Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo...

58
Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione come geometria Elettromagnetismo: dalla carica elettrica, ai campi, alle equazioni di Maxwell ed alle onde elettromagnetiche Meccanica Quantistica: la crisi della Fisica Classica, comportamenti corpuscolari ed ondulatori di materia e radiazione, i quanti di energia. Principio di indeterminazione. Statistiche quantistiche e struttura atomica della materia Bibliografia: Robert H. March, Fisica per Poeti, Ed. Dedalo, 1994 Website: http://hyperphysics.phy- astr.gsu.edu/hbase/hframe.html Mauro Anselmino, LT in Comunicazione Scientifica, a.a. 2005-06

Transcript of Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo...

Page 1: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Principi e Metodi della Fisica

Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione come geometria

Elettromagnetismo: dalla carica elettrica, ai campi, alle equazioni di Maxwell ed alle onde elettromagnetiche

Meccanica Quantistica: la crisi della Fisica Classica, comportamenti corpuscolari ed ondulatori di materia e radiazione,

i quanti di energia. Principio di indeterminazione. Statistiche quantistiche e struttura atomica della materia

Bibliografia: Robert H. March, Fisica per Poeti, Ed. Dedalo, 1994 Website: http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html

Mauro Anselmino, LT in Comunicazione Scientifica, a.a. 2005-06

Page 2: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

L’unità di carica elettrica è il Coulomb. Tutta la materia ordinaria è composta di atomi, i quali hanno un nucleo di carica (convenzionalmente) positiva ed elettroni di carica

(convenzionalmente) negativa in orbita intorno al nucleo. La carica risultante è nulla. Tutte le cariche osservate in natura sono quantizzate in multipli della carica del protone o dell’elettrone

Una delle simmetrie fondamentali della natura è la conservazione della carica elettrica. Nessun processo fisico noto produce una variazione netta della carica.

La carica elettrica

Gli effetti delle cariche sono caratterizzati in termini delle forze tra di loro (legge di Coulomb), dei campi elettrici e delle differenze di potenziale che generano. Un Coulomb è la quantità di carica

che fluisce attraverso una lampadina da 120 Watt (in un impianto di corrente alternata a 120 Volt) in un secondo. Due cariche di un Coulomb ciascuna poste alla distanza di un metro si

respingono con una forza di circa un milione di tonnellate! Il tasso di scorrimento ΔQ/Δt della carica elettrica è chiamato corrente elettrica ed è misurato in Ampère

VIRIP 2 cCoulomb/se 1Volt 120 Watt120

Page 3: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Legge di CoulombCariche di ugual segno si respingono, cariche di segno opposto si attraggono

(1 Kg-peso = 9.8 N)

La forza elettrica che agisce su una carica puntiforme q1, come risultato della presenza di una seconda carica puntiforme q2, è data dalla legge di Coulomb:

= costante dielettrica

costante di Coulomb

0

Page 4: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Nella materia ordinaria le cariche positive e negative non si accumulano mai separatamente in modo da formare grandi concentrazioni di carica di un solo segno. E’ tuttavia istruttivo

esaminare la quantità di carica presente, ad esempio, in una sfera di rame del volume di un centimetro cubo, 1 cm3. L’atomo del rame possiede un singolo elettrone di valenza nell’orbita

più esterna, il quale è poco legato ed è libero di muoversi all’interno del rame solido (è appunto ciò che rende il rame un buon conduttore elettrico). La densità del rame metallico è circa 9 g/cm3 ed una mole di rame è 63.5 grammi; quindi il cm3 di rame contiene circa 1/7 di una mole, cioè circa 8.5 x 1022 atomi di rame. Con un elettrone di conduzione per atomo, e con la carica dell’elettrone di 1.6 x 10-19 Coulomb, questo significa che vi sono circa 13,700

Coulomb di carica potenzialmente libera di muoversi in un cm3 di rame!

1 mole contiene ≈ 6 x 1023 molecole, numero di Avogadro

Una mole di una sostanza pura è una massa di quel materiale che, espressa in grammi, è numericamente identica alla massa molecolare espressa in unità di masse atomiche. Una mole di qualunque materiale contiene un numero di molecole pari al numero di Avogadro.

