Termodinamica non equilibrio

76
AA 2003-2004 1 Corso di Chimica Fisica – Parte Quarta Cenni di Termodinamica di non- Equilibrio Corso di Laurea in Fisica e Tecnologie Avanzate Anno Accademico 2003-2004

Transcript of Termodinamica non equilibrio

Page 1: Termodinamica non equilibrio

AA 2003-2004 1

Corso di Chimica Fisica – Parte Quarta

Cenni di Termodinamica di non-Equilibrio

Corso di Laurea in Fisica e Tecnologie Avanzate

Anno Accademico 2003-2004

Page 2: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 2

L’Entropia e il Principio d’Ordine di Boltzmann In questa parte del nostro corso, il punto di vista sarà strettamente

fenomenologico; Non indagheremo su quali possano essere le relazioni con la dinamica,

ma delineeremo dei metodi che descrivono efficacemente i fenomeni termodinamici irreversibili;

Soltanto a partire dagli anni 60 del secolo scorso si è cominciato a considerare il ruolo costruttivo dei fenomeni irreversibili, fino a quel momento considerati solo alla stregua di rumore o comunque di fonte di dissipazione;

Il nostro punto di partenza sarà costituito ovviamente da un’analisi del concetto di entropia e del significato del secondo principio della termodinamica;

Ricordiamo comunque che, classicamente, tali principi nelle formulazioni viste fino a questo momento sono applicabili solo a condizioni di equilibrio, vedremo ora come generalizzare queste applicazioni al caso di non equilibrio.

Page 3: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 3

Produzione di Entropia Nella termodinamica classica il principio di aumento dell’entropia viene

usualmente formulando facendo riferimento a sistemi isolati; Non è difficile estendere tale principio anche ai sistemi aperti, cioè a

sistemi che scambiano con il mondo materia ed energia; Si devono in tal caso distinguere due termini del mutamento di entropia

dS, il primo deS è il flusso di entropia attraverso i confini del sistema,

mentre il secondo, diS, è l’entropia prodotta all’interno del sistema;

Poiché l’entropia è una grandezza estensiva avremo

La seconda legge della termodinamica esige che per i processi che si svolgono all’interno del sistema si abbia sempre

SdSddS ei

0Sdi

Page 4: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 4

Produzione di Entropia Invece deS non ha un segno definito a priori poiché la variazione entropica

corrispondente dipende dalla natura dello scambio tra il sistema e il suo intorno;

Di conseguenza si possono immagine evoluzioni in cui il sistema raggiunge uno stato a entropia più bassa di quella iniziale;

Questi stati, che dal punto di vista della termodinamica statistica di equilibrio sarebbero estremamente improbabili, possono essere indefinitamente mantenuti in uno stato stazionario tale che dS = 0 cioè tali che

Perciò, in teoria, se diamo ad un sistema una sufficiente quantità di flusso negativo di entropia, lo rendiamo capace di giungere ad una configurazione stabile più ordinata di quella di partenza;

Questo “rifornimento” di entropia, deve inoltre avvenire in condizioni di non equilibrio in quanto altrimenti tutte le variazioni di entropia sarebbero identicamente nulle.

0 SdSd ie

Page 5: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 5

Produzione di Entropia

Da un punto di vista del tutto generale possiamo considerare i processi irreversibili come correnti o flussi termodinamici generati da forze termodinamiche;

Ad esempio la differenza di temperatura fra due regioni vicine di un sistema (quindi il gradiente di temperatura) è considerata una forza termodinamica che genera un flusso irreversibile di calore;

Analogamente ad una differenza di concentrazione sarà associata una forza termodinamica che genera un flusso di materia.

Page 6: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 6

Produzione di Entropia

Esempio basato sulla conduzione del calore

1221

11

TTdQ

T

dQ

T

dQdSi

dt

dQ

TTdt

dSi

12

11 21 TTJQ

Legge di FourierLegge di Fourier

0)(

11

21

221

2112

TT

TTTT

TTdt

dSi

Page 7: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 7

Produzione di Entropia Dalla definizione di entropia, ricordando il primo principio della

termodinamica, possiamo scrivere, per un sistema idrostatico, la seguente relazione

Più in generale l’entropia è funzione, oltre che dell’energia e del volume, anche della composizione del sistema.

Indicando con n1, n2, n3,..... I numeri delle moli delle varie componenti possiamo allora scrivere

T

dVp

T

dUdS

dn

TdV

T

p

T

dUdn

n

SdV

V

SdE

U

SdS

POTENZIALI CHIMICI

Page 8: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 8

Produzione di Entropia dovuta ad una reazione chimica Supponiamo che anche in condizioni di non equilibrio l’entropia dipenda dalle stesse

variabili di stato da cui dipende all’equilibrio; Come esempio vediamo come esprimere la produzione di entropia derivante da una

reazione chimica in un sistema chiuso; Consideriamo la reazione

Come sappiamo, possiamo introdurre il grado di avanzamento della reazione, , tramite il quale è possibile esprimere la variazione di moli della generica sostanza coinvolta nella reazione

Introducendo il tasso di reazione

...

