettoriali delle velocità in corrispondenza di diversi angoli di rotazione. Gli andamenti dei vettori velocità della fig.7 sono in accordo con le distribuzioni che Yang e Shih hanno ricavato attraverso un metodo di calcolo implicito alle differenze finite. Nella stessa figura per completezza è diagrammato il campo delle pressioni per lo stesso angolo θ.

Fig.7a: Campo di velocità i corrispondenza dell'angolo di rotazione θ=844°

Fig.7b: Linee isopressione in corrispondenza dell'angolo di rotazione θ=844°

Anche per quanto riguarda il campo di moto in corrispondenza di θ=135° l'accordo con i risultati di Yang e Shih è ragionevole (fig.8). Infine in fig.9 è mostrato il diagramma vettoriale delle velocità in prossimità del volume minimo (θ=525°). Negli ultimi due casi il calcolo era stato effettuato per un intero giro (θ=1080°) prima della rotazione a cui si è fatto riferimento, allo scopo che fossero ininfluenti le condizioni iniziali. Lo stretto limite sul passo temporale che l'adozione di uno schema esplicito comporta, aggiunta all'impossibilità di utilizzare un passo di avanzamento locale per poter ricavare soluzioni di significato fisico istante per istante, ha fatto sì che il numero di iterazioni necessarie per ottenere la simulazione riassunta in fig.6 fosse molto elevato. La rotazione che fa passare dal volume massimo al minimo (per esempio da θ=270° a θ=540°) richiede 15000 iterazioni con CFL=0.7. In corrispondenza delle tenute laterali, in effetti, si hanno delle celle molto piccole che limitano il ∆t ammissibile e di conseguenza ∆θ. I tempi sono comunque contenuti nel caso del calcolo di un flusso non viscoso.

S.P. Cicconardi, M. Marini, A. Perna 9

Fig.8: Campo di velocità i corrispondenza

dell'angolo di rotazione θ=135° Fig.9: Campo di velocità i corrispondenza

dell'angolo di rotazione θ=525°

Non vengono considerati ulteriori diagrammi ottenibili dal calcolo in quanto non confrontabili con dati sperimentali o numerici di confronto. 5. CONCLUSIONI Il modello di calcolo presentato costituisce un primo passo sulla via della modellizzazione effettiva di un motore Wankel. Gli aspetti relativi alla combustione non sono stati affrontati e risultano basilari per lo sviluppo di questo motore. Tuttavia la generazione del reticolo con un metodo algebrico di veloce esecuzione e la risoluzione delle equazioni del moto su griglia mobile possono essere applicate anche a macchine operatrici volumetriche, quindi il metodo di cui sono state presentate alcune prime applicazioni, presenta ampie prospettive. La possibilità di effettuare delle prove sperimentali su un motore Wankel su banco conferisce al presente lavoro il carattere di una ricerca parziale, da completare proprio con dei confronti tra teoria e misure. Bibliografia Yang S.L., Shih T.I.P (1986): “An Algebraic Grid Generation Technique for Time-Varying Two-Dimensional Spatial Domains”, International Journal for Numerical Methods in Fluids, Vol.6, pp.291-304. Marini M. (1991): "An Elliptic Technique To Generate Orthogonal Grids Along Boundaries" , ASME FED-Vol.119, Fluid Machinery Forum, Book No. G00607. Feng P.H. (1993): “Computerized Design, Generation and Meshing of Cycloidal Gears and Rotors of Screw Compressors", Ph. D. Thesis, University of Illinois, Chicago (USA). He L., Denton J. D. (1994): “Three-Dimensional Time-Marching Inviscid and Viscous Solutions for Unsteady Flows Around Vibrating Blades”, ASME Journal of Turbomachinery, Vol.116, pp.469-476. Cravero C., Satta A. (1995): " An Algorithm for the Numerical computation of Convective Fluxes in a Finite Volume Method for Complex configurations", Fluid Machinery Forum, ASME Summer Meeting, Milton Head (USA).

APPENDICE A Il parametro P che determina la forma dell'incavo (fig.1) rispetto alla curva limite di Wankel ha l'espressione:

S.P. Cicconardi, M. Marini, A. Perna 10

( )( )

( ) ( )( )( )( )

4VV se V P

VV se V VVVV

πP

P

VV V se VVVV

PPPP

VV se V VVVV

πP

P

VV se V P

L

T

≤≤=

≤≤

−−

−=

≤≤−−

−+=

≤≤

−−

−=

≤≤=

0

cos12

cos12

0

3443

42

2332

3212

1221

11

1

P1 e P2 corrispondono alla profondità dell’incavo che è simmetrico se P1=P2; V1,V2,V3 e V4 , che definiscono la forma dell’incavo, sono definiti come segue essendo VL e VT rispettivamente l'angolo iniziale e finale:

( )LTL VV.VV −+= 7501 ( )LTL VV.VV −+= 62502 ( )LTL VV.VV −+= 37503 ( )LTL VV.VV −+= 2504

I valori assunti da V, come pure da VL e VT assumono valori diversi a seconda della faccia del rotore, (fig.1). Per il lato 2 VL=π/6 VT=π/2, per il lato 3 VL=5π/6 VT=7π/6, per il lato 4 VL=3π/2 VT=11π/6.