Quanti elettroni ci sono nella materia?

Coulomb 13700Coulomb106.11061/7 1923

Page 6: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Le forze elettromagnetiche legano gli atomi in molecole

Le forze forti legano protoni e neutroni (nucleoni) in nuclei

u,d sono quarks

Forze elettromagnetiche residue in azione: gli atomi sono

elettricamente neutri, ma gli elettroni dell’uno sono attratti dai

protoni dell’altro, e viceversa!

Page 7: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

10-10

m 10-14

m

Il nucleo contiene protoni con carica +e e neutroni neutri

Page 8: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

10-15

m

Neutroni e protoni

contengono quark

La struttura dei nucleoni

Page 9: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

I costituenti della materia

I protoni contengono uud - carica= +eI neutroni contengono udd - carica = 0

quark elettrone

23

e+

13

e- -e

carica

u

d e

Page 10: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

<10-19

m

Non vi sono indicazioni di una ulteriore

struttura?

La struttura dei quarks

Page 11: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Nessuna indicazione (finora) di una ulteriore struttura degli elettroni

e dei quark

materia atomica “vuota”

materia nucleare

nucleoni composti

Page 12: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.
Page 13: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Il campo elettrico di una carica puntiforme si ottiene dalla legge di Coulomb:

Il campo elettrico E è definito come la forza elettrica per unità di carica. La direzione del campo è presa lungo la direzione della forza che si eserciterebbe su di una

carica di prova positiva.

Il campo elettrico generato da un qualunque

numero di cariche puntiformi si ottiene come

la somma vettoriale dei campi generati dalle

singole cariche

Page 14: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Energia potenziale elettrica e potenziale elettrico

L’energia potenziale può essere definita come la capacità di compiere lavoro, generata da una qualunque distribuzione di cariche. Ad esempio, una carica puntiforme Q esercita una forza repulsiva su qualunque altra carica positiva di prova q che sia portata nelle sue vicinanze.

L’energia potenziale della carica di prova q è data da:

k = costante di Coulomb

L’energia potenziale di una carica puntiforme può essere calcolata come il lavoro necessario per portare la carica di prova q dall’infinito fino alla distanza r. Lo zero del potenziale è scelto all’infinito. Dalla

conoscenza dell’energia potenziale elettrica si può calcolare la forza elettrica. In elettricità è solitamente più conveniente usare l’energia

elettrica potenziale per unità di carica , chiamata semplicemente potenziale elettrico o (differenza di) potenziale.

Page 15: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Campi magnetici

I campi magnetici sono prodotti da correnti elettriche, che possono essere correnti macroscopiche in fili o correnti microscopiche associate al moto degli elettroni in orbite

atomiche. Il campo magnetico B è definito in termini della forza che agisce su di una carica in movimento, la Forza di Lorentz. Le sorgenti del campo magnetico sono di natura

dipolare, in quanto hanno sempre un polo Sud ed un polo Nord.

Page 16: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Monopoli elettrici e magnetici

Il campo elettrico di una carica puntiforme positiva è diretto radialmente verso l’esterno

Il campo magnetico di una calamita

Le sorgenti elettriche sono intrinsicamente "monopoli“, cioè

cariche puntiformi

Le sorgenti magnetiche sono intrinsicamente dipolari - non si possono

isolare “monopoli” Nord o Sud

Page 17: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

La forza magnetica

Il campo magnetico B è definito tramile la legge della Forza di Lorentz, cioè la forza magnetica che agisce su una carica in movimento:

Le unità del campo magnetico sono (Newton secondi) /(Coulomb metri) o Newton/ (Ampère metri). Questa unità è il Tesla. E’ una unità molto grande e per campi magnetici più deboli si usa

il Gauss; un Tesla è 10,000 Gauss. Il campo magnetico della Terra è circa mezzo Gauss.