BvAvYvXv BAYX

dvdn

dt

dv

Page 9: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 9

Produzione di Entropia dovuta ad una reazione chimica ... possiamo infine indicare la produzione di entropia in un

sistema chiuso in cui avvenga una reazione chimica come

Dove A è detta affinità della reazione chimica. In questo caso:

La produzione di entropia per unità di tempo è:

i

iiAT

Ad

T

qdS

,

0 , T

AdSd

T

qSd ie

01

AvTdt

Sdi

PRODUZIONE DI ENTROPIAFLUSSO DI

ENTROPIA

Page 10: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 10

Se avvengono simultaneamente più reazioni:

All’equilibrio tutte le affinità sono nulle:

Tuttavia, esistono casi di sistemi lontani dall’equilibrio in cui, per esempio:

In casi come questo le reazioni si dicono accoppiate

021 rAAA

0,0,0 22112211 vAvAvAvA

01

vATdt

Sdi

Produzione di Entropia dovuta ad una reazione chimica

Page 11: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 11

Formulazione generalizzata della produzione di Entropia La produzione di entropia in un sistema in cui avvengano trasformazioni

irreversibili può essere generalmente scritta come la somma di prodotti di forze (o affinità) generalizzate per i corrispondenti flussi (o velocità):

Per esempio, la produzione di entropia dovuta ad una reazione chimica può essere scritta come

0 k

kki XJ

dt

Sd

T

AXvJXJv

T

A

dt

Sdchchchch

i ,,0

FLUSSO FLUSSO GENERALIZZATOGENERALIZZATO

FORZA GENERALIZZATAFORZA GENERALIZZATA

Page 12: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 12

Formulazione generalizzata della produzione di Entropia La formula appena vista ha una serie di limitazioni, la più importante

è che essa vale solo in un intorno dell’equilibrio, possiamo pensare il sistema suddiviso in una serie di regioni

ciascuna delle quali abbastanza grande da mantenere caratteristiche macroscopiche, ma anche sufficientemente piccole da far si che le caratteristiche siano abbastanza vicine all’equilibrio;

Si parla allora di “equilibrio locale”; Se questa ipotesi è soddisfatta, possiamo presupporre che le

relazioni fra forze generalizzate e flussi generalizzati siano in prima approssimazione lineari;

Questo schema include automaticamente tutte le leggi diffusive che abbiamo già visto nella parte dedicata alla cinetica (la legge di diffusione di Fourier per cui il flusso di calore è proporzionale al gradiente di temperatura, la legge di diffusione di materia in cui il flusso è proporzionale al gradiente di concentrazione, e così via).

Page 13: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 13

Relazioni di Reciprocità di Onsager

Questo ci porta alla formulazione della termodinamica lineare dei processi irreversibili, che risulta pertanto caratterizzata dalle relazioni;

Relazioni lineari di questo tipo vengono dette relazioni fenomenologiche.

Per illustrare questo punto, consideriamo due processi irreversibili che avvengano simultaneamente (es. diffusione di massa e calore):

I coefficienti Lik sono detti coefficienti fenomenologici.

2221212

2121111

XLXLJXLXLJ

j

jiji XLJ

Page 14: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 14

Relazioni di Reciprocità di Onsager E’ interessante osservare il significato dei vari termini

I coefficienti del tipo Lii esprimono per esempio la conducibilità elettrica, il coefficiente di diffusione, la conducibilità termica...

...mentre i coefficienti del tipo Lik con ik esprimono l’interferenza tra due processi irreversibili.

Ogni forza generalizzata può quindi dare origine ad ogni tipo di flusso generalizzato. Si può dimostrare che valgono le seguenti relazioni fondamentali, dette Relazioni di

Reciprocità di Onsager

In altre parole quando il flusso Ji, corrispondente al processo irreversibile i, è influenzato dalla

forza Xj del processo irreversibile j, allora anche il flusso Jj è influenzato dalla forza Xi secondo

lo stesso coefficiente Lij.

kiik LL

Page 15: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 15

Relazioni di Reciprocità di Onsager L’importanza di queste relazioni sta nella loro generalità; Esse sono state sottoposte a molte verifiche sperimentali e la loro validità

ha dimostrato come la termodinamica di non-equilibrio, come del resto anche la termodinamica dell’equilibrio, conduca a risultati del tutto generali indipendenti da ogni modello molecolare specifico;

Vediamo ora un esempio di applicazione delle relazioni di reciprocità che ci porterà ad un altro importante risultato della termodinamica dei processi irreversibili. Supponiamo di avere un sistema composto da due recipienti connessi tramite un

capillare o una membrana; Si mantenga fa i due recipienti una differenza di temperatura; Nel sistema agiscono allora due forze generalizzate, Xk e Xm, corrispondenti alle

differenze di temperatura e di potenziale chimico fra i due recipienti; Il sistema raggiunge uno stato nel quale scompare il trasporto di materia (Jm = 0)

mentre continua il trasferimento di energia fra le due fasi a differente temperatura; Diremo allora che il sistema ha raggiunto uno stato stazionario di non-equilibrio.

Page 16: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 16

Stati stazionari Consideriamo ora la produzione di entropia:

Le relazioni fenomenologiche sono in questo caso:

Per le relazioni reciproche di Onsager, L12=L21 quindi:

0 mmkki XJXJ

dt

Sd

mkm

mkk

XLXLJ

XLXLJ

2221

1211

02 22221

211 mmkk

i XLXXLXLdt

Sd

Page 17: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 17

Consideriamo ora la derivata della produzione di entropia rispetto a Xm, a

Xk costante:

Abbiamo pertanto due condizioni equivalenti che permettono di definire la stabilità dello stato stazionario:

Dato che la produzione di entropia è un’espressione quadratica positiva per definizione, tali condizioni corrispondono al minimo nella velocità di produzione dell’entropia.

