DISEQUAZIONI PRODOTTO E DISEQUAZIONE FRATTE ......-per valori più grandi di 5 il binomio (x – 5)...

11
DISEQUAZIONI PRODOTTO E DISEQUAZIONE FRATTE (CON BINOMI DI I GRADO NELL’INCOGNITA X) PREMESSA: Quando risolviamo la disequazione x – 5 > 0 andiamo a determinare i valori della x per cui il binomio (x – 5) risulta positivo (ma anche negativo): le soluzioni della disequazione x – 5 > 0 sono: x > 5 Ciò significa che: - per valori più grandi di 5 il binomio (x – 5) assumerà valori positivi: Per x = 6 x – 5 = 6 – 5 = 1 (numero positivo) Per x = 7 x – 5 = 7 – 5 = 2 (numero positivo) e così via…. - per valori più piccoli di 5 il binomio ( x – 5) assumerà valori negativi: per x = 4 x – 5 = 4 – 5 = ̶ 1 (numero negativo) per x = 1 x 5 = 1 5 = ̶ 4 (numero negativo) e così via…. In particolare per x = 5, il binomio x – 5 si annulla: x – 5 = 5 – 5 = 0 Se ho il prodotto ( x + 3)(x ̶ 5), questo prodotto sarà positivo per i valori della x per cui i due fattori assumono lo stesso segno, negativo dove assumono segno discorde, nullo per quei valori della x per i quali i due fattori assumono valore zero. Ricordiamo la regola dei segni: La regola dei segni vale anche per la divisione:

Transcript of DISEQUAZIONI PRODOTTO E DISEQUAZIONE FRATTE ......-per valori più grandi di 5 il binomio (x – 5)...

Page 1: DISEQUAZIONI PRODOTTO E DISEQUAZIONE FRATTE ......-per valori più grandi di 5 il binomio (x – 5) assumerà valori positivi: Per x = 6 x – 5 = 6 – 5 = 1 (numero positivo) Per

DISEQUAZIONI PRODOTTO E DISEQUAZIONE FRATTE (CON BINOMI DI I GRADO

NELL’INCOGNITA X)

PREMESSA:

Quando risolviamo la disequazione x – 5 > 0 andiamo a determinare i valori della x

per cui il binomio (x – 5) risulta positivo (ma anche negativo):

le soluzioni della disequazione x – 5 > 0 sono: x > 5

Ciò significa che:

- per valori più grandi di 5 il binomio (x – 5) assumerà valori positivi:

Per x = 6 x – 5 = 6 – 5 = 1 (numero positivo)

Per x = 7 x – 5 = 7 – 5 = 2 (numero positivo) e così via….

- per valori più piccoli di 5 il binomio ( x – 5) assumerà valori negativi:

per x = 4 x – 5 = 4 – 5 = ̶ 1 (numero negativo)

per x = 1 x – 5 = 1 – 5 = ̶ 4 (numero negativo) e così via….

In particolare per x = 5, il binomio x – 5 si annulla: x – 5 = 5 – 5 = 0

Se ho il prodotto ( x + 3)(x ̶ 5), questo prodotto sarà positivo per i valori della x per cui

i due fattori assumono lo stesso segno, negativo dove assumono segno discorde, nullo per

quei valori della x per i quali i due fattori assumono valore zero.

Ricordiamo la regola dei segni:

La regola dei segni vale anche per la divisione:

Page 2: DISEQUAZIONI PRODOTTO E DISEQUAZIONE FRATTE ......-per valori più grandi di 5 il binomio (x – 5) assumerà valori positivi: Per x = 6 x – 5 = 6 – 5 = 1 (numero positivo) Per

DISEQUAZIONI PRODOTTO (STUDIO DEL SEGNO DI UN PRODOTTO)

Le disequazioni prodotto che andremo a risolvere, si presentano come

prodotto di fattori che sono binomi di I grado nell’incognita x.

Esse si presentano nella forma: (ax +b) ( cx + d) > 0

(ax +b) ( cx + d) ≥

(ax +b) ( cx + d) < 0

(ax +b) ( cx + d) ≤ 0

dove a, b, c, d sono numeri reali e x è la nostra incognita.

Esempio 1) Consideriamo la disequazione

(x + 3) (x ̶ 5) > 0

E’ costituita dal prodotto di due fattori: (x+3) che chiamiamo primo fattore

e lo indichiamo con F1, e (x ̶ 5) che chiamiamo secondo fattore e lo

indichiamo con F2.

La disequazione risponde alla richiesta: “per quali valori dell’incognita x il

prodotto (x + 3) (x ̶ 5) è maggiore di 0, ovvero assume segno positivo?

