INCENERIMENTO

39
UNIVERSITA’ DEGLI STUDI DI PADOVA CLS “Scienze e tecnologie per l’ambiente e il territorio” Corso di depurazione chimica INCENERIMENTO Andrea Boaria

description

UNIVERSITA’ DEGLI STUDI DI PADOVA CLS “Scienze e tecnologie per l’ambiente e il territorio” Corso di depurazione chimica. INCENERIMENTO. Andrea Boaria. INCENERIMENTO. RSU. RS. Sistema EX-SITU di trattamento affidabile per. Rifiuti medici e/o armi chimiche. - PowerPoint PPT Presentation

Transcript of INCENERIMENTO

Page 1: INCENERIMENTO

UNIVERSITA’ DEGLI STUDI DI PADOVACLS “Scienze e tecnologie per l’ambiente e il territorio”Corso di depurazione chimica

INCENERIMENTO

Andrea Boaria

Page 2: INCENERIMENTO

INCENERIMENTOSistema EX-SITU di trattamento affidabile per

RSU

RS

Rifiuti medici e/o armi chimiche

Capacità di distruzione notevole (~ 70%)

Processo di combustione (termodistruzione) con lo scopo di smaltire i rifiuti o decontaminare materiali (suolo), indispensabile per liquidi organici non degradabili.

Parole chiave dei meccanismi (dissociazione, pirolisi, volatilizzazione, ionizzazione, condensazione, precipitazione, complessamento, sterilizzazione,fusione, etc.).

Necessita di trattamenti preliminari (vagliatura, triturazione, selezione,...).

Coadiuvato da meccanismi di trattamento e controllo emissioni (gassose liquide e solide).

Page 3: INCENERIMENTO

INQUADRAMENTO NORMATIVO• Normazione per sopperire al problema emissioni, gestire gli inceneritori e radicare il

recupero energetico.

A livello Europeo• RIFIUTI (Regolamento CEE n. 259/93), trasporto entro i confini;• DISCARICA (Direttiva 1999/31/CEE), smaltimento;• INCENERIMENTO RIFIUTI (Direttiva 2000/76/CE), approccio integrato, valori

limite delle emissioni per l’aria e acqua, per impianti di “incenerimento” e per quelli di “coinceneremento”.

A livello Nazionale• RIFIUTI (Legge 29/10/1987), smaltimento dei rifiuti;• INCENERIMENTO (DM 25 febbraio 2000 n. 124), introdotti limiti di emissione

e norme tecniche per incenerimento e coincenerimento;• INCENERIMENTO (D.lgs.n. 133 11 maggio 2005), recepimento Direttiva

2000/76/CE.

Page 4: INCENERIMENTO

PROCESSI

• Combustione del suolo (o altro materiale).

mobilizzazione

volatilizzazione

ossidazione

A situazioni termiche diverse

Evapor. H2O e idrocar. volatili (>100°C)

Decomposiz. composti inorg. (>400°C)

Evapor. idroc. Pesanti e pirolisi (300-600°C)

Page 5: INCENERIMENTO

PROCESSINel caso di organoclorurati occorre

sostenere una T°C ≥1000-1200°C.

Il processo di termodistruzione deve essere seguito da:

Incenerimento in camera di post-combustione (quando richiesto);

Rimozione delle polveri;

Controllo dei gas acidi (derivazione da trattamento di alogenati, solforati, etc.).

Soprattutto per limitare fenomeni di usura dell’impianto (corrosione (H3PO4), incrostazioni, formazione particolato vischioso (metalli alcalini, Na, Ca,….).

Page 6: INCENERIMENTO

PROCESSIDepurazione

Ceneri

Acque di lavaggio

Polveri derivanti dall’abbattimento dei fumi

La termodistruzione riguarda terreni contenenti:

• COMPOSTI INORGANICI (metalli pesanti, particolato, sali alogenati, nitrati, etc.)>;

• COMPOSTI ORGANICI (PCB, PAHs, IA, BA, etc.).