022 2212

mmthi

m

JXLXLdt

Sd

X

0 ,0

mi

m

Jdt

Sd

X

Stati stazionari

Page 18: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 18

Il Teorema della Minima Produzione di Entropia Il teorema della minima produzione di Entropia esprime un tipo di

proprietà “inerziale” dei sistemi lontani dall’equilibrio;

Quanto determinate condizioni al contorno impediscono al sistema il

raggiungimento dell’equilibrio termodinamico, cioè della condizione

di produzione nulla di entropia, allora il sistema si stabilizza nello

stato di minima dissipazione;

Questa proprietà vale esattamente solo per stati del sistema

non troppo lontani dall’equilibrio (equilibrio locale);

In condizioni molto lontante dall’equilibrio il comportamento

termodinamico può essere completamente diverso e persino

opposto a quello previsto dal teorema di minima produzione

d’entropia.

Page 19: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 19

Sistemi dissipativi

I sistemi conservativi sono soltanto un’idealizzazione; spesso si ha a che fare con sistemi dissipativi, nei quali l’energia, a causa dell’attrito, viene dispersa in calore

Es. il pendolo che si ferma a causa dell’attrito

I sistemi dissipativi sono caratterizzati dal fatto che le orbite di fase che partono da condizioni iniziali anche molto diverse finiscono per giungere tutte in un determinato insieme di stati detto attrattore.

Page 20: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 20

Le Strutture Dissipative É notevole che questo

comportamento inaspettato fosse già stato osservato in normali situazioni studiate dall’idrodinamica classica;

Un esempio di questo tipo di fenomeno è dato dalla classica “Instabilità di Bénard”;

L’instabilità di Bénard è relativa all’insorgere di moti convettivi in un fluido compreso fra due lamine con un gradiente di temperatura costante T.

Page 21: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 21

Le Strutture Dissipative

Page 22: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 22

Le Strutture Dissipative Questo fenomeno evidenzia che il non-equilibrio può risultare sorgente di ordine; È interessante notare che il principio d’ordine di Boltzmann assegnerebbe probabilità

quasi nulla all’accadimento della convezione di Bénard; Ogni volta che si producono nuovi stati coerenti lontani dall’equilibrio, viene meno

l’applicabilità della teoria delle probabilità così come è implicata nella termodinamica statistica di equilibrio;

Nel caso della convezione di Bénard si può immaginare che esistano sempre delle piccole correnti di convezione che paiono fluttuazioni dallo stato medio: al di sotto di un certo valore critico del gradiente di temperatura queste fluttuazioni vengono

smorzate e scompaiono ... ...al si sopra di questo valore critico, invece, certe fluttuazioni sono amplificate e danno vita

ad una corrente macroscopica.

Si produce così un nuovo ordine molecolare che corrisponde essenzialmente ad una fluttuazione gigante stabilizzata dallo scambio di energia col mondo esterno;

Questo è l’ordine caratterizzato dalla presenza di quelle che Prigojine e collaboratori hanno chiamato “strutture dissipative”.

Page 23: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 23

Le Strutture Dissipative Una discussione approfondita di questi aspetti richiederebbe un trattamento

approfondito dei concetti di stabilità termodinamica;

In questa introduzione ci limitiamo ad evidenziare che lo sviluppo della

teoria della termodinamica dei processi irreversibili individua una differenza

fondamentale fra le leggi per sistemi in equilibrio e per sistemi lontani

dall’equilibrio; Le leggi dell’equilibrio sono universali;

Il comportamento lontano dall’equilibrio, invece, può diventare assai specifico

(anche se non mancano anche in questo caso una serie di comportamenti

invarianti e quindi universali);

I concetti di stabilità termodinamica portano direttamente allo studio dei

sistemi dinamici, in cui il gioco svolto dalla non-linearità diventa essenziale;

Un caso molto interessante di sistema lontano dall’equilibrio è costituito

dalle reazioni chimiche oscillanti, alle quali abbiamo già accennato;

Page 24: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 24

Non Linearità e Caos Deterministico Il comportamento caotico di un sistema è spesso erroneamente

attribuito solo alla sovrapposizione di una moltitudine di forze stocastiche.

Un esempio classico è il moto browniano di una particella sottoposta agli urti delle molecole del solvente in cui è immersa.

Ma non è sempre così. E' noto, e Poincarè ne era ben cosciente, che equazioni differenziali

non lineari, che per alcune scelte dei parametri producono moti ordinati, possono, per altri valori dei parametri, generare comportamenti che non si ripetono mai.

Questo tipo di Caos generato da un oggetto così rigido e deterministico come un'equazione differenziale prende appunto il nome di caos deterministico.

Page 25: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 25

Determinismo e Predicibilità Senza dubbio una delle maggiori scoperte scientifiche degli ultimi venti

anni è rappresentata dal fatto che in certe condizioni sistemi non lineari deterministici possono manifestare un comportamento aleatorio.

Un'apparente paradosso è che il caos è deterministico, cioè è generato da regole fisse che di per sé non contengono alcun elemento casuale.

E' importante infatti sottolineare il fatto che il comportamento dei sistemi caotici non è intrinsecamente indeterministico.

In verità si può dimostrare matematicamente che le condizioni iniziali sono sufficienti a fissare l'intero comportamento futuro del sistema in maniera esatta ed univoca.

Il problema insorge quando cerchiamo di specificare quelle condizioni iniziali.

Page 26: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 26

Determinismo e Predicibilità In pratica non possiamo mai conoscere esattamente lo stato iniziale

di un sistema.

Per quanto raffinate siano le nostre osservazioni, sarà sempre

presente un qualche errore.

La questione concerne l'effetto che questo errore ha sulle nostre

predizioni.

E' qui che entra in gioco la distinzione cruciale fra evoluzione

dinamica caotica e ordinaria.

Nel caso dei sistemi non lineari le indeterminazioni sulle condizioni

vengono amplificate in maniera esponenziale con il passare del

tempo fino a che il comportamento del sistema appare del tutto

imprevedibile.

