Termodinamica Chimica Boltzmann e Microstati Universita degli Studi dellInsubria Corsi di Laurea in...

22
Termodinamica Termodinamica Chimica Chimica Boltzmann e Boltzmann e Microstati Microstati Universita’ degli Studi dell’Insubria Corsi di Laurea in Scienze Corsi di Laurea in Scienze Chimiche e Chimica Industriale Chimiche e Chimica Industriale [email protected] http://scienze-como.uninsubria.it/bressanini

Transcript of Termodinamica Chimica Boltzmann e Microstati Universita degli Studi dellInsubria Corsi di Laurea in...

Page 1: Termodinamica Chimica Boltzmann e Microstati Universita degli Studi dellInsubria Corsi di Laurea in Scienze Chimiche e Chimica Industriale dario.bressanini@uninsubria.it.

Termodinamica Termodinamica ChimicaChimica

Boltzmann e Boltzmann e MicrostatiMicrostati

Boltzmann e Boltzmann e MicrostatiMicrostati

Universita’ degli Studi dell’Insubria Universita’ degli Studi dell’Insubria Corsi di Laurea in Scienze Corsi di Laurea in Scienze

Chimiche e Chimica IndustrialeChimiche e Chimica Industriale

[email protected]://scienze-como.uninsubria.it/bressanini

Page 2: Termodinamica Chimica Boltzmann e Microstati Universita degli Studi dellInsubria Corsi di Laurea in Scienze Chimiche e Chimica Industriale dario.bressanini@uninsubria.it.

© Dario Bressanini

L’L’ Entropia Entropia puo’ essere vista come una puo’ essere vista come una funzione che descrive il funzione che descrive il numero di numero di arrangiamenti possibiliarrangiamenti possibili (dell’energia e (dell’energia e della materia)della materia) che sono disponibiliche sono disponibili

La Natura procede La Natura procede spontaneamentespontaneamente verso verso gli stati che hanno gli stati che hanno maggior probabilita’maggior probabilita’ di di esistenza.esistenza.

Queste osservazioni sono le basi della Queste osservazioni sono le basi della Termodinamica StatisticaTermodinamica Statistica (che vedrete il (che vedrete il prossimo anno)prossimo anno)

EntropiaEntropia

Page 3: Termodinamica Chimica Boltzmann e Microstati Universita degli Studi dellInsubria Corsi di Laurea in Scienze Chimiche e Chimica Industriale dario.bressanini@uninsubria.it.

© Dario Bressanini

Microstati e MacrostatiMicrostati e Macrostati

La La Termodinamica ClassicaTermodinamica Classica classifica gli classifica gli stati in base alle caratteristiche stati in base alle caratteristiche macroscopichemacroscopiche

La La Termodinamica StatisticaTermodinamica Statistica utilizza i utilizza i microstati microstati (stati microscopici)(stati microscopici) MicrostatoMicrostato: posizione e momento di ogni : posizione e momento di ogni

molecolamolecola MacrostatoMacrostato: : (p,V,T)(p,V,T)

Molteplicita’Molteplicita’: il numero di microstati : il numero di microstati corrispondenti ad un unico macrostatocorrispondenti ad un unico macrostato

Page 4: Termodinamica Chimica Boltzmann e Microstati Universita degli Studi dellInsubria Corsi di Laurea in Scienze Chimiche e Chimica Industriale dario.bressanini@uninsubria.it.

© Dario Bressanini

Ipotesi fondamentaleIpotesi fondamentale

Ogni microstato ha la stessa Ogni microstato ha la stessa probabilita’ di esistereprobabilita’ di esistere

Come nel lancio dei dadiCome nel lancio dei dadi

Page 5: Termodinamica Chimica Boltzmann e Microstati Universita degli Studi dellInsubria Corsi di Laurea in Scienze Chimiche e Chimica Industriale dario.bressanini@uninsubria.it.