Con una efficienza di distruzione (abbattimento) del 99,9%

Page 7: INCENERIMENTO

PROCESSIDIAGRAMMA DI TANNER

Individua il campo di composizione dei rifiuti adatti all’incenerimento.

Acqua < 50%Materiale combustibile > 25%Materiale incombustibile (inerti) < 60%

L’autocombustione è garantita con PCI attorno ai 1500-2000Kcal/Kg

Page 8: INCENERIMENTO

TECNOLOGIE DI COMBUSTIONE• La combustione avviene nella CAMERA DI COMBUSTIONE per

alimentazione esterna (combustibile) o per auto-alimentazione (sempre con PCI tra i 1500-2000 Kcal/Kg).

• Esistono due tipi di CAMERA DI COMBUSTIONE:

A letto fluido

Sistema al plasma

MobileGriglia mobile

Tamburo rotante

Statica

Page 9: INCENERIMENTO

TECNOLOGIE DI COMBUSTIONE

Il FORNO

zona di essicazione (evaporaz. H2O e perdita peso del rifiuto, T°C ridotte)

zona di combustione secondaria (termodistruz. frazioni volatili ), con iniezione di aria secondaria (ossidazione di composti prima liberati), T°C assai elevate (1100-1200°C)

zona di combustione primaria (reazioni di combustione, sintesi comp. Volatili, T°C elevate)

zona di fine combustione (reazioni a carico di frazioni particellari grandi e con cinetiche sostenute, T°C in decremento)

Page 10: INCENERIMENTO

TECNOLOGIE DI COMBUSTIONE

Sono presenti anche sistemi di scarico delle scorie, di raffreddamento (il canale di scarico è immerso in acqua e garantisce una leggera depressione all’impianto).

Solitamente nella camera di combustione vengono insuflati due diversi tipi d’aria:

• aria primaria (comburente immesso al di sotto della Camera di combustione);

• aria secondaria (aria immessa secondariamente e al di sopra della Camera di combustione secondaria, per favorire l’eccesso)

Page 11: INCENERIMENTO

TECNOLOGIE DI COMBUSTIONETecnologia a Camera di combustione statica

Forno a letto fluido

La più usata in fatto di Tecnologia statica

Costituita da un cilindro verticale

Il rifiuto viene tenuto in sospensione con un effetto correnteeffetto corrente

Si creano dei moti vorticosi che ottimizzano il processo di combustione (grazie allo scambio termico)

Temperature attorno i 750-900750-900°C

Il materiale dev’essere prima pretrattato (granulometria tra i 2,5 e 5 cm)

Tratta rifiuti di derivazione industriale

Page 12: INCENERIMENTO

TECNOLOGIE DI COMBUSTIONETecnologia a Camera di combustione statica

Forno a letto fluido

Letto fisso;

Letto bollente: utilizza l’aria primaria per fluidizzare il letto, tratta combustibili eterogenei, bassa velocità di fluidificazione (1-3 m/s), alta efficienza di combustione e riduzione di emissioni di bottom ashes e ridotto trasporto di fly ashes;

Letto turbolento;

Letto circolante: applicato a combustibili omogenei, elevata efficienza di combustione, riduzione bottom ashes, alta velocità di fluidizzazione (8-10 m/s) uso di un ciclone per riciclo del solido, elevato trasporto di fly ashes;

Letto con trasporto pneumatico

Page 13: INCENERIMENTO

TECNOLOGIE DI COMBUSTIONETecnologia a Camera di combustione statica

Sistema al Plasma

Gas altamente ionizzato elettricamente, generato anche con l’arco elettrico.

L’unità funzionale costituita da un cilindro rotante verticale provvisto di torcia al plasma, in grado di generare temperature superiori ai 1000°C.

I composti organici subiscono dissociazione in atomi, ionizzazione e pirolisi; temperature superiori ai 1600°C fondono il terreno ed esso deve essere raffreddato.

In grado di distruggere totalmente la materia vivente (anche 2000°C), potendo trattare anche materiali molto persistenti e resistenti (PCB).