Page 27: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 27

Determinismo e Predicibilità Esempio

Consideriamo il moto di una singola particella puntiforme che salta

bruscamente da un punto ad un altro lungo una linea.

Supponiamo anche che il moto sia deterministico, cioè assegniamo una

regola precisa che permetta di stabilire univocamente la posizione della

particella una volta che sia assegnata la posizione occupata all'istante

immediatamente precedente.

La regola è la seguente: si consideri il segmento di linea compreso fra 0

ed 1 per semplicità, indicando con xt la posizione all'istante generico t

avremo

xx x

x xtt t

t t

2 05

2 1 051 1

1 1

se

se

.

.

Page 28: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 28

Determinismo e Predicibilità A dispetto della sua semplicità questo algoritmo genera un

comportamento talmente ricco, complesso ed irregolae da risultare completamente imprevedibile.

Nella maggior parte dei casi, infatti, la particella salta avanti ed indietro in modo apparentemente casuale.

Page 29: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 29

Determinismo e Predicibilità Per dimostrarlo conviene usare i numeri binari.

Se si rappresenta l'intervallo da 0 ad 1 con una linea possiamo

immaginare due celle indicate con S e D per gli intervalli sinistro

e destro e assegnare ciascun numero ad S oppure a D a

seconda che la sua espressione binaria inizi con 0 oppure 1.

L'algoritmo di raddoppiamento fa si che la particella salti avanti e

indietro fra S e D.

Supponiamo di iniziare con il numero 0.011010001 che

corrisponde ad un punto della cella di sinistra perché la prima

cifra dopo il punto decimale è 0.

La particella si trova quindi inizialmente in S.

Page 30: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 30

Determinismo e Predicibilità Quando viene raddoppiato il numero diventa 0.11010001, che si

trova a destra: la particella salta quindi in D.

Raddoppiando di nuovo si ottiene 1.1010001 ma il nostro

algoritmo richiede di eliminare l'1 davanti al punto decimale. La

prima cifra dopo il punto decimale è 1, così che la particella

rimane in D.

Continuando in questo modo si genera la sequenza

SDDSDSSSD.

Risulta chiaro da quanto sopra che il destino della particella (che

essa si trovi in S o in D) all'n-esimo passaggio dipenderà dal

fatto che l'n-esima cifra sia uno 0 o un 1.

Page 31: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 31

Determinismo e Predicibilità Due numeri identici fino all'n-esimo posto decimale, ma che differiscono per

la cifra n+1 genereranno la stessa sequenza di salti fra S e D per n passaggi ma assegneranno poi la particella a celle diverse al passaggio successivo.

In altre parole, due numeri iniziali molto vicini, corrispondenti a due punti sulla linea molto vicini produrranno sequenze di salti che, alla fine, potranno essere molto diverse.

Si capisce quindi perché il moto della particella non è predicibile. A meno che la posizione iniziale della particella non sia conosciuta esattamente, l'incertezza aumenterà sempre più e alla fine non saremo più in grado di fare previsioni.

Ad esempio se conosciamo la posizione iniziale della particella con un'accuratezza di 20 cifre decimali binarie, non saremo in grado di predire se essa si troverà nella metà di sinistra o in quella di destra dell'intervallo dopo venti salti.

Page 32: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 32

Determinismo e Predicibilità Poichè una specificazione precisa della posizione iniziale richiede un'espansione

decimale infinita, qualunque errore condurrà prima o poi, ad una deviazione fra il comportamento previsto e quello reale.

L'effetto dei ripetuti raddoppiamenti è quello di estendere ad ogni passaggio l'ampiezza dell'indeterminazione (la cui crescita è esponenziale), così che per quanto piccola sia l'indeterminazione iniziale, l'incertezza sarà alla fine maggiore dell'ampiezza dell'intero intervallo, con la conseguente perdita totale di qualsiasi potere di previsione.

La storia della nostra particella quindi, benché completamente deterministica, è talmente sensibile alle condizioni iniziali che qualsiasi indeterminazione relativa a questa informazione, per quanto piccola, è sufficiente a distruggere la capacità di previsione dopo un numero finito di salti.

In questo senso quindi il comportamento della particella mostra una complessità infinita. Per descrivere compiutamente la storia della particella sarebbe necessario specificare una successione infinita di cifre contenente una quantità di informazione infinita. Nella pratica questo, ovviamente, non è possibile.

Page 33: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 33

L'Insorgere del Caos Il caos deterministico dei sistemi dinamici non lineari non è quindi l'analogo

del caos nel senso letterale di completa disorganizzazione e casualità. Il caos non lineare si riferisce ad un tipo di casualità che possiamo definire

vincolata e che, come vedremo più avanti, può essere associata con la geometria frattale.

Il più ampio quadro concettuale dal quale il caos emerge è la teoria dei sistemi dinamici. Un sistema dinamico si compone di due parti: la caratteristiche del suo stato (cioè le informazioni essenziali sul sistema)... ... e la dinamica (una regola che descrive l'evoluzione dello stato nel tempo).

L'evoluzione di un sistema può essere visualizzata in uno spazio delle fasi, in ogni caso i sistemi che noi andremo a considerare possiedono le seguenti caratteristiche: esiste un parametro controllabile dal quale dipende il comportamento del

sistema; il sistema è dissipativo, cioè al cessare di una eventuale perturbazione esterna, il

sistema ritorna allo stato fondamentale dopo un tempo di rilassamento caratteristico.

Page 34: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 34

L'Insorgere del Caos Un buon esempio di sistema dinamico è offerto dall'equazione di evoluzione

del livello di popolazione di una specie in un ambiente competitivo. Studieremo questo esempio sfruttando una rappresentazione discreta del sistema.

