Rivelatori di Particelle1 Lezione 3 Acceleratori Lezione 3. ….. riassuntoLezione 3. ….....

30
Rivelatori di Particelle 1 Lezione 3 Acceleratori Lezione 3. ….. riassunto Lezione 3. ….. riassunto Anelli di collisione Anelli di collisione • Generalità e definizione della luminosità ( R= R= L L) Oscillazioni e stabilità dei fasci Oscillazioni e stabilità dei fasci Oscillazioni Oscillazioni longitudinali o di fase o di di sincrotrone sincrotrone dovute alla radiofrequenza Oscillazioni Oscillazioni trasversali o di betatrone betatrone. Sono causate dai campi magnetici. • Piano di fase trasverso : Emittanza ed : Emittanza ed accettanza accettanza

Transcript of Rivelatori di Particelle1 Lezione 3 Acceleratori Lezione 3. ….. riassuntoLezione 3. ….....

Page 1: Rivelatori di Particelle1 Lezione 3 Acceleratori Lezione 3. ….. riassuntoLezione 3. ….. riassunto –Anelli di collisione R= LGeneralità e definizione della.

Rivelatori di Particelle 1

Lezione 3 Acceleratori

•Lezione 3. ….. riassuntoLezione 3. ….. riassunto– Anelli di collisioneAnelli di collisione

• Generalità e definizione della luminosità (R=R=LL)

– Oscillazioni e stabilità dei fasciOscillazioni e stabilità dei fasci• OscillazioniOscillazioni longitudinali o di fase o di di

sincrotrone sincrotrone dovute alla radiofrequenza• OscillazioniOscillazioni trasversali o di betatronebetatrone. Sono

causate dai campi magnetici.• Piano di fase trasverso : Emittanza ed accettanza : Emittanza ed accettanza

Page 2: Rivelatori di Particelle1 Lezione 3 Acceleratori Lezione 3. ….. riassuntoLezione 3. ….. riassunto –Anelli di collisione R= LGeneralità e definizione della.

Rivelatori di Particelle 2

Lezione 3Lezione 3 Anelli di collisioneAnelli di collisione

Anelli di accumulazione ( generalitAnelli di accumulazione ( generalità )à )In un Collider tutto funziona come in un sincrotrone, ma le particelle non vengono estratte alla fine del ciclo, ma mantenute nell’anello (e+e-, p-antip) o negli anelli ( pp ) e mandate a collidere l’una contro l’altra.

In un anello di collisione si guadagna moltissimo in energia ( siamo nel c.m.) anche se si perde in rate. [ luminosità minore]

Page 3: Rivelatori di Particelle1 Lezione 3 Acceleratori Lezione 3. ….. riassuntoLezione 3. ….. riassunto –Anelli di collisione R= LGeneralità e definizione della.

Rivelatori di Particelle 3

Lezione 3Lezione 3 Anelli di collisioneAnelli di collisione

Energia

a

bAcceleratorepb=0

s=ma2+mb

2+2Eamb

~2Eamb

a b

Anelli di collisione|pa|=|pb|

s=(Ea+Eb)2

s½ (GeV)E fascio (GeV)

Acceleratore

E fascio (GeV) Collider

pp 10

100

1000

52

5200

5.4x105

5

50

500

e+e- 1

10

100

103

105

107

0.5

5

50

Page 4: Rivelatori di Particelle1 Lezione 3 Acceleratori Lezione 3. ….. riassuntoLezione 3. ….. riassunto –Anelli di collisione R= LGeneralità e definizione della.

Rivelatori di Particelle 4

Lezione 3Lezione 3 LuminositLuminositàà

Un anello di collisione non è altro che un sincrotrone fasci in bunch.

Un bunch colpisce un altro bunch che si muove in senso opposto.

In questo caso più che di intensità del fascio (fasci) si parla di

luminosità della macchina. La luminosità dipende anche dalla geometria dei fasci e dalla loro densità.

La luminosità non è altro che il rate di interazioni per sezione d’urto unitaria.

Per chiarire il concetto consideriamo:

1) un fascio estratto da un acceleratore che colpisce una targhetta.

2) due fasci di un collider che collidono l’uno contro l’altro.

