cervelletto

44
Il cervelletto

Transcript of cervelletto

Page 1: cervelletto

Il cervelletto

Page 2: cervelletto

È l’organo integrativo per:

– Raffinamento e coordinazione dei movimenti– Regolazione del tono muscolare e mantenimento

dell’equilibrio– Apprendimento dei movimenti

Page 3: cervelletto

Corteccia cerebellare e nuclei profondiIl cervelletto è’ posto sulla faccia posteriore del tronco cerebrale al quale è collegato da tre paia di peduncoli.Possiede una corteccia grigia superficiale che ricopre la sostanza bianca dentro cui sono dispersi nuclei di sostanza grigia.Sia anatomicamente che funzionalmente si distinguono porzioni più antiche cheesistono in tutti i vertebrati (archicerebello e paleocerebello) ed altre che si sono invece sviluppate solo nei vertebrati superiori (neocerebello)

Page 4: cervelletto

Anatomia del cervelletto

È diviso orizzontalmente in tre lobi.

1. Lobo anteriore.

2. Lobo posteriore.

2. Lobo flocculonodulare.

Page 5: cervelletto

Anatomia del cervelletto

È diviso verticalmente in tre regioni.

1. Verme.

2. C. intermedio.

2. C. laterale.

La superficie del verme e dei lobi è percorsa da solchi trasversali concentrici che delimitano la massa cerebellare in lamelle. Le lamelle del cervelletto sono disposte orizzontalmente e sono più piccole di quelle della corteccia cerebrale.

Page 6: cervelletto

Corteccia cerebellare

Strato delle cellula del Purkinje

Strato molecolare

Strato granulare

Sostanza bianca

LamelleSolco

Page 7: cervelletto

Nuclei profondi del cervelletto

n. globoso e emboliforme n. del tetto

(fastigio)

n. dentato

NUCLEO DEL FASTIGIO (TETTO) - riceve dal verme, dai nuclei vestibolari e dall’oliva inferiore. Proietta ai nuclei vestibolari e ad altri nuclei bulbariNUCLEO GLOBOSO - riceve dal verme. Proietta a nuclei bulbariNUCLEO EMBOLIFORME - riceve dalla parte intermedia degli emisferi. Proietta al talamoNUCLEO DENTATO - riceve dal neocerebello (emisferi cerebellari). Proietta al nucleo rosso ed al talamo

Page 8: cervelletto

Gran parte delle fibre afferenti ed efferenti hanno come stazione di relè i nuclei profondi del cervelletto

Page 9: cervelletto

La corteccia cerebellare è organizzata in tre strati

cellula del Golgi

cellula stellata

cellula a canestro

cellula del Purkinje

fibra muscoide

cellula granulare

fibra rampicante

fibre parallele

strato granulare

strato cell. Purkinje

stra

to

mol

ecol

are

SM

SP

SG

sosta

nza bianca

Page 10: cervelletto

STRATO MOLECOLARE• CELLULE STELLATE• CELLULE A CANESTRO• FIBRE PARALLELE• DENDRITI DELLE CELLULE DI PURKINJE• DENDRITI DELLE CELLULE DEL GOLGI DI II° TIPO

STRATO DI PURKINJE• SOMA DELLE CELLULE DI PURKINJE (unica via efferente dalla

corteccia cerebellare, portano impulsi inibitori)• FIBRE RAMPICANTI

STRATO DEI GRANULI• CELLULE DEI GRANULI• ASSONI E SOMA DELLE CELLULE DEL GOLGI• FIBRE MUSCOIDI• ASSONI DELLE CELLULE DI PURKINJE

CORTECCIA CEREBELLARE

Page 11: cervelletto

dall’oliva bulbare

 Fibre rampicanti

• Originano dai neuroni olivo-cerebellari di cui rappresentano le fibre terminali

• Salgono attraverso lo strato granulare• Finiscono nello strato molecolare con un ciuffo di

arborizzazioni terminali• Si connettono ai dendriti delle cellule del Purkinje

(rapporto 1:1) ma ciascuna può formare numerosi contatti sinaptici con l’albero dendritico della c. del P.