APPENDICE B Si riprendono le derivate delle coordinate che definiscono lo statore rispetto al parametro A, che in base alle eq.(1) valgono:

( ) ( ) ( ) ( ) ( ) ( )ACRAEAY

ACRAEA

Xcos3cos3 sen3sen3 11 ++=

∂∂

+−−=∂∂

In tal modo si ottengono le derivate cercate rispetto a :

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]3

2cos3cos3

2sen3sen3 11 πACRAEξYπACRAE

ξX

++−=∂∂

++=∂∂

Nel caso del contorno rotorico 2 la definizione analitica del contorno stesso è molto più articolata, come mostrato in precedenza. Ma il procedimento rimane lo stesso:

( ) ( )

+=

+

+=

3sen

3coscos

3sen

3cossen 22

ϑϑϑϑϑϑ RORORORO XYEYYXEX

Il parametro indipendente in questo caso è V, che è legato a ξ secondo la (4). Da notare infatti che XR0=f(V) e YR0=f(V):

( )LTT VVξVV −−=

Nel calcolo delle derivate che compaiono nella interpolazione di Hermite 3π

ξV

−=∂∂ e:

( ) ( ) π

VY

- ξV

VY

ξξ,τYπ

VX

- ξV

VX

ξξ,τX

33222222

∂∂

=∂∂

∂∂

=∂

∂∂∂

=∂∂

∂∂

=∂

Sviluppando le due derivate δX2/ δV e δY2/ δV:

VX

VY

VY

VY

VX

VX RORORORO

∂∂

∂∂

=

∂∂

∂∂

+

∂∂

=

∂∂

3sen

3cos

3sen

3cos 22 ϑϑϑϑ

Si ritorna (3) alle definizioni di XR0 e YR0 per valutarne le rispettive derivate:

VXπ

VYπ

VY

VYπ

VXπ

VX RRRORRRO

∂∂

∂∂

=

∂∂

∂∂

+

∂∂

=

∂∂

6sen

6cos

6sen

6cos

Finalmente si ha una dipendenza esplicita di XR ed YR dal parametro V:

( ) ( ) ( ) ( ) ( ) +∂∂

−−=

∂∂

VP

VVREVV

REVR

VX XR 2cos6sen232sen6cos632sen2

22

S.P. Cicconardi, M. Marini, A. Perna 11

( ) ( ) ( ) ( )

( )

( )

( ) ( ) ( ) ( )[ ] 1

21

22

2

21

22

2

2

2

3sen3sen22cos3sen3

3sen912

3sen91

3cos3sen3182cos3cos

−+

−VVVV

VR

EE

VR

E

VVREVVE

( ) ( ) ( ) ( ) ( ) +∂∂

+

+=

∂∂

VP

VVREVV

REVR

VY YR 2sen6sen232cos6cos632cos2

22

( ) ( ) ( ) ( )

( )

( )

( ) ( ) ( ) ( )[ ] 1

22

2

21

22

2

2

2

2cos3cos22sen3sen3

3sen912

3sen91

3cos3sen3182sen3cos

−+

+

−VVVV-

VREE

VRE

VVREVVE

Rimangono da specificare le due derivate della variazione di P in corrispondenza delle "tasche”:

( ) ( ) ( ) ( )VPVVP

VP

VPVVP

VP yx 2cos22sen2sen22cos +

∂∂

=∂

∂−

∂∂

=∂∂

La derivata di P rispetto a V deve essere specificata con una serie di opzioni, come è stato fatto con la funzione stessa nell’appendice A:

TVVe V s VP

≤≤=∂∂

10

( )( ) 1VV V se

VVVV

πP

VP

≤≤

−−

=∂∂

221

11 sen2

( ) 2321 VV V se PPVP

≤≤−=∂∂

( )( ) 34

43

42 sen2

VV V se VVVV

πP

VP

≤≤

−−

=∂∂

40 VVe V s VP

L ≤≤=∂∂

ABSTRACT The rotating volumetric Wankel engine has been attracting the attention of researchers for a long time because of its low vibrations and high specific power. Recently the evolution of reciprocating engines, fuelled especially by low emission constraints, has set apart the rotating internal combustion engines that keep some interesting features anyway. In the paper a model to calculate the flow field in a Wankel engine is presented. The computational grid, which is moving and changing in form, is repeatedly generated through an algebraic method that is described in detail. The flow within the domain embedded between a rotor face and the outer casing is calculated through an explicit finite volume method. A worked example allows to show the characteristics of the model.