Page 5: Rivelatori di Particelle1 Lezione 3 Acceleratori Lezione 3. ….. riassuntoLezione 3. ….. riassunto –Anelli di collisione R= LGeneralità e definizione della.

Rivelatori di Particelle 5

Lezione 3Lezione 3 LuminositLuminositàà

1) Fascio su targhetta

Consideriamo un fascio di intensità n1 particelle che colpisce una targhetta di lunghezza l e di densità di particelle n2 per ogni singola particella il numero di interazioni nella targhetta sarà

N=intx n2xl

essendo int la sezione d’ urto di interazione. Le dimensioni trasverse del fascio e della targhetta non entrano in gioco (targhetta > dimensioni fascio).Il rate è

R=(dN/dt)=intxn1xn2xle combinando le caratteristiche della targhetta e del fascio:

R=intxLL = luminosità ed ha le dimensioni [cm-2s-1]La luminosità non è altro che il rate di interazioni per sezione d’ urto unitaria.

Page 6: Rivelatori di Particelle1 Lezione 3 Acceleratori Lezione 3. ….. riassuntoLezione 3. ….. riassunto –Anelli di collisione R= LGeneralità e definizione della.

Rivelatori di Particelle 6

Lezione 3Lezione 3 LuminositLuminositàà

2) ColliderNel caso di un collider invece: Importano le dimensioni ed allineamento dei fasci. Possiamo non essere nel c.m. (Hera, PEP2). Le particelle (bunch) possono incrociarsi ad angoli ≠ 0.

Quale semplice esempio consideriamo un collider ad e+e- oppure protone antiprotone. In questo caso i due fasci viaggiano nello stesso anello, in direzioni opposte, ma collidono in pochi punti, poiché sono tenuti separati al di fuori di questi punti.

Nel caso protone-antiprotone si possono tenere separati i due fasci con dei quadrupoli. Nel caso e=e- (LEP) i due fasci sono tenuti separati elettrostaticamente.

+

- Vmax=± 150 KV

4 metri

Page 7: Rivelatori di Particelle1 Lezione 3 Acceleratori Lezione 3. ….. riassuntoLezione 3. ….. riassunto –Anelli di collisione R= LGeneralità e definizione della.

Rivelatori di Particelle 7

Lezione 3Lezione 3 LuminositLuminositàà

Consideriamo 2 pacchetti in cui la densità di particelle per unità di area nel piano trasverso è dato da:

Cioè 2 distribuzioni gaussiane identiche e normalizzate ad un totale di n1 ed n2 particelle rispettivamente.

2

2

2

2

2

2

2

2

2222

2211

2

2

yx

yx

yx

yx

yx

yx

en

ds

dn

en

ds

dn

Page 8: Rivelatori di Particelle1 Lezione 3 Acceleratori Lezione 3. ….. riassuntoLezione 3. ….. riassunto –Anelli di collisione R= LGeneralità e definizione della.

Rivelatori di Particelle 8

Lezione 3Lezione 3 LuminositLuminositàà

Il numero di interazioni per ogni incrocio dei fasci si ottiene integrando su tutte le particelle del fascio 1 moltiplicato per la loro probabilità di interazione.● Il numero di particelle del fascio 1 in un elemento di area dxdy è:

● la probabilità di interazione di una particella del fascio 1 che si trova in x,y è:

= al numero di particelle del fascio 2 che si trovano in un’area pari alla int

dxdyen

yxdn yx

yx

yx

2

2

2

2

2211 2

,

int

2222

2

2

2

2

2,),(

yx

yx

yx

en

yxdnyxp

Page 9: Rivelatori di Particelle1 Lezione 3 Acceleratori Lezione 3. ….. riassuntoLezione 3. ….. riassunto –Anelli di collisione R= LGeneralità e definizione della.

Rivelatori di Particelle 9

Lezione 3Lezione 3 LuminositLuminositàà

Il numero totale di interazioni per bunch e per incrocio sarà:

Infatti:

yx

yx

yx

yx

yx

nnedyedx

nn

dxdyenn

yxpyxdnN

yx

yx

44

4,,

21int222

21int

22221

int1int

2

2

2

2

2

2

2

2

2

2

2

2

22

22

1

xx

dxedxe x

Page 10: Rivelatori di Particelle1 Lezione 3 Acceleratori Lezione 3. ….. riassuntoLezione 3. ….. riassunto –Anelli di collisione R= LGeneralità e definizione della.