Sappiamo che un prodotto di due fattori è positivo, dove i fattori assumono lo

stesso segno: o sono tutte e due numeri positivi o tutte e due numeri negativi,

mentre il prodotto e negativo se i due fattori assumono segno discorde, cioè

uno è positivo e l’altro negativo: (- 3)(-4) = + 12 (+3)(- 4) = -12

Quindi bisogna determinare per quali valori dell’incognita i due fattori

assumono lo stesso segno e si procede nel seguente modo:

Page 3: DISEQUAZIONI PRODOTTO E DISEQUAZIONE FRATTE ......-per valori più grandi di 5 il binomio (x – 5) assumerà valori positivi: Per x = 6 x – 5 = 6 – 5 = 1 (numero positivo) Per

Risoluzione della disequazione (x+3)(x-5) > o

Nota 1: Se avessimo dovuto risolvere la disequazione (x+3)(x-5) < 0,

cioè si richiede di determinare quei valori della x per cui il prodotto è NEGATIVO, il

procedimento risolutivo è lo stesso: si pongono i due fattori sempre maggiore di zero, si

risolvono le disequazioni corrispondenti e si ottiene lo stesso grafico:

LE SOLUZIONI STAVOLTA SONO

NELL’INTERVALLO IN CUI I DUE

FATTORI F1 E F2 HANNO SEGNO

DISCORDE (DIVERSO), OVVERO PER

VALORI COMPRESI TRA – 3 E 5:

Page 4: DISEQUAZIONI PRODOTTO E DISEQUAZIONE FRATTE ......-per valori più grandi di 5 il binomio (x – 5) assumerà valori positivi: Per x = 6 x – 5 = 6 – 5 = 1 (numero positivo) Per

Nota 2: Nel grafico dei segni, la linea continua indica segno positivo,

la linea tratteggiata segno negativo….

Quando alla fine rappresento invece l’intervallo delle soluzioni della

disequazione prodotto, la linea continua indica appunto l’intervallo delle

soluzioni…..

Nota 3: Se avessi dovuto risolvere la disequazione

(x +3)(x-5) ≥ 0 si pone ogni fattore ≥ 0:

Page 5: DISEQUAZIONI PRODOTTO E DISEQUAZIONE FRATTE ......-per valori più grandi di 5 il binomio (x – 5) assumerà valori positivi: Per x = 6 x – 5 = 6 – 5 = 1 (numero positivo) Per

Esempio 2)

Risolvere la disequazione (x – 3)(2x + 5) < 0

Quindi, voglio determinare quei valori

che sostituiti all’incognita x

mi rendano il prodotto (x – 3) ( 2x + 5) NEGATIVO

Risoluzione: F1 = (x – 3) F2 = (2x + 5)

Passo 1: si pone ogni fattore maggiore di zero e si risolvono le

disequazioni corrispondenti:

Passo 2: Si rappresentano graficamente le soluzioni:

Page 6: DISEQUAZIONI PRODOTTO E DISEQUAZIONE FRATTE ......-per valori più grandi di 5 il binomio (x – 5) assumerà valori positivi: Per x = 6 x – 5 = 6 – 5 = 1 (numero positivo) Per

Es.3) Risolvere la disequazione:

( 8 – 4x) ( 5x – 25) ≥ 0

Quindi, voglio determinare quei valori

che sostituiti all’incognita x

mi rendano il prodotto (8 – 4x) ( 5x - 25) POSITIVO O UGUALE A ZERO

Risoluzione: F1 = (8 – 4x) F2 = (5x -25)

Passo 1: si pone ogni fattore maggiore o uguale di zero e si risolvono le

disequazioni corrispondenti:

Passo 2: Si rappresentano graficamente le soluzioni

Page 7: DISEQUAZIONI PRODOTTO E DISEQUAZIONE FRATTE ......-per valori più grandi di 5 il binomio (x – 5) assumerà valori positivi: Per x = 6 x – 5 = 6 – 5 = 1 (numero positivo) Per

Particolari equazioni e disequazioni di secondo grado:

Le equazioni di secondo grado che si presentano nella forma

x2 – a2 = 0 si possono ricondurre alla risoluzione di equazioni di I grado;

Infatti, potendo applicare la formula di scomposizione di una differenza di

quadrati (a2 – b2) = (a + b)(a – b),

l’equazione x2 – a2 = 0 si puo’ scrivere come prodotto di binomi di I grado

nell’incognita x:

(x + a) (x – a) = 0 essendo x2 – a2 = (x + a)(x - a)

Per la “ legge di annullamento di un prodotto” un prodotto è nullo (cioe’ è

uguale a zero) quando uno dei due fattori e’ zero. Quindi:

Quindi, tutte le equazioni che si possono ricondurre alla forma

(ax + b)(cx + d) = 0 avranno soluzioni 𝒙 = −𝒃

𝒂 e 𝒙 = −

𝒄

𝒅

con a ≠ 0 e c ≠ 0.

Le disequazioni di secondo grado nella forma

x2 – a2 > 0 , x2 – a2 ≥ 0, x2 – a2 < 0, x2 – a2 ≤ 0 si possono ricondurre

rispettivamente alla risoluzione delle disequazioni prodotto:

(x+a)(x – a) > 0

(x+a)(x – a) ≥ 0

(x+a)(x – a) < 0

(x+a)(x – a) ≤ 0

Esempio: per risolvere la disequazione di II grado x2 – 25 > 0 si risolvere

la disequazione prodotto ( x + 5)(x – 5) > 0

Essendo x2 – 25 = (x +5)(x – 5).