• Liberano il neurotrasmettitore glutamato

Page 12: cervelletto

Fibre muscoidi

• Input: da neuroni del ponte e del midollo spinale• Costituiscono tutte le rimanenti afferenze cerebellari• Si ramificano e terminano nello strato granulare• Hanno terminazioni dilatate (rosette)• Formano sinapsi con: – i dendriti delle cellule dei granuli– gli assoni dei neuroni del Golgi

da ponte e midollo spinale

Page 13: cervelletto

Cellule dei granuli• sono neuroni molto piccoli (7m), sterttamente

impachettati• Piccolo albero dendritico nello strato granulare• Un assone amielinico– che si dirige verso lo strato molecolare (centrifugo) – e si divide a T per formare la fibra parallela– Le fibre parallele decorrono longitudinalmente

lungo le lamelle– Incrociano i dendriti di molte cellule del Purkinje• Liberano glutamato come neurotransmettitore

Page 14: cervelletto

Cellule di Golgisono localizzate nello strato granulare; il loro assone, insieme alle fibre muscoidi e ai dendriti delle cellule dei granuli costituiscono una struttura ciamata glomerulo.

Page 15: cervelletto

Nel glomerulo cerebellare il terminale assonico di una fibra muscoide (in blu) invia messaggi di tipo sensoriale a ~50 cellule granulari (in rosso) (divergenza).

Glomerulo cerebellareE’un complesso di sinapsi tra la terminazione di una fibra muscoide al centro, e: a) dendriti di cellule granulari, b) assoni di neuroni del Golgi

Terminazione di una fibra muscoide

Dendrite di un granulo

Fibra muscoide

Assone di una cellula del Golgi

Dendrite di un granulo

Fibra muscoide

Assone di una cellula del Golgi

Page 16: cervelletto

Cellule di PurkinjeConsistono di: • Un ampio albero dendritico nello strato molecolare, con spine dendritiche a livello delle sinapsi• Un grosso soma• Un assone che costituisce la via efferente dal cervelletto, e manda collaterali nello strato granulare.• GABA è il neurotrasmettitore liberato

• ogni cellula di Purkinje riceve una fibra rampicante (rapporto 1:1), che può formare però numerosi contatti sinaptici con il suo albero dendritico• ogni cellula di Purkinje riceve inoltre circa 200,000 contatti sinaptici dalle fibre parallele (convergenza)• ogni fibra parallela prende contatto con numerose cellule di Purkinje (divergenza)• gli assoni delle cellule di Purkinje costituiscono la principale via efferente del cervelletto, attraverso i nuclei cerebellari. Ciascun assone forma circa 1000 contatti con le cellule dei nuclei profondi. Il neurotrasmettitore liberato è il GABA.

Page 17: cervelletto

Cellule stellate– Nella parte superficiale dello strato molecolare– Formano sinapsi con i dendriti delle cellule del

Purkinje– Azione inibitoria  Cellule a canestro– Nella parte profonda dello strato molecolare– Gli assoni formano un canestro attorno

all’encoder delle cellule del Purkinje– Azione inibitoria

Le cellule stellate e a canestro sono situate trasversalmente nello strato molecolare

Page 18: cervelletto

Circuiti cerebellari di base

Il circuito di base è lo stesso in tutte le parti del cervelletto. Esso è costituito da tre parti

1. Via diretta : l’input afferente proietta direttamente ai sistemi motori attraverso i nuclei profondi senza passare per la corteccia.

3. Le fibre rampicanti mandano un input alle cellule del Purkinje. Questo è l’input di rilevamento dell’errore. Questo circuito è usato per l’apprendimento.