L' equazione di evoluzione in una rappresentazione discreta é chiamata mappa e l'evoluzione stessa è descritta tramite un processo di iterazione della mappa, cioè applicando ripetutamente l'operazione di mapping ai punti generati ad ogni livello.

Pertanto un'iterazione della forma

dove f trasforma l'intervallo [0, 1] in se stesso, é interpretata come una versione in tempo discreto di un sistema dinamico continuo.

In genetica ad esempio xk potrebbe descrivere il cambio nella frequenza dei geni fra generazioni successive; in epidemiologia la variabile xk potrebbe indicare la frazione di popolazione infetta al tempo k , etc.

x x f xk k k 1 ( )

Page 35: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 35

L'Insorgere del Caos Consideriamo il mapping più semplice, chiamato anche relazione

di ricorrenza, in cui una popolazione xk di organismi per unità di area alla k-esima generazione é direttamente proporzionale alla popolazione nella precedente generazione con una costante di proporzionalità :

La costante di proporzionalità è data dalla differenza fra la frequenza delle nascite e la frequenza dei decessi ed è pertanto la frequenza netta di riproduzione della popolazione in esame che in seguito chiameremo semplicemente tasso di riproduzione.

L'equazione precedente conduce alla crescita esponenziale di Maltus.

x x kk k 1 1 2 , ,.....

Page 36: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 36

L'Insorgere del Caos Un modello più realistico consiste nel riconoscere che la crescita della

popolazione non può essere illimitata. Svariati fattori, fra i quali senz'altro il più importante è dato dalla disponibilità

di risorse alimentari, limitano la crescita della popolazione alterando il tasso di riproduzione.

In particolare quest'ultimo parametro si assume che diminuisca in modo lineare con l'aumento della popolazione; si pone cioè:

dove é il livello di saturazione della popolazione. Pertanto la relazione ricorrenza lineare è sostituita da una relazione discreta

non lineare chiamata equazione logistica:

k

k

xx 1 )(

1 1

kkk

xxx

Page 37: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 37

L'Insorgere del Caos Vediamo alcune caratteristiche interessanti di questa equazione. Consideriamo la funzione continua

con x appartenente all'intervallo [0,1].

Per positivo e minore o uguale ad 1, questa funzione descrive una mappa

che assegna ad ogni punto xk dell'intervallo unitario un altro punto xk+1

appartenente allo stesso intervallo. La condizione 1 serve per assicurare che f(xk), come xk stesso, appartenga

all'intervallo [0,1].

f x x x( ) ( ) 4 1

)(1 41 kkkk xfxxx

Page 38: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 38

L'Insorgere del Caos Né la forma esatta della

funzione né la restrizione per la variabile x all'intervallo [0,1] minano la generalità delle conclusioni alle quali giungeremo.

Tracciamo il grafico di f per = 0.7 si tratta di una parabola che si annulla per x = 0 e x = 1 ed ha un massimo pari a per x = 0.5 .

Usando questo grafico possiamo studiare l'iterazione della mappa partendo da un'arbitraria condizione iniziale x0 .

Page 39: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 39

L'Insorgere del Caos L'iterazione converge a x*

che è il punto di intersezione del grafico di f con la diagonale, indipendentemente dal punto di partenza x0 , con due eccezioni : 0 ed 1. Scegliendo x = 0 o x = 1 troviamo un punto fisso stabile cioè un attrattore.

Scegliendo l'intervallo aperto ]0,1[ troviamo che il punto fisso x* verso cui converge qualunque traiettoria a partire da x0 , é anch'esso un punto fisso o attrattore.

Page 40: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 40

L'Insorgere del Caos La curva f(x) dipende

dal valore del parametro che è, come abbiamo visto , il massimo valore di f.

Variando , modifichiamo la curva il che può avere conseguenze decisive sul futuro dell'iterazione. Consideriamo ad esempio = 0.8 .

Adesso il punto fisso x* è instabile in quanto la pendenza della tangente in questo punto è maggiore di 1 in valore assoluto.

Page 41: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 41

L'Insorgere del Caos La costruzione grafica

mostra che questa mappa ha due punti particolari x*1 e x*2 tali che:

x*2 = f(x*1)

x*1 = f(x*2)

In altri termini, l'iterazione alterna un punto con l'altro.

A partire da uno di questi punti dobbiamo iterare due volte per tornare in esso.

Page 42: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 42

L'Insorgere del Caos I due punti costituiscono un

attrattore di periodo 2. Dato che

questi due punti (che non sono punti fissi di f ), sono punti fissi della funzione:

Uno studio più dettagliato mostra che si passa in maniera continua dalla prima situazione alla seconda aumentando il valore di .

x f x f f x1 2 1 ( ) ( ( ))

x f x f f x2 1 2 ( ) ( ( ))

g x f f x f x( ) ( ( )) ( ) 2

Page 43: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 43

Attrattori

Spazio delle fasi di un pendolo senza attrito

Spazio delle fasi di un pendolo senza attrito

Spazio delle fasi di un pendolo con attrito

Spazio delle fasi di un pendolo con attrito

attrattoreattrattore

Page 44: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 44

L'Insorgere del Caos La transizione avviene al valore di soglia = 0.75.

Per questo valore il punto fisso di f diventa instabile e corrispondentemente appaiono due punti fissi stabili per f 2.

Un attrattore di periodo 2 prende il posto dell'attrattore di periodo 1.

Che cosa accade se continuiamo ad incrementare ? Il grafico di f ed gradualmente cambia in maniera tale che i punti fissi di

finiscono anch'essi per perdere la loro stabilità.

Sia x*1 che x*2 divengono instabili per

al disopra di questo valore g non ha punti fissi stabili.