Page 8: DISEQUAZIONI PRODOTTO E DISEQUAZIONE FRATTE ......-per valori più grandi di 5 il binomio (x – 5) assumerà valori positivi: Per x = 6 x – 5 = 6 – 5 = 1 (numero positivo) Per

DISEQUAZIONI FRATTE DI PRIMO GRADO NELL’INCOGNITA X

Sodno quelle che di possono ricondurre ad una delle seguenti forme:

𝑵(𝒙)

𝑫(𝒙)> 𝟎

𝑵(𝒙)

𝑫(𝒙)< 𝟎

𝑵(𝒙)

𝑫(𝒙)≥ 𝟎

𝑵(𝒙)

𝑫(𝒙)≤ 𝟎

dove supponiamo che N = numeratore = ax + b e D = denominatore = cx + d

sono binomi di I grado nell’incognita x.

Esse si risolvono in modo simile alle disequazioni prodotto, in quanto, nel caso delle

disequazioni fratte di I grado si deve studiare il segno di un rapporto (cioè di una

divisione).

Un rapporto è POSITIVO quando numeratore e denominatore HANNO SEGNO

UGUALE (concorde);

Un rapporto è NEGATIVO quando numeratore e denominatore HANNO SEGNO

DIVERSO (discorde);

Esempi: (+𝟔)

(−𝟐)= −𝟑 < 𝟎

(−𝟏𝟎)

(−𝟓)=

(+𝟏𝟎)

(+𝟓)= +𝟐

Si ricordi che scrivere (+𝟔)(−𝟐)

equivale a (+6) : ( - 2)

Quindi, si devono risolvere le due disequazioni che si ottengono ponendo il

numeratore maggiore e eventualmente uguale a zero e il denominatore si pone

maggiore di zero (il denominatore si pone sempre e solo > 0 perché non puo’ essere

zero in quanto non si puo’ dividere per zero).

Si rappresentano graficamente le soluzioni delle due disequazioni e si fa il grafico dei

segni.

Esempio 1) Risolvere 𝟑𝒙−𝟓

𝟏−𝒙> 𝟎

dove N = 3x – 5 (numeratore)

D = 1 – x (denominatore)

Passo 1: si risolvono le disequazioni N > 0 e D > 0:

Page 9: DISEQUAZIONI PRODOTTO E DISEQUAZIONE FRATTE ......-per valori più grandi di 5 il binomio (x – 5) assumerà valori positivi: Per x = 6 x – 5 = 6 – 5 = 1 (numero positivo) Per

Passo 2: Si rappresentano graficamente le soluzioni e si fà il grafico dei

segni:

Nota: Se avessimo avuto la disequazione 𝟑𝒙−𝟓

𝟏−𝒙≥ 𝟎 con il verso maggiore e

anche uguale a zero, il numeratore si pone ≥ 0, mentre il denominatore si

pone sempre maggiore di zero……

Segno N: 3x – 5 ≥ 0 → x ≥ 𝟓

𝟑

Segno D: 1 – x > 0 → x < 1

Il grafico dei segni sarà:

Che differenza avete notato?.............................................................................................

Page 10: DISEQUAZIONI PRODOTTO E DISEQUAZIONE FRATTE ......-per valori più grandi di 5 il binomio (x – 5) assumerà valori positivi: Per x = 6 x – 5 = 6 – 5 = 1 (numero positivo) Per

Esempio 2) Risolvere la disequazione 𝒙−𝟓

𝒙+𝟑< 𝟎

video esercizi disequazioni prodotto 1

video esercizi disequazioni prodotto 2

video esercizi disequazioni fratte I grado

Page 11: DISEQUAZIONI PRODOTTO E DISEQUAZIONE FRATTE ......-per valori più grandi di 5 il binomio (x – 5) assumerà valori positivi: Per x = 6 x – 5 = 6 – 5 = 1 (numero positivo) Per

Le disequazioni fratte non in forma normale:

Risolviamo 𝟐𝒙−𝟒

𝟏−𝒙> 𝟏 . Dobbiamo scriverla nella forma

𝑵(𝑿)

𝑫(𝑿)> 𝟎

Portiamo tutto a primo membro cambiando di segno (legge del trasporto):

𝟐𝒙−𝟒

𝟏−𝒙− 𝟏 > 𝟎 riconduciamo allo stesso denominatore 1 – x

𝟐𝒙−𝟒−(𝟏−𝒙)

𝟏−𝒙> 𝟎 →

𝟐𝒙−𝟒−(𝟏−𝒙)

𝟏−𝒙> 𝟎 →

𝟐𝒙−𝟒−𝟏+ 𝒙)

𝟏−𝒙> 𝟎 →

𝟑𝒙−𝟓

𝟏−𝒙> 𝟎

La disequazione è ora scritta in forma normale e la risolviamo come abbiamo visto

negli esempi delle disequazioni prodotto.