Nucleo cerebellare profondo

Input(dagli organi di senso)

Output(ai sistemi motori)

cellula granulare

cellula del Purkinje

fibra parallela

fibra muscoide

fibra rampicante

2. Circuito laterale indiretto: input delle fibre muscoidi alle cellule granulari, da queste mediante le fibre parallele alle cellule del Purkinje, e da queste ritorno ai nuclei profondi del cervelletto. Questo circuito è usato per correggere le risposte riflesse.

Page 19: cervelletto

Le fibre parallele decorrono parallelamente ai solchi.

Esse intersecano l’arborizzazione delle cellule del Purkinje ad angolo retto.

Circuiti cerebellari di base

Page 20: cervelletto

Un’unica fibra rampicante contatta ciascuna cellula del Purkinje formando molte sinapsi.Ciascun singolo input genera una rapida scarica di potenziali d’azione di latenza e durata brevi (spikes complessi: azione fasica rapida).

Molte fibre parallele (~200,000) prendono contatto con una singola cellula del Purkinje (convergenza).Ciascuna sinapsi genera un debole PPSE e sono richiesti molti inputs (sommazione) per generare un potenziale d’azione. La scarica generata è duratura e ritardata rispetto a quella generata dalle fibre rampicanti (spikes semplici: azione tonica lenta)

Gli input delle fibre parallele e rampicanti hanno effetti molto diversi sulle cellule del Purkinje

Si ritiene che l’attivazione delle fibre muscoidi possa rendere silente per alcune centinaia di ms la scarica evocata nelle cellule del Purkinje dalle fibre rampicanti

Page 21: cervelletto

Spikes semplici S. complessi

Spikes semplici e complessi generati dalle cellule del Purkinje

50 ms

Le cellule di Purkinje normalmente generano potenziali d’azione ad elevata frequenza anche in assenza di inputs sinaptici. La frequenza media durante la veglia è di circa 40 Hz (40 spikes per sec).

I treni mostrano una mistura di cosiddetti spikes semplici e complessi.

Uno spike semplice è un singolo potenziale d’azione seguito da un periodo di refrattarietà di circa 10 msec.Gli spikes semplici sono prodotti da una combinazione di attività basale e di inputs dalle fibre parallele.

Uno spike complesso è una sequenza stereotipata di potenziali d’azione con intervalli molto brevi tra uno spike e l’altro e ampiezze decrescenti.Gli spikes complessi, (che si susseguono ad una velocità basale di circa 1 Hz, massimo 10 Hz) sono costantemente associati all’attivazione delle fibre rampicanti.

Gli spikes complessi sono spesso seguiti da una pausa di alcune centinaia di msec durante la quale l’attività degli spikes semplici è soppressa.

Page 22: cervelletto

L’azione delle cellule del Purkinje sui nuclei cerebellari profondi è inibitoria

L’unico output dal cervelletto è rappresentato dalle cellule del Purkinje.I neuriti delle cellule del Purkinje inibiscono i nuclei profondi liberando GABA.

I segnali inibitori da essi inviati ai neuroni dei nuclei profondi ne frenano continuamente l’attività.

Il ritardo, l’intensità e la durata dell’inibizione prodotta sono il risultato della complessa elaborazione attuata nella corteccia cerebellare.

GABA

Quindi, ai neuroni dei nuclei profondi, che sono la stazione d’uscita dei segnali dal cervelletto, giungono immediatamente e direttamente i segnali eccitatori portati dalle collaterali di tutte le fibre afferenti al cervelletto e, successivamente, i segnali inibitori provenienti dalle cellule del Purkinje.

Page 23: cervelletto

Circuiti cerebellari di base

Spikes semplici

S. complessi

Page 24: cervelletto

fibre parallele cellula a

canestro

cellula stellata

cellula del Purkinje

fibra rampicante

fibra muscoide

cellula del Golgi

cellula granulare

neuroni profondi del cervelletto

fibre disc. ai sistemi

motori

fibre ascendenti

dagli organi di senso

Cir

cuit

o in

ibit

orio

col

late

rale

Cir

cuit

o ec

cita

tori

o p

rinc

ipal

e

oliva inferiore

Circuiti inibitori collaterali

Cellule stellate e a canestro (strato molecolare).