© Dario Bressanini

Ordine, Disordine e casoOrdine, Disordine e caso

Page 6: Termodinamica Chimica Boltzmann e Microstati Universita degli Studi dellInsubria Corsi di Laurea in Scienze Chimiche e Chimica Industriale dario.bressanini@uninsubria.it.

© Dario Bressanini

Analogia: lanciando I DadiAnalogia: lanciando I Dadi

Lanciando un dado: Lanciando un dado: 1/2/3/4/5/61/2/3/4/5/6 sono sono egualmente probabiliegualmente probabili

Lanciando due dadi: Lanciando due dadi: Per ognuno 1/2/3/4/5/6 Per ognuno 1/2/3/4/5/6 egualmente probabiliegualmente probabili La somma 7 e’ La somma 7 e’ piu’ probabilepiu’ probabile rispetto a 6 o 8 rispetto a 6 o 8

Perche’? Perche’? 66 combinazioni ( combinazioni (microstatimicrostati) ) danno danno 77 (il (il macrostatomacrostato): 1+6, 2+5, 3+4, ): 1+6, 2+5, 3+4, 4+3, 5+2, 6+1. Ci sono 4+3, 5+2, 6+1. Ci sono 55 combinazioni combinazioni che danno che danno 66 o o 88, etc., etc.

Page 7: Termodinamica Chimica Boltzmann e Microstati Universita degli Studi dellInsubria Corsi di Laurea in Scienze Chimiche e Chimica Industriale dario.bressanini@uninsubria.it.

© Dario Bressanini

Microstati e Probabilita’Microstati e Probabilita’

Consideriamo 4 molecole da distribuire in Consideriamo 4 molecole da distribuire in due recipienti collegatidue recipienti collegati

A B C D

Page 8: Termodinamica Chimica Boltzmann e Microstati Universita degli Studi dellInsubria Corsi di Laurea in Scienze Chimiche e Chimica Industriale dario.bressanini@uninsubria.it.

© Dario Bressanini

Solo un modo per Solo un modo per ottenerlo:ottenerlo:

A

B C

D

Arrangiamento 1Arrangiamento 1

Page 9: Termodinamica Chimica Boltzmann e Microstati Universita degli Studi dellInsubria Corsi di Laurea in Scienze Chimiche e Chimica Industriale dario.bressanini@uninsubria.it.

© Dario Bressanini

Arrangiamento 2Arrangiamento 2

Puo’ essere ottenuto in Puo’ essere ottenuto in 44 modi modi diversi:diversi:

A

B

C D

A BC

D

A B C

D

ABC

D

Page 10: Termodinamica Chimica Boltzmann e Microstati Universita degli Studi dellInsubria Corsi di Laurea in Scienze Chimiche e Chimica Industriale dario.bressanini@uninsubria.it.

© Dario Bressanini

Arrangiamento 3Arrangiamento 3

Puo’ essere ottenuto in Puo’ essere ottenuto in 66 modi modi diversi:diversi:

A

B

C

D

A B

C D

A

B

C

D

A

B

C

D

AB

CDAB

C D

Page 11: Termodinamica Chimica Boltzmann e Microstati Universita degli Studi dellInsubria Corsi di Laurea in Scienze Chimiche e Chimica Industriale dario.bressanini@uninsubria.it.

© Dario Bressanini

EntropiaEntropia

Boltzmann defini’ una grandezza che Boltzmann defini’ una grandezza che misura la probabilita’ di un macrostato: misura la probabilita’ di un macrostato: l’l’EntropiaEntropia..

Le sostanze tendono a raggiungere lo Le sostanze tendono a raggiungere lo stato stato piu’ probabilepiu’ probabile..

Lo stato piu’ probabile spesso (ma non Lo stato piu’ probabile spesso (ma non sempre) e’ il ‘sempre) e’ il ‘piu’ casuale’piu’ casuale’

E’ necessario calcolare il numero di E’ necessario calcolare il numero di arrangiamenti possibili arrangiamenti possibili (si utilizza la statistica(si utilizza la statistica))

Page 12: Termodinamica Chimica Boltzmann e Microstati Universita degli Studi dellInsubria Corsi di Laurea in Scienze Chimiche e Chimica Industriale dario.bressanini@uninsubria.it.

