Le oscillazioni dei neutrini Corso di Istituzioni 2009-2010.

Post on 01-May-2015

218 views 3 download

Transcript of Le oscillazioni dei neutrini Corso di Istituzioni 2009-2010.

Le oscillazioni dei neutrini

Corso di Istituzioni

2009-2010

Nota sull’oscillazione dei neutrini

• La probabilità di sopravvivenza di un genere di neutrino è uguale a quella del suo antineutrino, come richiesto dal teorema CPT che connette una particella con la

rispettiva antiparticella.• Però, la probabilità di trasformazione di un antineutrino in

un altro antineutrino di specie diversa, in generale, non è uguale alla probabilità di trasformazione tra loro dei due rispettivi neutrini, in quanto esiste la violazione di CP.

Esperimenti di oscillazione del neutrino

SNU = 10-36 assorbimenti per ogni atomo bersaglio SSM = 132±7 SNU

Le soluzioni astrofisiche sembrano sfavorite

Paradosso 7Be/8B

La mancanza dei da 7Be è dedotta:

non esiste alcuna misura diretta !

Borexino è un esperimento progettato per la misura diretta mediante la

reazione: + e + e

Le oscillazioni del neutrino possono spiegare i risultati

sperimentali

• MSW (conversione nella materia):

• SMA• LMA• LOW

• Vacuum (oscillazioni nel vuoto)

Variazione stagionale ± 3.5%

L’Esperimento BorexinoLaboratori Nazionali del Gran Sasso (profondità di 3800 mwe)

Il rivelatore e’ strutturato in shell

Caratteristiche del rivelatore (dal centro):• Scintillatore: PC + PPO

(300 ton, 100 ton di massa fiduciale)

• Sfera in nylon (d = 8.5 m, spessore ~ 100 m)

• Liquido di buffer: PC + DMP

(1040 ton)

• 2200 fototubi

• Sfera in acciaio (d = 13.7 m)

• Buffer esterno di acqua ultrapura

• Serbatoio d’acciaio (h e dbase = 18 m )

Neutrini Atmosferici

→ + ;→ e+ + e + ֿ

→ + ֿ;→ e- + ֿe +

R = ( N/Ne)osservato

( N/Ne)calcolato

( N/Ne)calcolato = 2.1 per EGeV. Più alto ad energie

superiori per maggiore sopravvivenza dei muoni.

Rmisurato =

• Il risultato è stato interpretato in termini di una oscillazione fra → • Una evidenza convincente proviene dalla distribuzione dell’angolo di zenith dei

muoni prodotti negli eventi con energia dei muoni sopra 1.3 GeV. La lunghezza del percorso del neutrino dipende fortemente dall’angolo, essendo tipicamente di 20 km per i neutrini che vengono direttamente dall’alto, 200 km per quelli laterali e 13.000 km per quelli che vengono dall’atmosfera dall’altra parte della terra.

• Naturalmente è la direzione del muone prodotto che viene misurata, ma l’energia è sufficientemente alta per assicurare un angolo neutrino-muone molto piccolo.

• In conclusione, il deficit di neutrino solare e l’asimmetria alto-basso nei neutrini atmosferici sono stati interpretati in termine di oscillazione dei sapori. Le differenze in massa dei neutrini e, probabilmente, le stesse masse sono molto piccole, dell’ordine di 10-1 – 10-3 eV. Pertanto, le masse conosciute delle particelle elementari variano dai 175 GeV del quark top a soli 10-12 GeV dei neutrini,

Probabilità di trasformazione

The Cern Neutrino to Gran Sasso (CNGS) program

Motivated by the atmospheric neutrino disappearance

730 km

CERN beam optimized to study the appearance by detectionin the parameters region:m22.410-3 eV2 and sin221.0 production threshold=3.5 GeV

N NAMD (E)P (E)CC (E)(E)dE

Beam mean features:

L=730 km ; <E>=17 GeV

(e+e)/=0.87% ; prompt negligible_

In shared mode 4.5x1019 prot/year 2900 CC/kton/year 13 CC/kton/year 2

expected at Gran Sasso

The CNGS beam

SPS 400 GeV

Graphite2 m length

Diameters: 80 cm & 115 cmCurrent: 150 kA & 180 kA

Aluminum 6082

19 silicium diodes

CNGS beam fully completed and operational since August 2006

3

The OPERA experimentOscillation Project with Emulsion tRacking Apparatus

Collaboration:Belgium (IIHE(ULB-VUB) Brussels), Bulgaria (Sofia University), China (IHEP Beijing Shandong University), Croatia (Zagreb University), France (LAPP Annecy, IPNL Lyon, LAL Orsay, IPHC Strasbourg), Germany (Berlin Humboldt