Formano sinapsi inibitorie con le cellule del Purkinje.

Afferenze eccitatorie: fibre parallele.

Funzione: accentuano il contrasto tra i gruppi di cellule del Purkinje attivi.

Cellule del Golgi (strato granulare).

Afferenze eccitatorie: fibre parallele.

Contribuiscono alla costituzione del glomerulo cerebellare, formando sinapsi inibitorie con i dendriti delle cellule dei granuli e sopprimendone l’eccitamento in risposta all’attivazione delle fibre muscoidi.

Funzione: scansione temporale dei processi eccitatori.

Page 25: cervelletto

La circuiteria del cervelletto

dendriti

inibitorie

eccitatorie

C ≡ c. a canestro

P ≡ c. del Purkinje

G ≡ c. del Golgi

St ≡ c. stellata

Gr ≡ c. granulare

fibra parallela

fib

ra m

usco

ide

GA

BA

(-)

GABA (-)

GABA (-)

P PCG

St

Gr

nuclei profondi

da bulbo e midollo spinale

(+)

(+) (+)

(+)

(+)

fib

ra r

amp

ican

te

dall’oliva inferiore

(+)(+)

(-) (-) (-)

Page 26: cervelletto

cellula del Purkinje

Le cellula del P. che non ricevono afferenze dalle fibre parallele del fascio vengono inibite dalle cellule stellate e a canestro

Fascio di fibre parallele eccitate. Le cellule del P. che ricevono afferenze dalle fibre parallele del fascio vengono eccitate

cellula stellate e a canestro

Le cellule stellate e a canestro causano un’inibizione laterale delle cellule del Purkinje situate ai lati del fascio di fibre parallele attivate

Anche le cellule del Golgi ricevono un input dalle fibre parallele, ma distribuiscono i loro assoni indietro alle cellule granulari. È un esempio di inibizione a feedback che taglia gli input dopo un breve ritardo, tendendo ad accorciare la durata dei treni di potenziali d’azione nelle fibre parallele.

Page 27: cervelletto

ORGANIZZAZIONE MORFOFUNZIONALEDEL CERVELLETTO

Paleocerebellum ospinocerebello

Archicerebellum ovestibolocerebello

(lobo flocculo-nodulare)

Neocerebellum ocerebrocerebello

Verme

Page 28: cervelletto

Le principali funzioni di ciascuna suddivisione

1. Archicerebellum ovestibolocerebelloInput: dagli organi vestibolari.Output: ai muscoli di gambe, tronco e occhi.Funzione: controllo dell’equilibrio e dei movimenti oculari

2. Paleocerebellum oSpinocerebelloInput: dal midollo spinale (vie spino-cerebellari), sensibilità propriocettiva e cutanea.Output: al midollo spinale.Funzione: regolazione del tono muscolare, della postura e dei movimenti involontari.

3. Neocerebellum ocerebrocerebelloInput: dalla corteccia cerebrale.Output: alla corteccia cerebrale motoria e premotoria.Funzione: pianificazione e avvio dei movimenti volontari.

Page 29: cervelletto

Funzione generale del cervelletto:

Agisce sul controllo motorioQuindi, dal cervelletto non dipende tanto la capacità di compiere i

movimenti, quanto la capacità di compierli in modo corretto.

Ad es., sollevare una scatola. Il sollevamento iniziale viene regolato in base al peso supposto della scatola.

Quando avviene l’intervento regolatore?

Prima, durante e alla fine di ogni movimento in modo da regolarne:

• durata,

• ampiezza

• gradualità.

Page 30: cervelletto

Consideriamo ad esempio il controllo eseguito dal cervelletto sui movimenti volontari

Inputs al cervelletto:- dall’apparato propriocettivo muscolare (fascio spino cerebellare) una completa informazione sulla posizione che le diverse parti del corpo assumono istante per istante;- dalla corteccia cerebrale (fascio cortico-ponto cerebellare) una completa informazione sugli “ordini” motori elaborati dalla corteccia cerebrale.