© Dario Bressanini

S S = = kk log logWW

Boltzmann ha collegato calore, Boltzmann ha collegato calore, temperatura, molteplicita’ e probabilita’temperatura, molteplicita’ e probabilita’

EntropiaEntropia definita da definita da S = kS = k ln W ln W WW: molteplicita’; : molteplicita’; kk: costante di Boltzmann: costante di Boltzmann

Epitaffio di Boltzmann:Epitaffio di Boltzmann: S = k S = k ln W ln W

Page 13: Termodinamica Chimica Boltzmann e Microstati Universita degli Studi dellInsubria Corsi di Laurea in Scienze Chimiche e Chimica Industriale dario.bressanini@uninsubria.it.

© Dario Bressanini

Le probabilita’ relative degli Le probabilita’ relative degli arrangiamenti arrangiamenti 11, , 22 e e 33 sono: sono:

11::44::66QuindiQuindi

SS33 > > SS22 > > SS11

Probabilita’ dei MacrostatiProbabilita’ dei Macrostati

Page 14: Termodinamica Chimica Boltzmann e Microstati Universita degli Studi dellInsubria Corsi di Laurea in Scienze Chimiche e Chimica Industriale dario.bressanini@uninsubria.it.

© Dario Bressanini

Page 15: Termodinamica Chimica Boltzmann e Microstati Universita degli Studi dellInsubria Corsi di Laurea in Scienze Chimiche e Chimica Industriale dario.bressanini@uninsubria.it.

© Dario Bressanini

Espansione libera di un GasEspansione libera di un Gas

Estremamente Estremamente improbabile!improbabile!

Prob. = 1/2N

Un gas si espande nel vuoto perche’ lo Un gas si espande nel vuoto perche’ lo stato macroscopico finale ha un maggior stato macroscopico finale ha un maggior numero di stati microscopici a sua numero di stati microscopici a sua disposizionedisposizione La materia e l’energia hanno piu’ modi per La materia e l’energia hanno piu’ modi per

essere distribuiteessere distribuite

Page 16: Termodinamica Chimica Boltzmann e Microstati Universita degli Studi dellInsubria Corsi di Laurea in Scienze Chimiche e Chimica Industriale dario.bressanini@uninsubria.it.

© Dario Bressanini

Probabilita’ ed EquilibrioProbabilita’ ed Equilibrio

Estremamente Estremamente probabile!probabile!

Le molecole si muovono casualmente nei Le molecole si muovono casualmente nei due recipientidue recipienti

Dopo un certo tempo, ogni molecola ha Dopo un certo tempo, ogni molecola ha probabilita’ ½ di trovarsi in uno dei dueprobabilita’ ½ di trovarsi in uno dei due

La distribuzione piu’ probabile e’ quella con La distribuzione piu’ probabile e’ quella con circa il 50% delle molecole in ogni circa il 50% delle molecole in ogni recipiente recipiente

Page 17: Termodinamica Chimica Boltzmann e Microstati Universita degli Studi dellInsubria Corsi di Laurea in Scienze Chimiche e Chimica Industriale dario.bressanini@uninsubria.it.

© Dario Bressanini

Seconda Legge della Seconda Legge della TermodinamicaTermodinamica

Versione microscopica:Versione microscopica:

Un sistema isolato con molte Un sistema isolato con molte molecole, evolvera’ verso il molecole, evolvera’ verso il

macrostato con la piu’ grande macrostato con la piu’ grande molteplicita’, e rimarra’ in quel molteplicita’, e rimarra’ in quel

macrostatomacrostato

Un sistema isolato con molte Un sistema isolato con molte molecole, evolvera’ verso il molecole, evolvera’ verso il

macrostato con la piu’ grande macrostato con la piu’ grande molteplicita’, e rimarra’ in quel molteplicita’, e rimarra’ in quel

macrostatomacrostato

Page 18: Termodinamica Chimica Boltzmann e Microstati Universita degli Studi dellInsubria Corsi di Laurea in Scienze Chimiche e Chimica Industriale dario.bressanini@uninsubria.it.