Page 14: INCENERIMENTO

TECNOLOGIE DI COMBUSTIONETecnologia a Camera di combustione statica

Sistema al Plasma

Alcuni VANTAGGI:

-capacità di trasferimento del calore al terreno;

- Minore produzione di prodotti gassosi da trattare;

- ciclo di lavorazione breve;

- tecnologia flessibile sia come condizioni operative che come tipologia di rifiuti trattabili;

Alcuni SVANTAGGI:

- limitata durata dell’arco al plasma e dei materiali refrattari (alte temperature in gioco);

- necessità di controlli umani;

- annichilazione totale e doverosa riqualificazione del terreno;

Page 15: INCENERIMENTO

TECNOLOGIE DI COMBUSTIONETecnologia a Camera di combustione mobile

Forni a griglia mobile

Per i rifiuti urbani è la più consolidata.

Il materiale viene trasportato nella zona di combustione mediante una griglia mobile inclinata (dove avvengono le reazioni ci combustione).

L’aria primaria viene insuflata sotto la griglia in lieve eccesso (10-20%), mentrel’aria secondaria viene dosata sopra la griglia.

Le scorie vengono raccolte nella parte terminale della griglia

Page 16: INCENERIMENTO

TECNOLOGIE DI COMBUSTIONETecnologia a Camera di combustione mobile

Forni a tamburo rotante

Costituiti da un tamburo rotante inclinato (Lu ~10-15 m.) favorente il movimento del materiale.

La combustione avviene a contatto con la parete e la camera di post-combustione completa la termodistruzione.

Rilevanti perdite di calore (Ø tamburo al massimo di 1,5-2 metri).

Si utilizza un eccesso d’aria maggiore (100-150%).

Si utilizza per smaltire fanghi, frazioni fini o liquide, rifiuti sanitari pericolosi e non;

Temperature d’esercizio tra i 850-1400°C.

La sezione di fondo estrae le bottom ashes (raffreddamento ad H2O)

Page 17: INCENERIMENTO

EMISSIONIOgni inceneritore oltre a eliminare i rifiuti li genera (Primo principio della termodinamica)

Prodotti della combustione

Emissioni gassose

Ceneri di fondo (scorie)

Bottom e fly ashes

Avvengono reazioni di ossidazione, dissociazione, aggregazione, etc, (aumento in peso della massa dovuto alla sintesi di CO2, creazione di acidi alogenidrici e diossine).

Page 18: INCENERIMENTO

EMISSIONISuddivisione delle emissioni:

MACROINQUINANTI (Ossidi di zolfo, Ossidi di azoto, Gas inorganici, Ossidi di carbonio, Sotanze Organiche Volatili, Particolato);

MICROINQUINANTI (Metalli Pesanti, Idrocarburi Aromatici, Idrocarburi Policiclici Aromatici, Organoclorurati, Diossine Bromurate e Alogenate, Fenoli Alogenati, Dibenzotiofeni Policlorurati, Benzeni Clorurati);

Bisogna ricordare che le emissioni di un inceneritore non interessano solamente il comparto ambientale ARIA, ma anche l’ACQUA e SUOLO.

Page 19: INCENERIMENTO

DEPURAZIONE POST-COMBUSTIONE

Trattamento di effluenti gassosi

Importante dal punto di vista dell’impatto ambientale e del recupero energetico

alla tipologia d’inquinante; al carico inquinante da trattare; limiti d’emissione; particolare processo di applicazione e condizioni operative

La rimozione si differenzia in base

Page 20: INCENERIMENTO

DEPURAZIONE POST-COMBUSTIONETrattamento di effluenti gassosi

Abbattimento Sostanze Gassose Incombuste

Generalmente rappresentate da alcali, aldeidi, chetoni, ammine, monossido di carbonio.

Soprattutto il CO è un ottimo indicatore dell’andamento della combustione: la sua presenza è indice di insufficiente temperatura d’esercizio, di eventuale sovraccarico del forno o comunque di una carenza di Ossigeno.