Rivelatori di Particelle 10

Lezione 3Lezione 3 LuminositLuminositààSe abbiamo k pacchetti in ogni fascio ( 2k punti di incrocio ) e se f è la frequenza di rivoluzione il rate per incrocio, essendo n1,2 il numero totale di particelle per anello è:

Oppure usando le correnti i1=n1ef ed i2=n2ef

k

fnnL

fk

nnLR

yx

yx

4

4

21

int21

int

221

4 ekf

iiL

yx

Page 11: Rivelatori di Particelle1 Lezione 3 Acceleratori Lezione 3. ….. riassuntoLezione 3. ….. riassunto –Anelli di collisione R= LGeneralità e definizione della.

Rivelatori di Particelle 11

Lezione 3Lezione 3 LuminositLuminositàà• Esempio: paragone acceleratore-collider (stessa energia nel c.m. e

stessa sezione d’urto di interazione (e.g. e.m. ~ 1b)

• Acceleratore

< l >n (s-1)

n= densità del fascio incidente =1012 particelle s-1

= densità della targhetta = 1gr/cm3

l= spessore della targhetta =1cm

int= em = 1b

A= numero di Avogadro = 6x1023

15int 106 sAlnR

Page 12: Rivelatori di Particelle1 Lezione 3 Acceleratori Lezione 3. ….. riassuntoLezione 3. ….. riassunto –Anelli di collisione R= LGeneralità e definizione della.

Rivelatori di Particelle 12

Lezione 3Lezione 3 LuminositLuminositàà• Collider

n1 n2

n1=n2= particelle per bunch

i1= i2=i=50 mA n1=n2=n=i/(ef)= 3.3x1011 particelle

F= sezione trasversa dei fasci= 0.1x0.01 cm2

B= numero di bunch = 1

f= frequenza di rotazione = 106 s-1

1int2

21int

21 100

s

Fef

ii

F

fnnR

Page 13: Rivelatori di Particelle1 Lezione 3 Acceleratori Lezione 3. ….. riassuntoLezione 3. ….. riassunto –Anelli di collisione R= LGeneralità e definizione della.

Rivelatori di Particelle 13

Lezione 3Lezione 3 LuminositLuminositààOsserviamo L ~ 1032 cm-2 s-1.

Luminosità tipiche di collider e+e- sono 1031÷1032

LHC (pp) ha una luminosità di progetto di 1034

Page 14: Rivelatori di Particelle1 Lezione 3 Acceleratori Lezione 3. ….. riassuntoLezione 3. ….. riassunto –Anelli di collisione R= LGeneralità e definizione della.

Rivelatori di Particelle 14

Lezione 3 Oscillazioni e stabilitLezione 3 Oscillazioni e stabilità dei fascià dei fasci

La presenza della radiofrequenza fa sί che le particelle si raggruppano in pacchetti (bunch).

In un acceleratore circolare si innestano inoltre, ogniqualvolta la particella passa nella cavità a RF con la fase non giusta (ma comunque molto vicina a S ) delle oscillazioni di sincrotrone o oscillazioni longitudinali ( oscillazioni di fase o di energia).

Nel caso di piccoli movimenti si innescano delle oscillazioni identiche a quelle dell’oscillatore armonico e con frequenza proporzionale ( in genere minore) alla frequenza di rivoluzione.

Page 15: Rivelatori di Particelle1 Lezione 3 Acceleratori Lezione 3. ….. riassuntoLezione 3. ….. riassunto –Anelli di collisione R= LGeneralità e definizione della.

Rivelatori di Particelle 15

Lezione 3 Oscillazioni e stabilitLezione 3 Oscillazioni e stabilità dei fascià dei fasci

Per avere stabilità (ovvero soluzione dell’equazione dell’oscillatore armonico (sin e cos)) la particella deve passare nella RF quando questa ha una fase S</2 per un acceleratore circolare a focalizzazione forte (con quadrupoli) quando la particella accelerata è non relativistica ( ~1 ), mentre per più elevato deve essere S<

Questo comporta che all’iniezione ho una certa fase, che cambia per più elevato devo spegnere la RF si spacchetta il fascio posso perdere il fascio.