Azioni del cervelletto: - confronto tra quadro delle afferenze propriocettive e delle efferenze motorie; - rilevazione degli “errori” negli ordini;- correzione in tempo reale con segnali inviati alla corteccia tramite la via ascendente cerebello-talamo-corticale e al midollo spinale tramite la vie discendenti (cerebello-rubro-, cerebello-reticolo- e cerebello-vestibolo-spinali).

Inizio del movimento Esecuzione motoria e correzione

Corteccia premotoria e motoria

Neo-cerebellum

Spino-cerebellum

movimento

feedback sensoriale

Page 31: cervelletto

Il cervelletto potrebbe avere un ruolo nell’apprendimento di nuove capacità motorie.

I segnali convogliati dalle fibre rampicanti modificherebbero, in periodi di tempo lunghi, le risposte dei neuroni di Purkinje rispetto ai segnali che arrivano attraverso le fibre muscoidi.

Dati sperimentali dimostrano che i circuiti cerebellari vengono modificati con l’esperienza e che queste modifiche sono importanti nell’apprendimento motorio.

Il cervelletto nell’apprendimento motorio

Page 32: cervelletto

Il cervelletto nell’apprendimento motorioEsempio 1. Aggiustamento del riflesso vestibulo-oculare

Cos’è il riflesso vestibulo-oculare (VOR)?• La funzione del VOR è di stabilizzare l’immagine della retina durante le rotazioni della testa.• quando la testa ruota ad una certa velocità e in una certa direzione, l’occhio ruota alla stessa velocità ma in direzione opposta.• Senza il VOR, l’occhio vedrebbe un’immagine offuscata ogni volta che si muove la testa.Ciò accade perché l’occhio è come una macchina fotografica con velocità di otturazione lenta.

Page 33: cervelletto

Il cervelletto nell’apprendimento motorioEsempio 1. Aggiustamento del riflesso vestibulo-oculare

Quindi, lo scopo del VOR è di ruotare l’occhio in direzione opposta alla testa, mantenendo ferma l’immagine sulla retina. Il VOR è realizzato tramite due vie.

1) Una via diretta dai canali semicircolari (e nucleo vestibolare) agli appropriati muscoli dell’occhio causandone la contrazione (vedi sist. vestibolare)

2) Una via indiretta attraverso le fibre muscoidi, le fibre parallele e le cellule del Purkinje del cervelletto, che inibisce il nucleo vestibolare e permette le opportune correzioni.

n. vestibolare

occhiocanale semicircolare

fibra muscoide cellula del

Purkinje

fibra parallela

cellula granulare

Page 34: cervelletto

Supponiamo che a causa di un trauma o dell’età alcuni neuroni coinvolti nel riflesso funzionino male o muoiano e di conseguenza i muscoli dell’occhio non si contraggano più adeguatamente. Occorre qualcosa che ponga riparo a ciò.

fibra rampicante

oliva inferiore

3) Quando il VOR non lavora adeguatamente (p.es., l’occhio non ruota abbastanza) uno scorrimento dell’immagine è captato dall’occhio e inviato al cervelletto tramite le fibre rampicanti.

L’imput dalle fibre rampicanti altera in maniera semi-permanente le sinapsi delle fibre parallele attivate simultaneamente.Quando il VOR è riparato (cioè nessuno scorrimento dell’immagine sulla retina) l’attività delle fibre rampicanti cessa.Quindi le fibre rampicanti istruiscono l’azione delle fibre muscoidi (apprendimento motorio o adattamento).

Page 35: cervelletto

Il cervelletto nell’apprendimento motorioEsempio 2.

Un prisma davanti agli occhi altera la posizione apparente degli oggetti

Senza prisma l’errore è piccolo

errore nel lancio del

dardo

1) Lanciando il dardo con un prisma davanti agli

occhi, il bersaglio appare spostato di lato e quindi

viene mancato.

