DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof....

67
giugno 2008 1 DISTRETTO FORMATIVO ROBOTICA - Verona TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona

Transcript of DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof....

Page 1: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 1

DISTRETTO FORMATIVO ROBOTICA - Verona

TELECOMUNICAZIONI

2. Mezzi trasmissivi

Prof. Tozzi Gabriele – ITIS G. Marconi - Verona

Page 2: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 2

DISTRETTO FORMATIVO ROBOTICA - Verona

2. Mezzi trasmissivi

2.1 - Mezzi trasmissivi guidati e non

guidati.

2.2 - Il doppino telefonico.

2.3 - Il cavo coassiale.

2.4 - La fibra ottica.

2.5 – Lo spazio e le comunicazioni wireless

2.6 - Le reti wireless.

Page 3: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

DISTRETTO FORMATIVO ROBOTICA - Verona

2.1 - Mezzi trasmissivi guidati e non guidati.

Page 4: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 4

DISTRETTO FORMATIVO ROBOTICA - Verona

Mezzi trasmissivi guidati e non guidati

• Dal mezzo trasmissivo (canale fisico, rappresentabile tramite un quadripolo passivo) dipendono la qualità di trasmissione e le prestazioni dell’intero sistema di trasmissione.

• La scelta del mezzo deve essere legata al tipo di trasmissione e al tipo di informazione da trasmettere.

Page 5: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 5

DISTRETTO FORMATIVO ROBOTICA - Verona

Mezzi trasmissivi guidati e non guidati

Page 6: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

DISTRETTO FORMATIVO ROBOTICA - Verona

2.2 Il doppino telefonico

Page 7: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 7

DISTRETTO FORMATIVO ROBOTICA - Verona

Il doppino telefonico

• IL DOPPINO INTRECCIATO, o ritorto, o binato (Twisted pair). E’ un tipo di cavo molto utilizzato sia nella telefonia sia nella maggior parte delle reti Ethernet attuali. In genere un cavetto telefonico comprende 4 doppini.

• E’ formato da una coppia di fili conduttori (uno trasporta il segnale e l’altro funge da riferimento di terra), in genere di rame e spessi < 1 mm, intrecciati in modo da limitare il fenomeno della diafonia.

approfondimento

Page 8: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 8

DISTRETTO FORMATIVO ROBOTICA - Verona

Il doppino telefonico

• L’applicazione più comune del doppino è il sistema telefonico, nel quale può trasportare il segnale vocale per diversi chilometri prima di dover essere riamplificato tramite ripetitori.

• I doppini possono essere usati sia per trasmissioni analogiche che digitali.

• La larghezza di banda disponibile dipende dallo spessore del filo e dalla distanza percorsa, tuttavia si può dire che il doppino telefonico ha una banda lorda BP = 4 kHz, un rapporto S/N di 30 dB e una

capacità di canale C = 40 Kbit/s.

Page 9: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 9

DISTRETTO FORMATIVO ROBOTICA - Verona

Il doppino e le reti locali

• Nell’ambito delle LAN (Local Area Network) si è assistito negli ultimi anni alla diffusione sempre più vasta di reti Ethernet (10 Mbit/s) o Fast Ethernet (100 Mbit/s) basate su cablaggio in doppino UTP e protocolli di trasmissione TCP/IP.

• Esistono due tipi di cavo per LAN basati su doppino intrecciato: il cavo a doppino schermato (STP, Shielded Twisted Pair) e il cavo a doppino non schermato (UTP, Unshielded Twisted Pair).

approfondimento

Page 10: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 10

DISTRETTO FORMATIVO ROBOTICA - Verona

Il doppino schermato (STP)

• In genere contiene 4 coppie (4 doppini) di sottili fili di rame, ciascuna delle quali è avvolta da una schermatura (calza) metallica; le 4 coppie insieme sono poi avvolte in un ulteriore strato di calza metallica, a sua volta inguainato con un isolamento plastico.

Page 11: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 11

DISTRETTO FORMATIVO ROBOTICA - Verona

Il doppino schermato (STP)

• Se manca la schermatura delle singole coppie ed è solo presente la calza metallica intorno al gruppo delle 4 coppie, si ottiene il doppino screened, (Screened UTP, ScUTP) o FTP (Foil Twisted Pair).