Page 16: Rivelatori di Particelle1 Lezione 3 Acceleratori Lezione 3. ….. riassuntoLezione 3. ….. riassunto –Anelli di collisione R= LGeneralità e definizione della.

Rivelatori di Particelle 16

Lezione 3 StabilitLezione 3 Stabilità dei fascià dei fasci

La frequenza angolare di una particella che gira in un sincrotrone è data da:

Con periodo di rivoluzione e L circonferenza dell’orbita.

Differenziando ln() otteniamo:

Ricorda p=c

Dove p è chiamato fattore di compressione dell’impulso, ed è definito come p=(dL/L)/(dp/p)

L’espressione fra parentesi è normalmente scritta come:

Si osserva che tr<0 quando l’energia del fascio è maggiore di Utr=trmc2 mentre è >0 per sincrotroni all’iniezione (bassa energia) o sempre per acceleratori lineari.

È questo il momento in cui bisogna cambiare la fase del campo elettrico.

22

L

c

p

dp

L

dLdddp

2

1

222

111

trptr

Page 17: Rivelatori di Particelle1 Lezione 3 Acceleratori Lezione 3. ….. riassuntoLezione 3. ….. riassunto –Anelli di collisione R= LGeneralità e definizione della.

Rivelatori di Particelle 17

Lezione 3 Oscillazioni di sincrotroneLezione 3 Oscillazioni di sincrotrone

Le quantità fisiche della particella generica sono connesse a quelle della particella sincrona ( indicata con l’indice s) tramite le seguenti relazioni:

Energia totale U = Us+U

Impulso p = ps+p

Frequenza angolare = s+

Periodo di rivoluzione = s+

( e hanno segno opposto)Siccome la particella sincrona deve arrivare alla RF in fase possiamo scrivere:

rf = hs

Con h intero. h è chiamato numero armonico e rappresenta il numero di cicli che fa la RF durante un giro della particella sincrona. Se indichiamo con s la fase del voltaggio della RF quando la particella sincrona arriva alla cavità RF e con quella della particella generica avremo:

= – s

Page 18: Rivelatori di Particelle1 Lezione 3 Acceleratori Lezione 3. ….. riassuntoLezione 3. ….. riassunto –Anelli di collisione R= LGeneralità e definizione della.

Rivelatori di Particelle 18

Lezione 3 Oscillazioni di sincrotroneLezione 3 Oscillazioni di sincrotrone

Il guadagno di energia per giro della particella generica e di quella sincrona sarà (si assume che il voltaggio non cambi quando la particella attraversa la cavità a RF):

U = qV sin

Us = qV sins

Se all’ inizio del giro n la differenza in energia della particella generica rispetto alla particella sincrona è (U)n=U-Us alla fine del giro n sarà:

(U)n+1=(U+U)-(Us+Us)

Dopo un giro avremo che U cambia di

(U)=U- Us=qV(sin-sins)

Nell’ipotesi di oscillazioni lente possiamo scrivere:

Che diventa definendo W=-U/rf=-(U-Us)/rf

sss

qVU

dt

Ud

sinsin

2

sinsin2

sh

qV

dt

dW

Page 19: Rivelatori di Particelle1 Lezione 3 Acceleratori Lezione 3. ….. riassuntoLezione 3. ….. riassunto –Anelli di collisione R= LGeneralità e definizione della.

Rivelatori di Particelle 19

Lezione 3 Oscillazioni di sincrotroneLezione 3 Oscillazioni di sincrotrone

Sempre nell’ ipotesi di oscillazioni lente dopo un giro abbiamo:

d/dt)s=rft

Dovet è la differenza nei tempi di arrivo della particella generica e di quella sincrona alla RF.

Dopo un giro t cambia di:

(t)=-s==-tr(dp/p)

Dove

Derivando rispetto al tempo e sostituendo la dW/dt nella d2/dt2 otteniamo per le oscillazioni di fase della particella generica:

WUdt

d

s

trrf

2

2

UUp

p

2

1

0sinsin2 2

2..

ss

trs

U

qVh

Page 20: Rivelatori di Particelle1 Lezione 3 Acceleratori Lezione 3. ….. riassuntoLezione 3. ….. riassunto –Anelli di collisione R= LGeneralità e definizione della.