Una risoluzione è l’eccedenza di O2, ma ATTENZIONE, l’eccesso può si ridurre i CO ma può aumentare gli NOx.

Page 21: INCENERIMENTO

DEPURAZIONE POST-COMBUSTIONETrattamento di effluenti gassosi

Abbattimento Particolato

Presente nella corrente aeriforme in concentrazioni che variano a seconda: del contenuto di ceneri del rifiuto; del tipo di camera di combustione; dalle condizioni d’esercizio dell’impianto.

Fenomeno pericoloso dell’ ARRICCHIMENTO DEL PARTICOLATO

Trattamenti:- a secco; - a umido;- a semisecco.

Page 22: INCENERIMENTO

DEPURAZIONE POST-COMBUSTIONETrattamento di effluenti gassosi

Abbattimento Particolato

Trattamenti a secco

Si usano i cicloni ( e multicicloni), i filtri a maniche o i precipitatori elettrostatici (ESP).

Filtri a manica sovente intasati

Soluzione tecnica

Utilizzo di un metodo per rimuovere le polveri (filter cake) ad alta pressione (pulse jet) coadiuvato con sistema di iniezione di carboni attivi (contro i microinquinanti).

Page 23: INCENERIMENTO

DEPURAZIONE POST-COMBUSTIONETrattamento di effluenti gassosi

Abbattimento Particolato

Trattamenti a umido

Usati scrubber (a riempimenti, a piatti, a venturi, a ciclone, etc.) oppure precipitatori elettrostatici ad umido (WESP).

Il particolato viene separato dai gas tramite lavaggi in H2O (> allontanamento).

Page 24: INCENERIMENTO

DEPURAZIONE POST-COMBUSTIONETrattamento di effluenti gassosi

Trattamento Gas acidi

Principali gas: SO2, HCl, HF (derivanti dalla trasformazione di sostanze madri).

Trattamenti:-Assorbimento a secco;- assorbimento a umido;- assorbimento a semisecco.

Per limitare la presenza di polveri in questi sistemi e per separare le polveri di abbattimento da quelle di combustione si rende necessaria una depolverazione preliminare.

Page 25: INCENERIMENTO

DEPURAZIONE POST-COMBUSTIONETrattamento di effluenti gassosi

Trattamento Gas acidiAssorbimento a secco

Prevede l’asorbimento chimico-fisico dei gas acidi usando la Ca(OH)2

(o NaHCO3), in polvere fine.

CaO + H2O Ca(OH)2 SO2 + Ca(OH)2 CaSO3 + H2ONaHCO3 Na2CO3 + CO2 + H2O SO2 + Na2CO3 Na2SO3 + CO2

Si necessita, inoltre, di una depolverazione finale (filtri a maniche) per abbattere le polveri contenenti i prodotti di reazione e i reagenti non esauriti.

Assorbimento a umido

L’assorbimento dei gas è realizzato mediante un lavaggio degli effluenti gassosi con soluzioni alcaline (NaOH).

Page 26: INCENERIMENTO

DEPURAZIONE POST-COMBUSTIONETrattamento di effluenti gassosi

Trattamento Gas acidiAssorbimento a semisecco

I fumi vengono trattati iniettando un reagente adsorbente (sospensione di latte di calce).

Il reagente in forma cristallina (finemente dispersa) reagisce allo stato solido con i gas acidi formando i rispettivi sali.

Non si producono effluenti liquidi e i prodotti di neutralizzazione necessitano depolverazione finale (trattamento a secco).

Page 27: INCENERIMENTO

DEPURAZIONE POST-COMBUSTIONE

Trattamento di effluenti gassosi

Abbattimento degli Ossidi di Azoto

Si prevede un incremento della quota d’aria secondaria e decremento di quella primaria in modo da limitare la presenza di O2 in zone ad alta T°C (meno NOx); questi composti possono essere ridotti anche con ricircoli di gas di scarico (~30%).