Page 12: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 12

DISTRETTO FORMATIVO ROBOTICA - Verona

Il doppino schermato (STP)

• Vantaggio della schermatura: riduzione dei disturbi elettromagnetici.

• Svantaggi della schermatura: 1. Aumento di dimensione, peso, e

costo del cavo; 2. Difficoltà di installazione (la calza

metallica deve essere messa a terra).

Page 13: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 13

DISTRETTO FORMATIVO ROBOTICA - Verona

Il doppino non schermato (UTP)

• Mentre inizialmente è stato largamente usato il cavo coassiale, nelle reti locali più recenti il mezzo elettrico più diffuso è il doppino ritorto non schermato (UTP),

• Esso comprende tipicamente due o quattro coppie di fili di rame intrecciati, incamiciate in una guaina di teflon.

Page 14: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 14

DISTRETTO FORMATIVO ROBOTICA - Verona

Il doppino non schermato (UTP)

• Vantaggi dell’UTP: 1) Diametro ridotto; 2) Maggior facilità di installazione (assenza di messa a terra); 3) Basso costo; 4) Si può utilizzare il connettore RJ-45, facile da realizzare;

• Svantaggio dell’UTP: è più suscettibile ai rumori elettrici e alle interferenze.

Page 15: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 15

DISTRETTO FORMATIVO ROBOTICA - Verona

Classificazione dei doppini per LANNello scegliere il tipo di doppino per Reti Locali, il criterio per valutarne l’idoneità dipende dai parametri elettrici che il mezzo presenta nelle varie condizioni di utilizzo. A tal scopo sono state individuate le “categorie” (CAT).

Page 16: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

DISTRETTO FORMATIVO ROBOTICA - Verona

2.3 Il cavo coassiale

Page 17: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 17

DISTRETTO FORMATIVO ROBOTICA - Verona

Cavo coassiale

• Il cavo coassiale è costituito da un conduttore di rame circondato da uno strato isolante (plastica), all’esterno del quale è posta una calza metallica che realizza le funzioni di conduttore di ritorno e di schermo per il conduttore interno.

• Il tutto è poi avvolto da un isolante esterno (guaina protettiva in gomma).

Page 18: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 18

DISTRETTO FORMATIVO ROBOTICA - Verona

Cavo coassiale

• Il connettore utilizzato sui cavi coassiali prende il nome di connettore BNC, da British Naval Connector, oppure Bayonet Neil Concelman (dal nome dei due inventori) o Bayonet Navy Connector.

Page 19: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 19

DISTRETTO FORMATIVO ROBOTICA - Verona

Prestazioni del cavo coassiale

1) Caratteristiche elettriche e di isolamento migliori di quelle del cavetto UTP, ma maggior difficoltà di installazione e maggior costo.

2) Banda passante più larga: fino a circa 60 MHz, oppure frequenze di cifra fino a 140 Mbit/s, per una capacità teorica di circa 4000 canali telefonici.

3) Minor attenuazione per unità di lunghezza distanze maggiori senza l’uso di ripetitori.

Page 20: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 20

DISTRETTO FORMATIVO ROBOTICA - Verona

Impiego del cavo coassiale

1. Vasto campo d’impiego: trasmissioni TV (per portare il segnale video dall’antenna al televisore), sonde per strumentazione elettronica, alimentazione delle guide d’onda, collegamento di LAN.

2. In passato è stato utilizzato per la realizzazione delle tratte a lunga distanza del sistema telefonico, ma oggi per tale funzione è stato quasi del tutto sostituito dalla fibra ottica.

Page 21: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 21

DISTRETTO FORMATIVO ROBOTICA - Verona

Cavo thicknet e thinnet

Esistono due tipi di cavo coassiale:1. Il cavo spesso (thicknet)2. Il cavo sottile (thinnet)

Page 22: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 22

DISTRETTO FORMATIVO ROBOTICA - Verona

Cavo Baseband

• In funzione delle caratteristiche fisiche ed elettriche, sono commercializzati due diversi tipi di cavo coassiale:

1. il Baseband 2. il Broadband.