BqF

v

B a che A a sia

lareperpendico è BA

Page 18: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

La Forza di Lorentz

Sia il campo elettrico che il campo magnetico possono essere definiti tramite la forza di Lorentz:

La forza elettrica è semplicemente lungo la direzione del campo elettrico se la carica q è positiva, ma la direzione della forza magnetica è perpendicolare al campo magnetico

Page 19: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Il campo magnetico di una corrente

Una corrente elettrica esercita una forza su di un piccolo magnete di prova (Oersted)

Il campo magnetico di un filo infinatamente lungo percorso da una corrente I è dato dalla legge di Ampere.

r = distanza dal filo permeabilità magnetica

r

IB

20

0

Page 20: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Il campo magnetico di correnti atomiche (spire)

Una corrente elettrica in una spira circolare crea un campo

magnetico più concentrato al centro della spira

al centro della spira

B = (μoi) / (2r)

Momento magnetico di dipolo

(NB: µ del dipolo non è lo stesso della permeabilità µ0 )

Page 21: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Forza magnetica su di una corrente (Faraday)

F = i L x B

Page 22: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Forza magnetica tra due fili percorsi da corrente

Page 23: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

I campi elettrici e magnetici posseggono energia. Per il campo elettrico la densità di energia è

Questa densità di energia può essere usata per calcolare l’energia immagazzinata in un condensatore.

For the magnetic field the energy density is

Energia dei campi elettrici e magnetici

Page 24: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

L’energia del campo elettrico in un condensatore

L’energia immagazzinata in un condensatore ha la forma generale della densità di energia di un campo

elettrico

Caso particolare: energia immagazzinata in un condensatore a facce piane parallele

d

VE

d

AC

Page 25: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Capacità di conduttori piani paralleli

                               

Il campo elettrico tra due piani carichi paralleli è dato da

La differenza di potenziale tra i due piani può essere espressa come il lavoro compiuto da una carica positiva di prova quando si sposta dal piatto posivo a quello negativo

Il Farad, F, è, nel SI, l’unità di misura della capacità for capacitance, uguale a Coulomb/Volt.

Page 26: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Immagazzinare energia in un condensatore

Elemento di energia immagazzinata :

Se Q è la quantità totale di carica che appare al termine del processo di carica, allora l’energia

immagazzinata è data dall’integrale:

L’energia immagazzinata in un condensatore può essere espressa come il lavoro compiuto

dalla batteria. La differenza di potenziale rappresenta l’energia per unità di carica, quindi il lavoro compiuto per spostare un elemento di carica dq dal piatto negativo a quello positivo è

uguale a Vdq, dove V è la differenza di potenziale del condensatore. V è proporzionale

alla qualità di carica già presente sul condensatore

Questa espressione può essere scritta in modi equivalenti usando la definizione di capacità, C = Q/V:

Page 27: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Le interazioni dei campi magnetici con le cariche in movimento

Page 28: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Applicazioni – La differenza di potenziale generata in un filo che si muove in un campo magnetico

Page 29: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

La forza elettromotrice – f.e.m. La forza magnetica esercitata sulle cariche in un conduttore in moto genera una corrente

indotta (una forza elettromotrice indotta), descritta dalla legge di Faraday

Φ = BA è il flusso del campo magnetico: è dato dal prodotto di B per l’area che attraversa perpendicolarmente. ΔΦ/Δt dà la variazione del flusso nel tempo.

Page 30: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

La legge di Faraday

Qualunque cambiamento del flusso di un campo magnetico attraverso una bobina causa una differenza di potenziale (f.e.m. indotta), e quindi una corrente elettrica nella bobina.

Qualunque sia il modo in cui tale cambiamento è prodotto, vi sarà sempre un a f.e.m. indotta.