University, Hagen, Hamburg University, Münster University, Rostock University), Israel (Technion Haifa), Italy (Bari,

Bologna, LNF Frascati, L’Aquila, LNGS, Naples, Padova, Rome, Salerno), Japan (Aichi, Toho, Kobe, Nagoya, Utsunomiya),

Russia (INR Moscow, ITEP Moscow, JINR Dubna, Obninsk), Switzerland (Bern, Neuchâtel, Zürich), Tunisia (Tunis

University), Turkey (METU Ankara)

Direct search for the oscillation by looking at the appearanceof in a pure beam

CNGS program OPERA detector and experimental strategy Physics potential First operations of CNGS and OPERA

Cécile Jollet, IN2P3-ULP Strasbourg on behalf of the OPERA collaborationTAUP07 Conference - Sendai - September 11-15, 2007 1

Il rivelatore OPERA• Il rivelatore OPERA si trova nella Galleria C dei LNGS.• costituito da due Super Moduli (SuperM). Ciascun SuperM è diviso in una• parte di targhetta ed un'altra occupata da uno Spettrometro. Di fronte• al primo SuperM, in direzione di arrivo del fascio, e posizionato un sistema• di veto costituito da RPC (Resistive Plate Chambers) in vetro. Ogni• SuperM e realizzato in maniera modulare lungo la direzione z del fascio.• La targhetta e costituita da 31 pareti intervallati da 31 piani di scintillatori• detti Target Trackers (TT). Ogni parete e composta da 3328 mattoni• (bricks) ed ogni mattone e l'unione di 56 piani di piombo (la targhetta)• interposti a 57 strati di emulsioni nucleari.

OPERA: lo spettrometro

• Ogni Spettrometro è costituito da un magnete dipolare dove ogni braccio e costituito da 12 piani di Fe intervallati con 11 piani di RPC, gli Inner Trackers.

• Insieme ai rivelatori interni la traccia muonica viene ricostruita grazie ai Drift Tubes (DT), i

tubi a deriva di elevata precisione (anche detti Precision Trackers) posti esternamente al magnete per misurare l'impulso con il metodo dell'angolo di curvatura.

20m20m

10m10m

10m10m

SM1SM2

Brick wall

Electronic detector to find candidate brick

Robot to remove the candidate brick Scan by automatic microscope

The OPERA detector

Gran Sasso, Hall C2 supermodules.Target: 31 walls/supermodule with ~2500 bricks eachTarget mass: 1.35 ktons

target

Muon spectrometer

6

10.3 cm

12.8 cm

7.5 cm=10 X0

The OPERA experimental design

Pb Pb

Decay “kink”

>25 mrad

emulsion “grains” track segment ~16 grains/50 m

e , h

e,

Plastic base(200m)

x~ 2.1 mrad x~ 0.21 m

ES ES

Detector based on bricks:Sandwich of 56 (1mm) Pb sheets

+ 57 FUJI emulsion layers + 1 changeable sheet

Brick weight: 8.3 kg 5

Detection of decay (~10-13 s ; c~87 m) topologies created by CC interactions

m resolution Photographic emulsions (DONUT)

Large target mass Lead materials

OPERA goal: appearance signal detection

-

-

- or e-

or h-

oscillation

Decay “kink”

CC events

CC eventsTopology selection: kink signatures

Principle of OPERA experiment:

Detection of decay (~10-13 s ; c~87 m) topologies created by CC interactions

m resolution Photographic emulsions (DONUT)

Large target mass Lead materials 4

The challenge is to identify interactions from interactions

oscillation sensitivity

decay channels

(%) BR(%)

Signal

Background m2 =2.5x10-

3 eV2

m2 =3.0x10-3

eV2

µ 17.5 17.7 2.9 4.2 0.17

e 20.8 17.8 3.5 5.0 0.17

h 5.8 50 3.1 4.4 0.24

3h 6.3 15 0.9 1.3 0.17

ALL BR=10.6% 10.4 15.0 0.76

full mixing, 5 years run @ 4.5x1019 pot / year

Main background sources: - charm production and decays

- hadron re-interactions in lead- large-angle muon scattering in lead

εtrigger x εbrick x εgeom x εprimary_vertex

99% x 80% x 94% x 90%fringe effect for scanning

Efficiency:

14

OPERA beam events

319 beam events collected: 3/4 external events (interaction in the rock) 1/4 internal events (interaction in the detector)

CC in rock (rock muons) CC in the magnet

18

Neutrino Astronomy: SN 1987A

• Consideriamo una stella che abbia subito il processo di neutronizazione.

e- + p → e + n

Il core della stella contiene ancora nuclei di ferro, protoni ed elettroni in quantità, così come neutroni.