2) Gradualmente il cervelletto aiuta a

correggere l’errore.

3) Togliendo i prismi, il bersaglio viene di nuovo sbagliato, ma nella direzione opposta.4) Il cervelletto, di nuovo, correggerà l’errore.

Gli occhiali hanno un effetto simile a quello dei prismi. Il VOR è ricalibrato ogni volta che vengono utilizzate nuove lenti.

Page 36: cervelletto

Il cervelletto nell’apprendimento motorioEsempio 3. apprendimento di nuovi riflessi posturali

Normalmente, quando si sta in piedi su una superficie ferma (pavimento), una distensione dell’estensore significa che ci si sta sporgendo in avanti troppo e e la risposta corretta dell’azione riflessa è di contrarre l’estensore.

EMG del muscolo estensore

Page 37: cervelletto

Quando ci si trova su una piattaforma in equilibrio su una palla, lo stesso riflesso provoca una caduta.

EMG del muscolo estensore

Il cervelletto nell’apprendimento motorioEsempio 3. apprendimento di nuovi riflessi posturali

Page 38: cervelletto

Bisogna imparare a rilassare l’estensore, quando la piattaforma stira l’estensore.Gradualmente il cervelletto impara a sopprimere questo riflesso di contrazione.Non c’è apprendimento se il cervelletto è danneggiato.

Il cervelletto nell’apprendimento motorioEsempio 3. apprendimento di nuovi riflessi posturali

EMG del muscolo estensore

Page 39: cervelletto

Lesioni del neocerebellum provocano atassia

L’atassia consiste in:

1) Un ritardo nell’inizio del movimento.Vi è anche una maggiore lentezza nel movimento perché l’attività del muscolo agonista è meno fasica.

2) Dismetria: il movimento supera o non raggiunge il bersaglio.

3) Tremore: Si verifica dopo un movimento o quando c’ò una perturbazione nel momento in cui si sta tentando di tenere un arto in una posizione particolare.Il tremore non si manifesta a riposo.

Page 40: cervelletto

In conclusione

Il cervelletto opera come un’officina per riparazioni.

1) Impara ad adattarsi a nuovi compiti

2) I disordini motori prodotti da lesioni al di fuori del cervelletto sono velocemente mascherati da quest’officina.

3) Le lesioni cerebellari provocano disordini motori perché se l’officina è danneggiata i disordini diventano evidenti.

Il deficit persiste se esso eccede le capacità riparatorie dell’officina – p. es., non c’è compensazione per un muscolo totalmente paralizzato.

Page 41: cervelletto

FINE

Page 42: cervelletto

Aree motoria e

premotoria

Area sensibilità somatica

Area visiva associativa

Cervelletto

Oliva

1.movimentomuscolare

2.per avere le sensazioni

tattili

3.per vedere

cosa stiamo facendo

La via cortico-olivo-cerebellare convoglia inputs dalle aree associative sensoriale, motoria e visiva al cervelletto attraverso le fibre rampicanti.

Vie afferentidalle fibre rampicanti

Page 43: cervelletto

• Spinocerebellari– Informazione di feedback da muscoli e articolazioni• Vestibulo-cerebellari– Feedback circa la postura e il movimento• Cortico-ponto-cerebellari– Dalle aree associative – Aggiustamenti motori che richiedono giudizio, discriminazione, e decisioni

Le fibre muscoidi convogliano informazione richiesta per fare degli aggiustamenti

Vie afferentidalle fibre muscoidi

Page 44: cervelletto

 Vie efferenti

L’output dal cervelletto avviene tramite le cellule del Purkinje e i nuclei profondi

n. globoso

n. dentato

n. emboliforme

n. fastigio n. vestibolari

formazione reticolare

n. rosso

talamo

corteccia cerebrale

Output dai nuclei profondi a vari centri

Gli asssoni delle cellule del Purkinje terminano sui neuroni che formano i nuclei profondi: essi sono tutti inibitori