Page 31: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Generatore di Corrente Alternata

La rotazione di una spira in un campo magnetico genera delle f.e.m. indotte in entrambi i lati della spira, che si sommano. Poichè la componente della velocità perpendicolare al campo magnetico cambia sinusoidalmente con la rotazione, la differenza di potenziale generata è

sinusoidale, cioè una corrente alternata. Questo processo è descritto dalla legge di Faraday, quando si noti che la rotazione della spira cambia continuamente il flusso del campo

magnetico attraverso la spira, generando quindi una differenza di potenziale

Page 32: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Forza magnetica su una carica in moto

Page 33: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Moto circolare di una carica in campo magnetico

Se una carica si muove in un campo magnetico lungo una direzione perpendicolare a quella del campo, ne risulta un cammino circolare. La forza magnetica , essendo

perpendicolare alla forza magnetica, funge da forza centripeta

Page 34: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Motori elettrici

Page 35: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

La principale variabile per determinare la gravità di una scossa elettrica è la corrente elettrica che passa attraverso il mezzo. Ovviamente, questa corrente dipende dalla

differenza di potenziale e dalla resistenza del mezzo che percorre, ad esempio il corpo umano. Una regola approssimata è data nella seguente tabella.

Electric Current (1 second contact)

Physiological Effect

1 mA Threshold of feeling, tingling sensation.

10-20 mA "Can't let go!" current - onset of sustainedmuscular contraction.

100-300 mA Ventricular fibrillation, fatal if continued.

In genere, toccando fili ad alta tensione, non si prende la scossa se non vi è un passaggio di corrente verso la Terra o verso un potenziale più basso. Tipicamente toccando un circuito a 220 volt, si può evitare una pericolosa scossa se si hanno

scarpe isolanti, che impediscono il passaggio della corrente verso la Terra.

La scossa elettrica

Page 36: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

L’uccellino si prenderà la scossa?

Il flusso di corrente elettrica è proporzionale alla differenza di potenziale, secondo la legge di Ohm.

Entrambi i piedi dell’uccellino sono allo stesso potenziale, quindi non vi può essere una corrente elettrica. L’uccellino non si prende la scossa, a meno che non tocchi un altro filo ad un diverso

potenziale (o il terreno).

2RIVIP potenza dissipata in calore

Page 37: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Equazioni di Maxwell

Sorgenti dei

campi

t

E

cJB

t

BE

B

E

20

0

1

0

00

2 1

c

c = velocità della luce, costante universale

J

= densità di carica

= densità di corrente

Page 38: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Le equazioni di Maxwell nel vuoto contengono l’equazione delle onde electromagnetiche:

Le onde elettromagnetiche

in 1 dimensione:

La stessa equazione vale per il campo magnetico B. Le soluzioni sotto forma di onde piane sono date da:

Page 39: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Le onde elettromagnetiche trasportano energia mentre viaggiano attaverso lo spazio vuoto.Vi è una densità di energia, associata sia al campo elettromagnetico. Il flusso di

energia per unità di tempo e di area è descritto dal vettore di Poynting

BEcP

20

Page 40: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Grandezze caratteristiche di un’onda pianaUn’onda che si propaga con una frequenza fissata assume la forma di un’onda sinusoidale. Ad un singolo istante di tempo appare come in figura; le sue grandezze caratteristiche sono:

frequenza, lunghezza d’onda e velocità di propagazione.

Le onde cambiano periodicamente sia nel tempo che nello spazio

T v v f

22

2

T

k

T

1 f

Page 41: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Onde trasversali

Nelle onde trasversali lo spostamento del mezzo è perpendicolare alla direzione di propagazione dell’onda. Una piccola onda in uno stagno e un’onda lungo una corda sono esempi di onde trasversali. Le onde elettromagnetiche sono trasversali

Nelle onde longitudinali lo spostamento del mezzo è parallelo alla propagazione dell’onda. Le onde sonore nell’aria sono onde longitudinali

Onde longitudinali

Page 42: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Onde sonore nell’aria

Un’onda sonora a singola frequenza che viaggia nell’aria causa variazioni sinusoidali della pressione. Il moto dell’aria che accompagna il passaggio del suono avviene avanti e

indietro lungo la direzione di propagazione del suono, caratteristica delle onde longitudinali