Due metodi principali:- riduzione selettiva non catalitica (SNCR);- riduzione selettiva catalitica (SCR).

Si usano solitamente ammoniaca in soluzione acquosa (NH4OH) o additivi di processo contenenti urea.

Page 28: INCENERIMENTO

DEPURAZIONE POST-COMBUSTIONETrattamento di effluenti gassosi

Riduzione selettiva non catalitica (SNCR)

Si sfruttano i radicali amminici, i quali reagiscono con il NO a T°C comprese tra 850 e 1050°C e formano N2 e H2O.

Processi influenzati da:

Temperatura d’esercizio (>T° > ossidazione dell’ammoniaca; se <T° <reazione dell’ammoniaca (ammonia slip) con formazione di incriostazioni ((NH4)2SO4 e NH4Cl);

Concentrazione di partenza dei reagenti (per rendere il processo più efficace si riccorre ad un eccesso di ammoniaca (1,5-2 moli/mole di NOx). L’urea è di più facile gestione.

4NH3 + 5O2 4NO + 6H2O

Abbattimento degli Ossidi di Azoto

Page 29: INCENERIMENTO

DEPURAZIONE POST-COMBUSTIONETrattamento di effluenti gassosi

Riduzione selettiva catalitica (SCR)

Ossidi di azoto (NO e NO2), tramite ammoniaca, convertiti in N2 e H2O a temp. comprese tra 270 e 380°C in presenza di un catalizzatore.

Un problema sovente è l’avvelenamento del catalizzatore (presenza nei fumi di Ossidi di zolfo (SO3) (NH4)2SO4.e metalli pesanti (V, Zn, As)).

Importante un sistema di abbattimento degli ossidi di azoto a VALLE della depurazione dei fumi.

Abbattimento degli Ossidi di Azoto

Page 30: INCENERIMENTO

DEPURAZIONE POST-COMBUSTIONETrattamento di effluenti gassosi

Abbattimento dei composti organoclorurati

Principalmente Clorobenzene, Clorofenoli, Policlorodibenzodiossine, Policlorodibenzofurani e altri composti ad elevata tossicità.

Si possono evitare con alte temperature nella Camera di combustione (900-950°C), con elevati valori di O2 ed elevata turbolenza.

Se presenti nella fase solida (trattamento del particolato o utilizzo di carboni attivi)

Abbattimento dei Metalli pesanti

Effettuato in concomitanza con quello del particolato (condensazione su di esso); il mercurio, ad esempio, viene rimosso con lavaggi ad umido o tramite adsorbimento con carbone attivo.

Page 31: INCENERIMENTO

DEPURAZIONE POST-COMBUSTIONETrattamento di prodotti di risulta

Circa il 20-30% in peso e il 10-15% in volume del rifiuto solido grezzo (γ=2,2-2,7 t/m3).

Tipologie solide

Ceneri e scorie (bottom and boiler ash)

Ceneri volanti (fly ash)

Prodotti di reazione e reagenti in eccesso

Page 32: INCENERIMENTO

DEPURAZIONE POST-COMBUSTIONETrattamento dei prodotti di risulta

Bottom and boiler ash

RIFIUTI SPECIALI NON PERICOLOSI

Costituiti da frazioni inerti e piccole quantità di materiale incombusto.

Le scorie vengono raccolte in una vasca di spegnimento (%U.≈25). Limitata presenza OK!! (il processo)

Possono venir avviati ai cementifici o per realizzazioni stradali o infrastrutturali.

Page 33: INCENERIMENTO

DEPURAZIONE POST-COMBUSTIONETrattamento dei prodotti di risulta

Prodotti di reazione e reagenti in eccesso

RIFIUTI SPECIALI PERICOLOSI

Sintesi in impianti di assorbimento a secco (assenza fase liquida).

L’inertizzazione (metodo definitivo mediante cementificazione) è attenuato dalla presenza di Cloruri e Solfati.

Fly ash

RIFIUTI SPECIALI PERICOLOSIPolveri di combustione trasportate dai fumi (Ø < delle scorie).