1. Cavo BASEBAND: Impedenza caratteristica: 50 Ω. Utilizzato per la trasmissione digitale dei dati (TV via cavo con

servizi di trasmissione dati, LAN). Banda (digitale) di 1-2 Gbit/s per distanze < 1Km (senza ripetitori). Ha caratteristiche migliori del cavo broadband, ma quest’ultimo ha il

vantaggio di essere già in opera in grande quantità.

Page 23: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 23

DISTRETTO FORMATIVO ROBOTICA - Verona

Cavo Broadband

2. Cavo Broadband: Impedenza caratteristica: 75 Ω. Utilizzato per la trasmissione analogica. Banda (analogica) di 300 MHz, per distanze < qualche decina di

Km. E’ il cavo standard utilizzato nelle nostre case per il segnale TV. Utilizzando la tecnica FDM è possibile trasmettere un elevato

numero di canali video a 6 MHz, più eventuali canali dati a 3 Mbit/s.

Page 24: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

DISTRETTO FORMATIVO ROBOTICA - Verona

2.4 La fibra ottica

Page 25: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 25

DISTRETTO FORMATIVO ROBOTICA - Verona

La propagazione ottica

• La propagazione simultanea nello spazio libero di un campo elettrico e un campo magnetico, oscillanti in piani perpendicolari fra loro, è un fenomeno denominato onda elettromagnetica.

Page 26: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 26

DISTRETTO FORMATIVO ROBOTICA - Verona

La propagazione ottica

• Tale onda elettromagnetica interagisce col mondo circostante in modi diversi a seconda del suo spettro, cioè della gamma di frequenze di cui è composta;

• In particolare, le frequenze tra 400 e 800 THz sono rilevate dall’occhio umano e costituiscono la luce visibile.

Page 27: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 27

DISTRETTO FORMATIVO ROBOTICA - Verona

La propagazione ottica

• Mentre altri tipi di radiazione possono propagarsi nello spazio libero senza subire eccessive distorsioni, la radiazione ottica viene assorbita dagli ostacoli e dall’atmosfera, quindi non può essere utilizzata per la propagazione libera.

• Tuttavia la luce può essere imprigionata in sottili cavi di vetro, denominati fibre ottiche.

Page 28: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 28

DISTRETTO FORMATIVO ROBOTICA - Verona

Struttura delle fibre ottiche

• Sono sottilissimi (≈ 200 μm) fili di materiale vetroso (silice, SiO2), in cui si propaga una radiazione luminosa.

• Il sottilissimo filo cilindrico centrale in vetro, detto nucleo (core), è immerso in uno strato esterno anch’esso di vetro, detto mantello (cladding), che presenta un indice di rifrazione diverso rispetto a quello del nucleo.

approfondimento

Page 29: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 29

DISTRETTO FORMATIVO ROBOTICA - Verona

Cavi in fibra ottica

• Il filo così realizzato è poi ricoperto da un apposito rivestimento protettivo e raggruppato insieme ad altre fibre in una guaina esterna per formare un cavo in fibra ottica.

approfondimento

Page 30: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 30

DISTRETTO FORMATIVO ROBOTICA - Verona

Prestazioni delle fibre ottiche

1. Peso ed ingombro ridotti, a parità di banda passante, rispetto ad altri mezzi trasmissivi.

due fibre ottiche, ad esempio, hanno una banda maggiore di quella che si otterrebbe con 1000 doppini, e hanno un peso di ca. 100 kg/km contro gli 8000 kg/km dei doppini).

Page 31: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 31

DISTRETTO FORMATIVO ROBOTICA - Verona

Prestazioni delle fibre ottiche

2. Totale immunità dai disturbi e.m., come interferenze e. m., EMI, e interferenze radio, RFI, notevolmente presenti in ambito industriale e che si accoppiano al segnale negli altri mezzi trasmissivi.

3. Consentono l’isolamento elettrico tra Trasmettitore e Ricevitore.

4. Sono più sicure di altri mezzi (rendono più difficile l’intrusione nelle comunicazioni poiché ci si accorge facilmente se un estraneo sta inserendo una sonda nel cavo).