Page 43: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Fasi e interferenza

Se una massa su una sbarretta ruota a velocità costante ed il il risultante

moto circolare è illuminato da un lato, la sua ombra descrive un moto

armonico. Se la posizione verticale dell’ombra è considerata in funzione del tempo, la curva risultante è una

sinusoide. Un intero periodo dell’onda sinusoidale corrisponde ad un giro completo di 360 gradi. L’idea

di fase può essere illustrata da questo esempio: una qualunque

frazione del periodo corrisponde alla frazione del cerchio percorsa,

espressa in gradi, la fase

le onde si combinano con le

loro fasi

Page 44: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Diffrazione con fenditura singola

I raggi 1 e 2 arrivano in fase e quindi le loro ampiezze si sommano; i raggi 3 e 4 arrivano in opposizione di fase e le loro ampiezze si cancellano

Page 45: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Interferenza con doppia fenditura

Page 46: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Diffrazione con doppia fenditura

Page 47: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Speed of light in vacuum 

Page 48: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Frequencies: 500-1500 kHz

Wavelengths: 600 - 200 m

Quantum energies: 2 - 6 x 10-9 eV

TV and FM Radio Band

Frequencies: 54-1600 MHz

Wavelengths: 5.55 m - 0.187 m

Quantum energies: 0.22 x 10-6 - 0.66 x 10-5 eV

AM (Amplitude Modulated) Radio Band

Raggi con l’energia di 1 eV hanno una lunghezza d’onda

15s105kHz 500 s102

1 6

T

m 600s102 m/s 103 -68 Tc

eV102eV 1025.6 1033 J1033s105 s J106.6

91829

291534

hE

h s J106.6 34 J106.1eV 1 19costante di Planck

m1012 7

Page 49: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

                                                   

La piccola parte visibile dello spettro elettromagnetico corrisponde alle lunghezze d’onda vicino al massimo della curva di radiazione del sole. La luce bianca può essere separata nelle sue componenti spettrali tramite dispersione su un prisma

Luce visibile

Frequencies: 4 - 7.5 x 1014 Hz

Wavelengths: 750 - 400 nm

Quantum energies: 1.65 - 3.1 eV

1 nm = 10–9 m = 10 Å

Page 50: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

I raggi X sono radiazioni elettromagnetiche ad alta frequenza prodotte quando degli elettroni sono improvvisamente decelerati, oppure mediante transizioni tra livelli atomici.

I raggi gamma denotano radiazioni elettromagnetiche che si originano nel nucleo (piuttosto che nell’atomo), come parte di un processo di decadimento radioattivo. Hanno

energia molto alta, dell’ordine delle energie di legame delle interazioni forti. Nelle interazioni con la materia sia i raggi X che i raggi gamma sono radiazioni ionizzanti e possono produrre effetti fisiologici, come il rischio di mutazioni o di cancro nei tessuti

organici.

Frequencies: typically >1020 Hz

Wavelengths: typically < 10-12 m

Quantum energies: typically >1 MeV

Raggi-X e raggi gamma

Frequencies: 7.5 x 1014 - 3 x 1016 Hz

Wavelengths: 400 nm - 10 nm

Quantum energies: 3.1 - 124 eV

raggi-X raggi gamma

Page 51: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

La radioattività gamma è composta da onde

elettromagnetiche. Si distingue dai raggi-X solo per il fatto che si origina nel nucleo. La maggior parte dei raggi gamma

hanno energia più alta dei raggi-X e sono più

penetranti. E’ il tipo di radiazione più utile per

applicazioni mediche, ma allo stesso tempo il più pericoloso per la sua

capacità di penetrare larghi strati di materia.