Possiamo, però, in prima approssimazione pensare una stella di neutroni come un nucleo gigantesco composto solo di neutroni. Se R0 = 1.2 fm è l’unità del raggio nucleare ed A è il numero di nucleoni, il raggio sarà:

R = R0 A1/3. Poiché A del sole = 1.2x1057, 1.5 masse solari avranno un raggio di circa 15 km. La corrispondente energia gravitazionale rilasciata sarà:

3/5 ( GN M2 A5/3/ R0) con G costante gravitazionale e M massa del nucleone.

Per 1.5-2 masse solari: Egrav. ≈ (2.5 -4 ) x 1053 ergs

≈ (1.6-2.5) x 1059 MeV

• Questa energia è circa un fattore 10 più grande dell’energia richiesta per

disintegrare il ferro nei suoi nucleoni costituenti. Circa 100 MeV per nucleone contro gli 8-9 occorrenti mediamente. L’energia potenziale gravitazionale è circa il 10% della massa totale del core della stella. Se non vi è un collasso in buco nero, l’implosione è bloccata dal core repulsivo della forza gravitazionale, una volta raggiunta la densità nucleare, e parte dell’energia rimbalza all’indietro nella forma di un’onda di pressione che si sviluppa poi in un’onda di shock. Durante la fase iniziale del collasso vengono emessi in pochi millisecondi circa 1057 neutrini la cui energia totale è circa il 10% dell’energia totale rilasciata. A causa dell’alta densità del core della stella, il libero cammino medio del neutrino diventa più piccolo del raggio della stella di neutroni. Le interazioni deboli coinvolte sono diverse, ma un conto approssimato considerando solo le correnti cariche da:

= 1/((NA≈= 2/(NAGF2 E2) ≈ 10/E2 km

Con GF costante di Fermi e NA numero di Avogadro. Pertanto per un tipico neutrino km. Pertanto l’enorme quantità di energia è temporaneamente bloccata nel core. I neutrini sfuggono entro 100 metri o meno dalla superficie. Distribuzione Fermi-Dirac con KT 5-10 MeV.

Circa il 90% dell’energia gravitazionale viene emessa in un lungo impulso di alcuni secondi, quando il core si raffredda sufficientemente, nella forma di tutti e tre i generi di neutrini ed antineutrini.

Poiché le loro sezioni d’urto sono diverse, ci saranno diverse profondità nella sfera di neutrini e pertanto ci saranno diversità di circa un fattore 2 nel numero e nelle energie dei diversi sapori di neutrino ed antineutrino.

Nel 1987 nell’esplosione della Supernova SN 1987A si è avuto un impulso di circa 20 neutrini, della durata di alcuni secondi, visto dai rivelatori Kamiokande e IMB. Il segnale del neutrino arrivò circa sette ore prima del segnale della luce.

Gli eventi di neutrino, insieme con la distanza conosciuta della supernova (170000 anni luce), sono stati utilizzati per calcolare l’energia totale del flusso dei neutrini, assumendo di moltiplicare per 6 quella dei neutrini elettronici, unici riconoscibili.

L ≈= 3x1053 ergs = 2x1059 MeV, con un’incertezza di un fattore 2.

1058 Neutrini emessi; dopo 170.000 anni luce 1010 attraversano ogni centimetro quadrato della terra.

Cosa abbiamo imparato dallo studio della SN 1987A?

• 1) Limite inferiore sulla stabilità dei neutrini: vivono almeno 170.000 anni

• 2) Poiché l’impulso dei neutrini è durato meno di 10 secondi, il tempo di transito dei neutrini di diversa energia è stato lo stesso entro 1 parte su 5x1011 . Il tempo di arrivo tE di un neutrino sulla terra è dato in termini del tempo di emissione dalla supernova tSN , la sua distanza L , la massa del neutrino m e la sua energia E:

• tE = tSN + L/c ( 1+m2c4/2E2) per m2 << E2

• Per due eventi la differenza temporale è data da:

• t = tE - tSN = Lm2c4/2c (1/E12 -1/E2

2)

• Utilizzando neutrini di bassa energia, rispettivamente di 10 e 20 MeV, ed un t < 10 s , otteniamo m < 20 eV.