Page 32: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 32

DISTRETTO FORMATIVO ROBOTICA - Verona

Prestazioni delle fibre ottiche

5. Resistenza maggiore ai fattori ambientali. Possono attraversare ambienti speciali in cui sono presenti esplosivi o liquidi (infatti non trasportando energia elettrica non sono soggette a cortocircuiti o archi elettrici).

6. Durata maggiore degli altri mezzi (il vetro è materiale inerte e non subisce corrosione).

7. Basso rapporto prezzo/velocità di trasmissione e prezzo /lunghezza.

Page 33: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 33

DISTRETTO FORMATIVO ROBOTICA - Verona

Attenuazione

8. Consentono distanze di trasmissione notevolmente maggiori e una eccellente qualità del segnale, perché l’attenuazione del segnale è molto bassa: fino a 0,2 dB/km.

• Con una tale attenuazione una fibra è in grado di guidare la luce per distanze di 100 km, senza la necessità di rigenerare il segnale

approfondimento

Page 34: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 34

DISTRETTO FORMATIVO ROBOTICA - Verona

Le finestre di attenuazione

• L’attenuazione presentata da una fibra dipende dalla lunghezza d’onda della radiazione che si propaga.

• E’ stato rilevato che vi sono tre zone (finestre) centrate a 850 nm, 1300 nm e 1550 nm, in cui l’attenuazione di una fibra è minima.

Page 35: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 35

DISTRETTO FORMATIVO ROBOTICA - Verona

Le finestre di attenuazione

• La prima finestra ha attenuazione più alta ma ha il vantaggio di consentire l’utilizzo dello stesso materiale per il LASER e i dispositivi elettronici.

• La terza finestra presenta una attenuazione più bassa (perdita < 5% per km).

Page 36: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 36

DISTRETTO FORMATIVO ROBOTICA - Verona

Punti critici delle fibre ottiche

1) Consentono la comunicazione in una sola direzione (nei due sensi sarebbero necessarie 2 fibre).

2) Ne è costosa la realizzazione costruttiva e la connessione tra fibre.

3) Gli accessori e gli strumenti di prova sono costosi.

Page 37: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 37

DISTRETTO FORMATIVO ROBOTICA - Verona

Propagazione nella fibra

• Le Leggi della riflessione e della rifrazione ci permettono di stabilire due condizioni da rispettare al fine di ottenere la propagazione della luce per riflessione totale all’interno del nucleo:

1) il nucleo deve avere un indice di rifrazione (n1) maggiore di quello del mantello (n2);

2) l’angolo di incidenza del raggio luminoso all’interno del nucleo deve essere maggiore di un certo angolo limite L (che dipende dagli indici di rifrazione n1 e n2) superato il quale si ha l’assenza del raggio rifratto e si ha solo quello riflesso, che contiene tutta l’energia del fascio incidente.

Page 38: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 38

DISTRETTO FORMATIVO ROBOTICA - Verona

Tre parametri importanti

1. Apertura numerica (NA): è il seno dell’angolo di accettazione A e permette di stabilire i limiti angolari rispetto all’asse del nucleo (cono di accettazione), entro i quali la propagazione della luce avviene in modo guidato, cioè per riflessione totale. Valgono le seguenti relazioni:

2 2A 1 2

22 22

1 1 L1

NA sin n n

nn 1 n 1 sin

n

Page 39: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 39

DISTRETTO FORMATIVO ROBOTICA - Verona

Dispersione modale

2. Dispersione modale Se il diametro del nucleo di una fibra è abbastanza ampio

(>10μm), un impulso luminoso che entra nella fibra origina diversi raggi, con diversi percorsi, detti modi di propagazione, M).

Se M ≫ 1 si ha: 2 2

22

dM NA

2

Page 40: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 40

DISTRETTO FORMATIVO ROBOTICA - Verona

Dispersione modale

Ciascun modo comporta una diversa lunghezza di percorso, quindi un tempo di percorrenza diverso tra ingresso e uscita. Questo produce una deformazione (= dispersione modale) del segnale ricostruito al rivelatore finale, a causa della interferenza intersimbolica (sovrapposizione di impulsi luminosi).