Rivelatori di Particelle 20

Lezione 3 Oscillazioni di sincrotroneLezione 3 Oscillazioni di sincrotrone

Per piccole variazioni della fase possiamo scrivere:

ed otteniamo così l’equazione di un oscillatore armonico:

s è la frequenza delle oscillazioni di sincrotrone.

Osserviamo che trcoss deve essere positivo per avere frequenze di oscillazione reali e per assicurare la stabilità di fase.

Ricordando che per ogni giro si guadagnano pochi MeV nella RF avremo che s/s<<1.(meno di un’oscillazione per giro).

0sinsin2 2

2..

ss

trs

U

qVh

sss sincos)sin(sin

22

2..

2

cos

con 0

mc

qVh strss

s

Page 21: Rivelatori di Particelle1 Lezione 3 Acceleratori Lezione 3. ….. riassuntoLezione 3. ….. riassunto –Anelli di collisione R= LGeneralità e definizione della.

Rivelatori di Particelle 21

Lezione 3 Oscillazioni di BetatroneLezione 3 Oscillazioni di Betatrone

Abbiamo visto che le particelle vengono mantenute sull’orbita circolare con dei magneti bipolari ed il fascio viene focalizzato tramite l’uso di quadrupoli (e sestupoli per abolire le aberrazioni cromatiche) che funzionano quali lenti convergenti (divergenti).

Oscillazioni anche nel piano trasverso chiamate oscillazioni di betatrone

Page 22: Rivelatori di Particelle1 Lezione 3 Acceleratori Lezione 3. ….. riassuntoLezione 3. ….. riassunto –Anelli di collisione R= LGeneralità e definizione della.

Rivelatori di Particelle 22

Lezione 3 Oscillazioni di BetatroneLezione 3 Oscillazioni di Betatrone

Oscillazioni di trone.Consideriamo un acceleratore circolare con solamente magneti bipolari.

Sul piano orizzontale ho una focalizzazione geometrica (se B è uniforme e verticale in direzione).

P1 dista da P2 ½ circonferenza e la particella fa quindi un’oscillazione completa per giro. (numero di oscillazioni = x=Q=1).

Attenzione: un angolo di deviazione =1 mrad (rispetto alla particella di riferimento) dà una deviazione = ( raggio dell’acceleratore), ma se =1 km =1m tubo a vuoto enorme ed apertura del magnete enorme.

P2P1 P1 P2s

Page 23: Rivelatori di Particelle1 Lezione 3 Acceleratori Lezione 3. ….. riassuntoLezione 3. ….. riassunto –Anelli di collisione R= LGeneralità e definizione della.

Rivelatori di Particelle 23

Lezione 3 Oscillazioni di BetatroneLezione 3 Oscillazioni di Betatrone

Se la deflessione è nel piano // a B, la particella spiralizza e se ne va.

Anche con l’inserzione di quadrupoli, le particelle con posizione trasversa o direzione leggermente diverse da quella della particella di riferimento (quella sul piano mediano) fanno un moto oscillatorio attorno alla particella di riferimento (nel piano trasverso xy)

Oscillazioni di betatrone

Inserzione di quadrupoli ( focheggiamento forte)

Page 24: Rivelatori di Particelle1 Lezione 3 Acceleratori Lezione 3. ….. riassuntoLezione 3. ….. riassunto –Anelli di collisione R= LGeneralità e definizione della.

Rivelatori di Particelle 24

Lezione 3 Oscillazioni di BetatroneLezione 3 Oscillazioni di Betatrone

Nel caso di un acceleratore circolare a focalizzazione forte le oscillazioni di betatrone sono di frequenza molto maggiore di quelle di sincrotrone ( SPS(CERN) Tsinc 100000 Ttrone (radiali) ).

Inoltre le oscillazioni di betatrone radiali (x) sono disaccoppiate da quelle verticali (y) e da quelle di sincrotrone (longitudinali).

Normalmente le oscillazioni di betatrone radiali (x) sono di ampiezza > di quelle verticali, in quanto su quelle radiali influisce anche la dispersione in impulso.