1 6

40 86237. ...

Page 45: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 45

L'Insorgere del Caos La funzione

per = 0.875 ha adesso quattro punti fissi stabili.

Continuando ad aumentare lo stesso fenomeno si verificherà ad infinitum , vedremo così una cascata di biforcazioni ciascuna delle quali sarà accompagnata da un raddoppiamento del periodo associato con una instabilità subarmonica.

h x g g x f x( ) ( ( )) ( ) 4

Page 46: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 46

L'Insorgere del Caos

All'aumentare di osserviamo una successione di attrattori di periodo 2n.

Come si vede variando il parametro critico oltre la zona dei raddoppiamenti di periodo, entriamo in una regione in cui ogni periodicità è assente e il comportamento del sistema appare erratico ed imprevedibile;

lo scenario descritto rappresenta una delle possibili transizioni al caos.

Page 47: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 47

L'Insorgere del Caos Negli anni '70 M. Feigenbaum ha scoperto che una larga classe di sistemi non

lineari manifesta modalità analoghe di transizione al caos, inoltre tale transizione risulta controllata da parametri misurabili.

In particolare il parametro di convergenza è universale, cioè è indipendente dalla natura fisica del

particolare sistema in esame che subisce una transizione al caos seguendo la strada dei raddoppiamenti di periodo:

la scala relativa delle ampiezze di biforcazione è universale, cioè:

Biforcazioni e comportamenti caotici sono stati identificati in numerosissimi sistemi di interesse biologico e fisico.

...6692.4 lim1

i

i

i

lim . ...i

i

i

1

2 5029

Page 48: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 48

L'Insorgere del Caos Giunti a questo punto è utile porsi una domanda: c'è una differenza

osservabile, oltre che concettuale, fra il caos stocastico e il caos deterministico?

Sì, ed è fondamentale! Nel primo caso la stocasticità delle fluttuazioni fa vagare il sistema su di una porzione di spazio delle fasi che ha la dimensionalità N di tutto lo spazio e non vincola il moto su un insieme di dimensioni inferiori.

Invece nel caos deterministico il luogo asintotico verso cui tendono condizioni iniziali distinte, l'attrattore, ha dimensioni D minori di N (questo lo impone la condizione di dissipazione) ma maggiori di quelle associate a moti ordinati (per un punto fisso D=0, un ciclo limite ha D=1 ).

In generale gli attrattori verso cui evolve lo stato di un sistema dinamico in condizioni di moto caotiche hanno una dimensione non intera; le strutture geometriche caratterizzate dal possedere dimensioni non intere vengono dette strutture frattali.

Page 49: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 49

Strani Attrattori Come abbiamo già accennato, gli attrattori dei sistemi dissipativi non

lineari devono possedere due caratteristiche apparentemente

contraddittorie. Da un lato due orbite corrispondenti a condizioni iniziali prossime divergono

con velocità esponenziale e quindi restano vicine fra loro soltanto per breve

tempo …

dall'altro il volume di spazio occupato dall'attrattore deve avere un volume

finito a causa della condizione di dissipatività.

La chiave per interpretare il comportamento caotico risiede nella comprensione di

una semplice operazione di stiramento e piegatura che ha luogo nello spazio

delle fasi. La divergenza esponenziale deve essere un fenomeno locale: dal momento che la

dimensione degli attrattori è finita, due orbite situate su un attrattore caotico non

possono continuare a divergere esponenzialmente per sempre.

Page 50: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 50

Strani Attrattori Ne segue che l'attrattore deve piegarsi su se stesso. Benché le orbite

divergano e seguano strade sempre più diverse prima o poi devono passare di nuovo una accanto all'altra.

Le orbite situate su un attrattore caotico vengono mescolate esattamente come un fornaio impasta il pane.

Ci si può immaginare ciò che accade alle traiettorie vicine su un attrattore caotico versando nella pasta una goccia di colorante blu.

L'impastatura è una combinazione di due azioni: lo stendimento della pasta che fa diffondere il colorante e il ripiegamento della pasta su se stessa.

Il caos agisce allo stesso modo ma, naturalmente, invece di mescolare pasta mescola lo spazio delle fasi.

Page 51: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 51

Strani Attrattori Quando si compiono osservazioni su un sistema fisico è impossibile

determinare esattamente lo stato del sistema a causa degli inevitabili errori di misurazione.

Quindi lo stato del sistema non è situato in un unico punto bensì all'interno di una piccola regione dello spazio delle fasi.

La piccola regione determinata da una misurazione corrisponde alla chiazza di colorante blu nell'impasto.

L'aleatorietà delle orbite caotiche è quindi conseguenza di questo processo di mescolamento. Il processo di stiramento e piegatura avviene più volte e produce pieghe dentro altre pieghe, all'infinito.

In altre parole un attrattore caotico è un frattale, cioè un oggetto che rivela particolari sempre più numerosi via via che viene ingrandito.

Page 52: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 52

Attrattori strani - ProprietàUn attrattore A è definito come un insieme compatto nello spazio delle fasi con queste proprietà:

• A non ha volume nelle n dimensioni dello spazio delle fasi

• A è contenuto in un dominio B di volume non nullo che costituisce il suo bacino di attrazione

• A possiede la proprietà di autosomiglianza (self similarity)

Page 53: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 53

Tre importanti caratteristiche degli attrattori sono:

• La perdita di memoria delle condizioni iniziali• La contrazione delle aree.• Le traiettorie di fase non si intersecano

La perdita di memoria delle condizioni iniziali

Una volta scomparso il transiente e raggiunto il limite asintotico rimane solo una traiettoria, non è quindi possibile risalire alle condizioni iniziali date. L’informazione è irrimediabilmente perduta.