Page 52: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Le radiazioni elettromagnetiche ed il corpo umano

Page 53: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.
Page 54: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

L’energia dei fotoni delle micro-onde varia tra 0.00001 to 0.001 eV, che sono le tipiche energie di separazione degli stati quantistici di rotazione e torsione molecolare. L’interazione delle micro-onde con la materia che non sia un conduttore metallico induce la rotazione delle

molecole e la produzione di calore come risultato del moto molecolare. I conduttori invece assorbono fortemente le micro-onde e ogni altra frequenza più bassa poiché causano correnti elettriche che scaldano il materiale. La maggior parte della materia, incluso il corpo umano, è

molto trasparente alle micro-onde. Micro-onde ad alta intensità, come quelle di un forno a micro-onde, dove passano avanti e indietro nel cibo milioni di volte, scaldano la materia

producendo rotazioni e torsioni molecolari. Poiché le loro energie sono milioni di volte più basse di quelle dei raggi-X, non producono fenomeni di ionizzazione e altri danni da radiazione

tipici delle onde ionizzanti.

Le interazioni delle micro-onde

cm 0.12)(12 eV )1010( 35 E

Page 55: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Il principale meccanismo per l’assorbimento dei fotoni della luce visibile è il salto quantico degli elettroni a livelli energetici più alti. Vi sono molti lvelli

disponibili, quindi la luce visibile è fortemente assorbita. Una luce rossa intensa può essere trasmessa attraverso la mano o uno strato di pelle: la parte rossa

dello spettro di luce visibile è meno assorbita della parte violetta.

Interazioni con la luce visibile

L’esposizione alla luce visibile causa calore, ma non causa ionizzazione con i rischi collegati. La luce solare attraverso un vetro riscalda, ma non causa scottature - questo è un

effetto della parte a frequenze più alte (UV) della luce solare, che è bloccata dal vetro.

Page 56: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Le radiazioni ultraviolette

I raggi ultravioletti al limite superiore dello spettro visibile sono molto assorbiti nello strato superficiale della pelle, mediante transizioni energetiche degli elettroni. Ad energie un po’ più alte si raggiunge la soglia di ionizzazione ed avvengono processi di fotoionizzazione, più pericolosi. La scottatura della pelle è principalmente un effetto dei raggi UV, e la ionizzazione comporta il

rischio di cancro della pelle. Lo strato di ozono nella parte superiore dell’atmosfera è importante per la salute umana, in

quanto assorbe gran parte della pericolosa radiazione ultravioletta solare. I rischi per la salute dovuti all’esposizione a raggi UV riguardano principalmente lunghezze d’onda tra 290 e 330 nm,

la radiazione UVB. La lunghezza d’onda più efficace nel causare scottature è di 297 nm.

Page 57: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Poiché le energie dei fotoni dei raggi-X sono troppo alte per essere assorbite in transizioni tra stati

elettronici, questi fotoni possono interagire con un elettrone solo scalzandolo completamente dall’atomo. Quindi, tutti i raggi-X sono classificati come radiazione ionizzante. Ciò può avvenire cedendo tutta l’energia ad un elettrone (fotoionizzazione), oppure cedendo parte

del’energia all’elettrone e la parte rimanente ad un fotone di energia più bassa (scattering Compton). Ad energie sufficientemente alte, il fotone dei raggi-X può

creare una coppia electrone -positrone .

Page 58: Principi e Metodi della Fisica Relatività: dal mistero della velocità della luce, allo spazio-tempo, alla equivalenza di massa ed energia. La gravitazione.

Heart Electrical Phenomena

The rhythmic contractions of the heart which pump the life-giving blood occur in response to periodic electrical control pulse sequences. The natural pacemaker is a specialized bundle of nerve fibers called the sinoatrial node (SA node). Nerve cells are capable of producing electrical impulses called action potentials. The bundle of active cells in the SA node trigger a sequence of electrical events in the heart which controls the orderly pattern of muscle contractions that pumps the blood out of the heart.

The electrical potentials (voltages) that are generated in the body have their origin in membrane potentials where differences in the concentrations of positive and negative ions give a localized separation of charges. This charge separation is called polarization. Changes in voltage occur when some event triggers a depolarization of a membrane, and also upon the repolarization of the membrane. The depolarization and repolarization of the SA node and the other elements of the heart's electical system produce a strong pattern of voltage change which can be measured with electrodes on the skin. Voltage measurements on the skin of the chest are caled an electrocradiogram or ECG.

The heart's electrical control system must properly synchronize the pumping functions illustrated above.