Tubo a vuoto ellittico

Page 25: Rivelatori di Particelle1 Lezione 3 Acceleratori Lezione 3. ….. riassuntoLezione 3. ….. riassunto –Anelli di collisione R= LGeneralità e definizione della.

Rivelatori di Particelle 25

Lezione 3 Oscillazioni e stabilitLezione 3 Oscillazioni e stabilità dei fascià dei fasci

Consideriamo il sistema di coordinate:

Si puo’ mostrare che:

Discorso del tutto analogo per le x.

sxy

y’=dy/ds

x’=dx/ds

costante''2)( 022 ellisseRyyyysR

4

'1

1,'

2

1 2

Page 26: Rivelatori di Particelle1 Lezione 3 Acceleratori Lezione 3. ….. riassuntoLezione 3. ….. riassunto –Anelli di collisione R= LGeneralità e definizione della.

Rivelatori di Particelle 26

Lezione 3 Oscillazioni e stabilitLezione 3 Oscillazioni e stabilità dei fascià dei fasci

L’equazione:

è l’equazione di un’ ellisse di area R2=’ con e’ = semiassi dell’ellisse.

L’ area dell’ellisse è una costante, ma la forma puo’ cambiare al variare di s, in quanto dipendono da s.

(funzione di ampiezza) dipende dall’ottica della macchina e

costante''2)( 022 ellisseRyyyysR

Page 27: Rivelatori di Particelle1 Lezione 3 Acceleratori Lezione 3. ….. riassuntoLezione 3. ….. riassunto –Anelli di collisione R= LGeneralità e definizione della.

Rivelatori di Particelle 27

Lezione 3 Oscillazioni e stabilitLezione 3 Oscillazioni e stabilità dei fascià dei fasci

In un anello di collisione conviene averebasso, ovvero focalizzare nel punto d’interazione.

<>arc=80 m I.P.=0.5 m

LHCLHC

Page 28: Rivelatori di Particelle1 Lezione 3 Acceleratori Lezione 3. ….. riassuntoLezione 3. ….. riassunto –Anelli di collisione R= LGeneralità e definizione della.

Rivelatori di Particelle 28

Lezione 3 Emittanza ed accettanzaLezione 3 Emittanza ed accettanza

Emittanza: se i punti rappresentativi y ed y’ del 90% delle particelle del fascio sono contenuti in R0 (area ellisse), R0 è per definizione l’emittanza del fascio.

Abbiamo quindi un’emittanza verticale e radiale che restano costanti.

Per definire l’ellisse di area costante abbiamo assunto che l’impulso delle particelle non varia (in modulo) durante il movimento nel piano trasverso. Questo è quasi vero, comunque se varia adiabaticamente (ovvero molto lentamente), l’invariante diventa:

m

sR

p

sR

)()(

cost

Page 29: Rivelatori di Particelle1 Lezione 3 Acceleratori Lezione 3. ….. riassuntoLezione 3. ….. riassunto –Anelli di collisione R= LGeneralità e definizione della.

Rivelatori di Particelle 29

Lezione 3 Emittanza ed accettanzaLezione 3 Emittanza ed accettanza

Inviluppo delle traiettorie (x o y, x’ o y’)

Fondamentale conoscere yB in quanto determina le dimensioni sia del tubo a vuoto che l’apertura dei magneti, necessarie a far passare il fascio di accettanza nota.

BB

y

y’

yB

y’B

L’inviluppo delle traiettorie delle particelle del fascio non è altro che l’ascissa del punto B (quello con la y maggiore) in funzione di s

Page 30: Rivelatori di Particelle1 Lezione 3 Acceleratori Lezione 3. ….. riassuntoLezione 3. ….. riassunto –Anelli di collisione R= LGeneralità e definizione della.

Rivelatori di Particelle 30

Lezione 3 Emittanza ed accettanzaLezione 3 Emittanza ed accettanza

Accettanza.Accettanza.

L’accettanza è per definizione l’emittanza massima accettata dalla camera a vuoto all’iniezione.

Accettanze ed emittanze si esprimono in (mmxmrad)

Accettanza tipica di un sincrotrone è:

~ 30(mmxmrad)