Page 41: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 41

DISTRETTO FORMATIVO ROBOTICA - Verona

Dispersione modale

Per limitare la dispersione modale occorre:

ridurre al massimo la differenza tra gli indici di rifrazione n1 ed n2 del nucleo e del mantello,

oppure rendere graduale (graded) anziché brusca (step) tale differenza, realizzando così fibre graded index anziché fibre step index, al fine di compensare con una maggiore velocità le maggiori distanze percorse e rendere così simili i tempi di percorrenza dei raggi.

Page 42: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 42

DISTRETTO FORMATIVO ROBOTICA - Verona

Fibra graded index e step index

Page 43: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 43

DISTRETTO FORMATIVO ROBOTICA - Verona

Fibre monomodali

• Il problema della dispersione modale si può risolvere radicalmente solo realizzando fibre in cui sia permesso un unico modo di propagazione (fibre monomodali o single mode), caratterizzato da un raggio che si propaga in un solo modo , ossia in linea retta.

Page 44: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 44

DISTRETTO FORMATIVO ROBOTICA - Verona

Fibre monomodali

• Per far ciò occorre rimpicciolire il diametro del nucleo fino a 8-10 μm.

• Ciò aumenta notevolmente sia la velocità trasmissiva sia la distanza a cui si possono inviare i dati.

• La dimensione del nucleo, tuttavia, rende problematico l’accoppiamento della sorgente luminosa, che in tal caso deve essere un LASER all’infrarosso, concentrato.

Page 45: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 45

DISTRETTO FORMATIVO ROBOTICA - Verona

Fibre monomodali e multimodali

Confronto tra fibra monomodale e multimodale:

Page 46: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 46

DISTRETTO FORMATIVO ROBOTICA - Verona

Dispersione cromatica

3. Dispersione cromatica. E’ causata dal diverso comportamento della fibra al variare

della lunghezza d’onda (ossia del colore) della radiazione che vi si propaga.

Ciò è dovuto al fatto che la sorgente luminosa ha una certa larghezza spettrale, in quanto la radiazione immessa nella fibra non ha mai una lunghezza d’onda stabilita con precisione, bensì ha un Δλ (da qualche nm a qualche decina di nm).

Page 47: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 47

DISTRETTO FORMATIVO ROBOTICA - Verona

Dispersione cromatica

Anche questo tipo di dispersione ha come risultato la restituzione all’estremità più lontana di un impulso allargato e più basso rispetto all’impulso di origine, dovuto a interferenza intersimbolica.

La dispersione cromatica si riduce impiegando sorgenti con stretta larghezza spettrale (LASER) in cui Δλ ≈ 1-3 nm.

Page 48: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 48

DISTRETTO FORMATIVO ROBOTICA - Verona

Sistema di trasmissione ottica

• La propagazione entro una fibra ottica avviene in formato numerico.

• Infatti, sebbene sia possibile generare e trasmettere un segnale luminoso che vari in maniera analogica, la trasmissione su fibra ne determinerebbe una distorsione tale da renderlo inutilizzabile.

• In conclusione l’unico tipo di segnale che viene scambiato in un sistema ottico è quello digitale binario.

Page 49: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 49

DISTRETTO FORMATIVO ROBOTICA - Verona

Sistema di trasmissione ottica

• Un sistema di trasmissione ottica necessita di tre componenti fondamentali:

1) La sorgente luminosa, un LED o un LASER, che trasforma i segnali elettrici digitali in una serie di impulsi luminosi (convertitore Elettro/Ottico);

2) il mezzo di trasmissione, cioè la fibra ottica vera e propria;

3) il fotodiodo ricevitore (convertitore Ottico / Elettrico), che riconverte gli impulsi luminosi nei segnali elettrici originari. Il tempo di risposta tR di un fotodiodo è ≈ 1 ns e questo limita la velocità di trasmissione su una fibra ottica a 1/tR ≅ 1 Gbit/s.