© Dario Bressanini

Seconda Legge della Seconda Legge della TermodinamicaTermodinamica

Versione macroscopica:Versione macroscopica:

Esiste una funzione di stato Esiste una funzione di stato chiamata chiamata EntropiaEntropia (simbolo (simbolo SS) che ) che

descrive i processi spontaneidescrive i processi spontanei

Esiste una funzione di stato Esiste una funzione di stato chiamata chiamata EntropiaEntropia (simbolo (simbolo SS) che ) che

descrive i processi spontaneidescrive i processi spontanei

Un sistema isolato evolve per Un sistema isolato evolve per raggiungere uno stato di massima raggiungere uno stato di massima

entropiaentropia

Un sistema isolato evolve per Un sistema isolato evolve per raggiungere uno stato di massima raggiungere uno stato di massima

entropiaentropia

Page 19: Termodinamica Chimica Boltzmann e Microstati Universita degli Studi dellInsubria Corsi di Laurea in Scienze Chimiche e Chimica Industriale dario.bressanini@uninsubria.it.

© Dario Bressanini

La seconda legge puo’ essere espressa in molti La seconda legge puo’ essere espressa in molti modi. Uno e’modi. Uno e’

L’entropia dell’Universo aumenta sempre.L’entropia dell’Universo aumenta sempre. Questa legge, ingannevolmente semplice, e’ sufficiente a Questa legge, ingannevolmente semplice, e’ sufficiente a

spiegare tutti i processi spontanei.spiegare tutti i processi spontanei. La variazione di entropia dell’Universo include il La variazione di entropia dell’Universo include il S del S del

sistema e il sistema e il S dell’Ambiente. S dell’Ambiente.

Per una singola sostanza, l’entropia aumenta sePer una singola sostanza, l’entropia aumenta se La sostanza viene riscaldataLa sostanza viene riscaldata, perche’ questo aumenta il , perche’ questo aumenta il

numero di stati energetici accessibili e il disordine numero di stati energetici accessibili e il disordine molecolaremolecolare

La sostanza si espandeLa sostanza si espande, poiche’ questo aumenta lo spazio , poiche’ questo aumenta lo spazio disponibile entro cui le molecole possono distribuirsi.disponibile entro cui le molecole possono distribuirsi.

Seconda Legge della Seconda Legge della TermodinamicaTermodinamica

Page 20: Termodinamica Chimica Boltzmann e Microstati Universita degli Studi dellInsubria Corsi di Laurea in Scienze Chimiche e Chimica Industriale dario.bressanini@uninsubria.it.

© Dario Bressanini

Entropia di MescolamentoEntropia di Mescolamento

Un ragionamento analogo spiega perche’ Un ragionamento analogo spiega perche’ due gas si mescolanodue gas si mescolano

Lo stato finale e’ piu’ probabileLo stato finale e’ piu’ probabile

Page 21: Termodinamica Chimica Boltzmann e Microstati Universita degli Studi dellInsubria Corsi di Laurea in Scienze Chimiche e Chimica Industriale dario.bressanini@uninsubria.it.

© Dario Bressanini

Entropia MacroscopicaEntropia Macroscopica

Come esprimiamo Come esprimiamo l’Entropial’Entropia in termini in termini

puramente puramente macroscopici?macroscopici?

Page 22: Termodinamica Chimica Boltzmann e Microstati Universita degli Studi dellInsubria Corsi di Laurea in Scienze Chimiche e Chimica Industriale dario.bressanini@uninsubria.it.

FineFine