Attrattori strani - Proprietà

Page 54: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 54

La contrazione delle aree

1

1 ni

i i

n

dV X

V dt X

X

��������������R

A causa della dissipazione l’iterazione della funzione contrae i volumi.La variazione infinitesima di un volume nello spazio delle fasi è data dalla derivata di Lie:

Nei sistemi dissipativi questa quantità è negativa e misura la velocità di contrazione.

Per sistemi Hamiltoniani (o conservativi) il volume è conservato.

1

0n

i

i i

X

X

Attrattori strani - Proprietà

Page 55: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 55

Le traiettorie di fase non si intersecano

Questa è una conseguenza che deriva dalla natura deterministica dei sistemi dinamici presi in esame. Infatti se presa una condizione iniziale potessimo individuare due traiettorie cadremo in contraddizione con l’idea deterministica che mi permette di descrivere il sistema con un numero finito di equazioni differenziali ordinarie.

Attrattori strani - Proprietà

Page 56: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 56

Mappa di Henon

: ( , ) ( ', ')T x y x y

La mappa di Henon è una mappa del piano che pur essendo non lineare è invertibile inoltre è un modello a tempo discreto.

21

1

1k k k

k k

X Y X

Y X

costante usata per il controllo della non linearità

costante per il controllo della dissipazione

N.B. A differenza delle mappe unidimensionali, nonostante l’invertibilità la Mappa di Henon è in grado di generare sequenze di punti del piano che hanno andamenti tipicamente caotici.

1,...,k n

Page 57: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 57

Il significato statistico dell’Entropia

Page 58: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 58

Mappa di Henon

Per una mappa a tempo discreto, come la mappa di Henon, le derivate di Lie possono essere sostituite dallo Jacobiano:

1 1

1 1

2 1det det

0

k k

k k k

k k

k k

X X

X Y XJ

Y Y

X Y

1 ( 1) koArea K A

Page 59: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 59

Instabilità, biforcazioni & catastrofi Nei punti in cui il sistema mostra zone di instabilità una

piccola perturbazione ambientale agisce indirizzando il sistema verso nuove forme di ordine, dette catastrofi o biforcazioni

Questo comportamento

è tipico dei sistemiaperti lontani dall’equilibrio

Questo comportamento

è tipico dei sistemiaperti lontani dall’equilibrio

Page 60: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 60

Dimensioni Frattali

Le strutture frattali sono spesso esisto di dinamiche non lineari caotiche; ciononostante la matematica dei frattali si è sviluppata indipendentemente da quella delle dinamiche non lineari e anche oggi le connessioni fra le due discipline non sono del tutto definite.

Le strutture frattali hanno una regolarità geometrica soggiacente detta invarianza rispetto al cambiamento di scala o autosomiglianza.

Page 61: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 61

Dimensioni Frattali Se si esaminano questi oggetti a scale diverse si

incontrano sempre gli stessi elementi fondamentali. L'essere composto da dettagli autosimili a qualsiasi

ingrandimento fa sì che il frattale non abbia lunghezza definita.

Se si prova a misurare la lunghezza di un frattale con un righello, costruito in base ad una data unità di lunghezza, alcuni dettagli saranno comunque più piccoli di quanto l'unità di misura possa misurare.

Pertanto al crescere della risoluzione la lunghezza di un frattale aumenta.

Page 62: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 62

Dimensioni Frattali Dato che per i frattali la lunghezza non è un concetto significativo, i

matematici calcolano la dimensione frattale per quantificare quanto spazio venga occupato da essi. Partiamo da un segmento di lunghezza 1 e dividiamolo in 3 tratti. Asportiamo la

parte centrale e ripetiamo l'operazione nei tratti residui. Continuando così costruiremo l'insieme di Cantor; se invece rimpiazzamo la parte centrale con gli altri due lati di un triangolo equilatero e continuiamo così otteniamo la curva di Kock.

Ricopriamo adesso ciascuno di questi oggetti con N cerchi di raggio r dove r è tale da assicurare che non si perda risoluzione ad ogni passo della partizione.

All'aumentare del numero di partizioni, la dimensione frattale D definita come

è un invariante. Vediamo ora qual'è la connessione che intercorre fra Caos e frattali.

)/1log(

log lim

0 r

ND

r

Page 63: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 63

Geometria frattale

Gli oggetti della natura (alberi, montagne, nuvole, foglie, felci etc. ) sono tutti caratterizzati da un carattere irregolare e non possono essere studiati usando le proprietà della geometria euclidea (rette, poligoni, cerchi). Questo ha giustificato l'introduzione di un nuovo tipo di geometria da parte del matematico Benoit B. Mandelbrot (1982): la geometria frattale .

Page 64: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 64

Passo 0

                                                                                         

Come figura di partenza, si considera l'intervallo [0,1].

Passo 1

                                                                                          

L'intervallo viene diviso in tre parti di uguale ampiezza. La parte centrale viene soppressa ed al suo posto vengono inseriti due lati di un triangolo equilatero. Si ottiene così la figura accanto.

Passo 2

                                                                                  

La stessa costruzione si ripete per ognuno dei quattro segmenti che formano la figura precedente.

Passo 3

                                                                                          

Nello stesso modo si procede per ognuno degli 12 segmenti della figura del passo 2.

Passo 4

                                                                                         

Andando avanti nella costruzione, la figura risulta sempre più frastagliata ed il numero dei lati cresce in maniera esponenziale. La lunghezza della curva, al crescere del numero delle iterazioni tende a diventare infinita, mentre l'area racchiusa tende ad un valore finito. Il risultato finale è quello della figura 1.