Page 50: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 50

DISTRETTO FORMATIVO ROBOTICA - Verona

Sistema di trasmissione ottica

• Lo schema seguente rappresenta genericamente un collegamento tra una sorgente ed un ricevente collegati da un canale di trasmissione ottico.

Page 51: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 51

DISTRETTO FORMATIVO ROBOTICA - Verona

Sistema di trasmissione ottica

• La necessità delle conversioni elettroottica e optoelettronica rappresenta un "collo di bottiglia" allo sfruttamento della enorme banda della fibra.

• Allo stato attuale della tecnologia infatti, é difficile realizzare trasmissioni numeriche monocanale a velocità maggiori di qualche Gbit/s, perché i componenti optoelettronici interfacciati alla fibra non consentono di trattare segnali con una velocità maggiore.

Page 52: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 52

DISTRETTO FORMATIVO ROBOTICA - Verona

WDM

• La banda complessiva di qualche THz messa a disposizione dalla fibra deve quindi essere sfruttata in altra maniera.

• Si può ad esempio realizzare più trasmissioni contemporanee di più flussi dati su diverse lunghezze d’onda (WDM, Wavelength Division Multiplexing, Multiplazione a divisione di lunghezza d’onda).

Page 53: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 53

DISTRETTO FORMATIVO ROBOTICA - Verona

WDM

• A parte l'uso di componenti e tecnologie interamente ottiche, l'unica maniera per sfruttare la grande capacità della fibra è quella di ricorrere a sistemi multicanale digitali (DWDM, Digital WDM).

• Con questa struttura, ogni canale di trasmissione viene "aperto" indipendentemente dagli altri, "modulando una portante" su una particolare lunghezza d'onda 1, 2, 3,…, n.

Page 54: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 54

DISTRETTO FORMATIVO ROBOTICA - Verona

Larghezza di banda e frequenza di cifra

• La larghezza di banda B della fibra è legata alla massima frequenza di cifra Fc utilizzabile per la trasmissione.

• Infatti si dimostra che:

dove: Δt = indice di dispersione = larghezza dell’impulso elettrico “allargato”

ricevuto, Fc = frequenza di cifra utilizzabile nella fibra.

]Hz[2F

t21

B c

Page 55: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 55

DISTRETTO FORMATIVO ROBOTICA - Verona

Larghezza di banda e frequenza di cifra

• Dato che la forma dell’impulso ricevuto è di tipo gaussiano, si ottiene

• Per impedire l’interferenza intersimbolica è tipico distanziare ciascun bit di un intervallo 4Δt, per cui la frequenza di cifra realistica risulta:

C1 0,25

F4 t t

0,44B

t

Page 56: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 56

DISTRETTO FORMATIVO ROBOTICA - Verona

Prodotto Banda·Distanza

• La banda, essendo correlata alla dispersione, è di conseguenza correlata alla distanza d coperta dalla fibra.

• In particolare: all’aumentare di d aumenta la dispersione, quindi aumenta Δt e diminuisce la banda B.

• Si è così introdotto il parametro prestazionale Banda·Distanza, definito come la banda per unità di lunghezza, Bu [MHz·km].

Page 57: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 57

DISTRETTO FORMATIVO ROBOTICA - Verona

Banda modale e Banda Cromatica

• La banda passante B della fibra

dipende anche dalla dispersione

modale e dalla dispersione

cromatica.

• Infatti esiste una Banda Modale

(BM) e una Banda Cromatica (BC).

Page 58: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 58

DISTRETTO FORMATIVO ROBOTICA - Verona

Banda Modale

• Banda Modale:

dove:

BuM= Banda modale unitaria [MHz·km]

L = Lunghezza della fibra [km]. γ = fattore di concatenazione dei modi (≅ 0,5÷1;

valore tipico = 0,85). Per fibre molto corte si pone γ =1 (assenza di concatenazione dei modi).