Possono contenere metalli pesanti (Pb, Cd, Zn) e composti organici adsorbiti e devono essere allocati in discarica o inertizzati e messi i discarica.

Page 34: INCENERIMENTO

DEPURAZIONE POST-COMBUSTIONETrattamento prodotti liquidi di risulta

Effluenti liquidi

Alcune derivazioni

Spegnimento delle scorie;

Trattamento a umido dei fumi;

Accumulo sul fondo della fossa;

Da torri di raffreddamento e scarico caldaie;

Dai servizi generali, igienici, sociali.

Le acque possono contenere solidi sospesi, composti organici incombusti, sali solubili (Cl-, SO4=), gas acidi.

Sottoposte a specifico trattamento chimico-fisico.

Page 35: INCENERIMENTO

UTILIZZO DI RIFIUTI COME ENERGIA

Rifiuto (C, H, ridotti) (CO2, H2O, ossidati)

ENERGIA Termica

Elettrica

PCS: quantità di calore sviluppata dall’unità di massa del campione dopo averlo essicato (bomba mahler);

PCI: quantità di calore sviluppata dall’unità di massa del campione tal quale, cioè umido.

Formule empiriche per stimare il PCI (riferimento tecnico ~ 1500 Kcal/Kg)

Formule sperimentali di Shien Fan, Boie,

Du Long: PCI = 8080 C + 28750 (H-O/8) + 2500 S + r*H2O)

Page 36: INCENERIMENTO

TERMOVALORIZZAZIONEQuantitativi imponenti

Lungimiranza energetica

Pressione normativa

termodistruzione/ TERMOUTILIZZAZIONE

TERMOVALORIZZAZIONE

Energia elettrica Energia termica (teleriscaldamento)

SI USA IL CALORE PRODOTTO PER PRODURRE ENERGIAEsempio importante: Inceneritore di Brescia, con ~ 760 mila tonn./y, 510 milioni KWatt/h netti (fabbisogno di 170 mila famiglie)

Il più grande al mondo e l’apogeo, come efficienza energetica, emissioni e gestione (da la Repubblica 4 dicembre 2006).

Page 37: INCENERIMENTO

TERMOVALORIZZAZIONEDal punto di vista progettuale, due criteri:

1. Minimi impatti, minimi residui e migliore tecnologia disponibile, garantendo informazione e conoscenza ai cittadini;

2. Massimizzazione del profitto (recupero energetico) per garantire la gestione degli impianti.

1 e 2 OK!! Sostenibilità

>1 o >2 NO Sostenibilità

Processo di termovalorizzazione in fasi:- arrivo rifiuti;- combustione;- produzione vapore;- produzione energia elettrica;- estrazione delle scorie;- trattamento dei fumi;- smaltimento delle ceneri.

Page 38: INCENERIMENTO

CONCLUSIONI Potenziale alternativa decontaminante EX-SITU (soprattutto alla discarica);

Usato per distruggere inquinanti molto tossici e resistenti (p.e. PCB);

Possibilità di termoutilizzazione (recupero energetico);

Non garantisce la totale distruzione problema emissioni

Inquinamento (potenzialità disturbi) Opposizione stakeholder

Richiede personale specializzato;

Costi di varia natura;

per i terreni, causa sterilizzazione riqualificazione > costi

Page 39: INCENERIMENTO

CONCLUSIONI Per rendere l’inceneritore più efficiente (livello energetico ed ambientale):

migliorare e assicurare le tecniche di monitoraggio dei terreni circostanti gli inquinanti;

migliorare e assicurare le tecniche di monitoraggio degli inquinanti di emissione e acquisizione dei dati in remoto;

campionamento costante dei macroinquinanti (diossine, etc.) in emissione (sviluppati anche sistemi di studio per i fattori di emissione nel tempo);

assicurare e migliorare il vincolo energetico nei processi d’incenerimento (imposizione normativa).

Bisogna tener presente che il problema futuro (generazioni future) sarà sì quello dell’ , ma anche dei