Geometria frattale

1f

4f

Page 65: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 65

Dare una definizione soddisfacente di questi stranissimi enti matematici non è affatto facile: inizialmente non ci è riuscito nemmeno il loro scopritore!  In prima approssimazione possiamo affermare che una curva si dice frattale se ha la proprietà dell'autosimilitudine: ingrandendo un qualsiasi tratto di curva si visualizza un insieme di particolari altrettanto ricco e complesso del precedente; questo procedimento di "zoom" può proseguire all'infinito.  Da ciò derivano due curiose caratteristiche delle curve frattali:

pur essendo continue non ammettono una tangente unica in alcun punto; presi due punti della curva, anche vicinissimi tra loro, la distanza fra essi (misurata lungo la curva) è sempre infinita.

Geometria frattale

Page 66: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 66

Geometria frattaleDomanda: quanto è lunga la costa della Sardegna?  La risposta dipende dalla scala alla quale viene fatta la misurazione: una valutazione sommaria fornisce un risultato relativamente basso che però cresce a dismisura se si inizia a prendere in considerazione ogni più piccolo promontorio, ogni anfratto, ogni scoglio, ogni granello di sabbia. 

Insomma un tratto di costa può essere visto come un tratto di curva frattale.

In realtà i frattali sono in grado di rappresentare egregiamente una gran varietà di oggetti e fenomeni della Natura: non solo un tratto di costa ma anche i rami o le radici di un albero, una nuvola, le ramificazioni di un fulmine e la dentellatura di una foglia ne sono alcuni esempi.

Mandelbrot Benoit

Page 67: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 67

Geometria frattale - Dimensione

0

ln ( )lim

1ln

ND

È il minor numero di ipercubi necessario per ricoprire l’insieme

Dimensione lineare del cubo

Definizione per Hausdorff-Besicovitch della dimensione frattale

Page 68: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 68

Analizziamo ora la dimensione del frattale più classico e studiato: l’insieme C di Cantor.

Questo insieme è costituito dai punti che “rimangono” sul segmento [0;1] dopo che da questa è stato asportato (prima iterazione, p=1) il terzo centrale (1/3; 2/3), e da ognuno dei due segmenti risultanti [0;1/3] e [2/3;1] è stato asportato il terzo centrale, esclusi gli estremi, e così via per infinite iterazioni.

Geometria frattale - Dimensione

Page 69: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 69

Prendendo inizialmente un segmento unitario, che, essendo della stessa lunghezza del segmento di partenza, lo copre al meglio; dopo la p=1, i due segmenti rimanenti sono “misurati” da N2 segmenti di = 1/3; in generale, dopo p iterazioni, N()=2p e = (1/3)p. Da questo si ricava che

Df(C)=ln 2p / ln (3) p = ln 2 / ln 3 0,6309…

1, 1N

12,

3N

22

12 ,

3N

Geometria frattale - Dimensione

Page 70: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 70

Consideriamo per esempio la curva di Von Koch, nata come esempio di curva priva di tangente in alcun punto.

                                                                                                      

                                                                                                           

                                                                                                       

 Per questa curva Df(K) = ln 4 / ln 3=1,26, per p, mentre la sua

lunghezza è evidentemente (4/3)p

11, 4,

3p N

22

12, 4 ,

3p N

33

13, 2 ,

3p N

Geometria frattale - Dimensione

Page 71: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 71

Secondo una definizione di Mandelbrot, un insieme X si definisce frattale se la sua dimensione di Hausdorff, h(X), non è intera.

Attrattore di Henon dimensione di Hausdorff = 1,26

Attrattore di Lorenz dimensione di Hausdorff = 2,06

Geometria frattale - Dimensione

Page 72: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 72

L’entropia di Kolmogorov K è una delle più importanti misure attraverso la quale è possibile caratterizzare un moto caotico ed il comportamento dinamico degli strani attrattori.

L’Entropia di Kolmogorov

Il valore K rappresenta quanto è caotico un sistema dinamico, ed è proporzionale alla velocità della perdita di informazione sullo stato del sistema dinamico.

Page 73: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 73

L’Entropia di KolmogorovSuddividiamo lo spazio delle fasi di dimensione d in ipercubi tutti di lunghezza lineare l , lo stato del sistema viene misurato ad intervalli di tempo

Probabilità che al tempo t+iil sistema si trovi nel ipercubo i di lunghezza l.

iP

N

iiin PPK

0

log

Page 74: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 74

.0

;0

;

l

N

Per Shannon la quantità Kn è proporzionale alla quantità di informazione necessaria a localizzare il sistema su una traiettoria con una precisione pari ad l.

L’entropia di Kolmogorov indica la velocità media di perdita di informazione del sistema e viene così definita:

1

0

1

01 log

11 N

iii

N

nnn PP

NKK

NK

L’Entropia di Kolmogorov

Page 75: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 75

Se il moto risulta regolare (traiettorie adiacenti rimangono adiacenti) K= 0.

Se il moto risulta caotico (traiettorie adiacenti si allontanano esponenzialmente) K= >0.

Se il moto risulta randomizzato (traiettorie adiacenti sono distribuite con la stessa probabilità su tutto l’intervallo a disposizione) K=

L’Entropia di Kolmogorov

Page 76: Termodinamica non equilibrio

Giovanni Della Lunga - Corso di Chimica Fisica – CdL in Fisica e NT – A.A. 2003/2004 76

Bibliografia I. Prigogine

Dall’Essere al Divenire, Einaudi Paul Davies

Il Cosmo Intelligente, Arnoldo Mondadori Editore. F. Hofstadter

Strani Attrattori, Schemi Matematici Collocati fra l'Ordine e il Caos, Le Scienze, n. 162, (febbraio 1982), 96-105.