Δt = indice di dispersione [ns/km]

]MHz[]km/ns[t

440

L

1

L

BB uM

M

Page 59: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 59

DISTRETTO FORMATIVO ROBOTICA - Verona

Banda Cromatica

• Banda Cromatica:

dove:

BuC = Banda Cromatica unitaria [MHz·km]

L = Lunghezza della fibra [km] Δt = indice di dispersione [ns/km]

]MHz[]km/ns[t

440L1

LB

B uCC

Page 60: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 60

DISTRETTO FORMATIVO ROBOTICA - Verona

Banda Totale

• Cumulando gli effetti delle due dispersioni si ottiene la banda complessiva del sistema ottico, che vale:

Osservazioni:1. Per fibre multimodali: BC≃ 0 , B ≃ BM.

2. Per fibre monomodali: BM ≃ 0 , B ≃ BC.

2C

2M B

1

B

1

1B

Page 61: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 61

DISTRETTO FORMATIVO ROBOTICA - Verona

Approfondimenti

Page 62: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 62

DISTRETTO FORMATIVO ROBOTICA - Verona

La diafonia-1

• Consiste nell’ assorbimento di rumore (per induzione elettromagnetica) da parte di un doppino a causa della presenza di un doppino vicino.

• Nel doppino ritorto la emissione di campi e.m. viene limitata in quanto le correnti che scorrono nei due conduttori sono uguali e opposte in fase, generando così campi magnetici opposti che tendono ad elidersi.

• Vi sono due tipi di diafonia: la paradiafonia (o diafonia vicina) e la telediafonia (o diafonia lontana).

Page 63: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 63

DISTRETTO FORMATIVO ROBOTICA - Verona

La diafonia-2

• Nella paradiafonia il disturbo interessa i morsetti del doppino disturbato vicini (lato TX) ai morsetti TX del doppino disturbante;

• Nella telediafonia il disturbo si fa sentire ai morsetti del doppino disturbato lontani (lato RX) dai morsetti TX del doppino disturbante.

• La paradiafonia assume maggiore importanza poiché il segnale disturbante agisce quando ancora non è attenuato dalla propagazione.

torna

Page 64: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 64

DISTRETTO FORMATIVO ROBOTICA - Verona

Doppini per LAN

• Negli ultimi anni i doppini hanno migliorato notevolmente le loro prestazioni.

• La tecnologia consente di supportare frequenze trasmissive di 500-600 Mbit/s, rendendo il doppino una valida alternativa alla fibra ottica in questa gamma di frequenze.

torna

Page 65: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 65

DISTRETTO FORMATIVO ROBOTICA - Verona

Costruzione di una fibra ottica

• Le fibre ottiche per telecomunicazioni vengono realizzate mediante tecniche basate sulla deposizione chimica in fase di vapore (CVD, Chemical Vapour Deposition), le quali permettono di sintetizzare il materiale vetroso con un elevato grado di purezza.

• La costruzione implica due distinte fasi operative:La realizzazione della preforma.La realizzazione della fibra vera e propria a

partire dalla preforma.

torna

Page 66: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 66

DISTRETTO FORMATIVO ROBOTICA - Verona

I cavi ottici

• I cavi ottici impiegati nelle telecomunicazioni sono costituiti da:

un insieme di fibre, da un elemento di tiro (acciaio o filato sintetico) necessario

per limitare l’allungamento e quindi possibili rotture in fase di posa in opera,

da una guaina esterna in PVC.

• Possono anche essere presenti protezioni dall’umidità, realizzate con apposite guaine.

• La struttura dei cavi è variabile, ma in genere è di 4 tipi:

a strati concentrici a solchi a nastri a gruppi

torna

Page 67: DISTRETTO FORMATIVO ROBOTICA - Verona giugno 20081 TELECOMUNICAZIONI 2. Mezzi trasmissivi Prof. Tozzi Gabriele – ITIS G. Marconi - Verona.

giugno 2008 67

DISTRETTO FORMATIVO ROBOTICA - Verona

Attenuazione di una fibra

• Le tipologie di attenuazione di una fibra possono essere suddivise in due grandi categorie:

1) Attenuazione intrinseca, dovuta a perdite

intrinseche, dipendenti dalle caratteristiche del

processo tecnologico di realizzazione della fibra;

2) Attenuazione estrinseca, dovuta a perdite

estrinseche, originate dalle microcurvature e

irregolarità nella interconnessione dei vari tronchi di

fibra che formano l’intero collegamento.

torna