3.2 P Filmsottili2

Post on 02-Jul-2015

664 views 1 download

Transcript of 3.2 P Filmsottili2

SputteringSputtering: cariche (accelerate) prodotte da plasma, tipicamente di gas inerte,

prodotto in continua (DC) o con radiofrequenza (RF)

DC RF

Sputtering (e bombardamento con cariche)

Particelle cariche (ioni o elettroni) vengono accelerati verso la superficie di un target solido --> desorbimento (via numerosi processi) --> vaporizzazione (non solo elementare)

Punti di forza principali:- efficienza anche con materiali “refrattari”, es. ceramiche ed alcuni metalli con alta Tvap- alti rate di crescita (fino a diversi μm/h)

Magnetron sputtering

Campi magnetici aumentano la ionizzazione dovuta alle collisioni

Principali svantaggi dello sputtering:

- presenza di gas ambiente (per il plasma) --> scarsa purezza

- possibilità backscattering --> danneggiamento del film

- scarsa efficacia di atomizzazione --> scarso controllo della crescita

Confronto vaporizzazione/sputtering

Ablazione e deposizione laser impulsata (PLAD)

Interazione fascio laser impulsato/bulk solido--> ablazione (vaporizzazione) localizzata del materiale

Processo impulsato e tempi caratteristici

Laser medium ArF KrF XeCl XeF

Wavelength (nm) 193 nm 248 nm 308 nm 351 nm

Pulse energy (mJ) 400 600 400 320Average power (W) 10 16 11 8

Gas lifetime (106 pilse) 0.4 1 10 2

Principali laser a eccimeri usati per PLD

Laser tipici nell’UV:- eccimeri (XeCl 308nm, KrF 248nm, ArF 193nm,…)- Nd-YAG 1064 nm (III o IV armonica nell’UV)- impulsi: ~ 10 ns (ma anche sub-ns)- fluenza: 1-5 J/cm2 (cioè centinaia di MW/cm2 )

Peculiarità PLAD

Energia trasferita dal laser al target

Formazione plasma

Reattività

Molta energia trasferita al film in crescita

Ulteriori vantaggi PLAD:

- elevato tasso di ablazione per laser shot

- elevata energia cinetica particelle ablate

- elevata direzionalità

- possibilità reazioni collisionali (gas ambiente)

Limiti PLAD

PLAD diffusa in ambito di laboratorio per film di materiali “difficili” (es. ceramiche

supercoduttrici, ferroelettriche, ferromagnetiche, ossidi,...)

Può essere usata anche per formare nanoparticelle (CNT, Si-nanocrystals,…)

Alcuni svantaggi PLAD:

- Ricoprimento di superfici piccole (~ cm2)

- scarsa omogeneità superficiale e

formazione di droplets

-difficile diffusione industriale

- scarsa resa complessiva

Tecniche chimiche: Chemical Vapor Deposition (CVD)

Nella CVD un gas precursore del materiale depositato viene immesso nel reattore. Quando le molecole vengono in contatto con la superficie, si decompongono e alcuni dei reagenti aderiscono alla superficie.

La CVD è il metodo di deposizione più usato nella manifattura di IC

CVD isè la crescita di film da fase vapore/gas via reazioni chimiche nel gas e sul substrato:

e.g. SiH4(g) →Si(s) + 2H2(g)

Possibile schema di crescita di diamante per CVD

1-2. Viene introdotto nella camera ZrCl4 gassoso. Aderisce alla superficie, ma ha la proprietà di non aderire a se stesso. Quindi il processo si arresta quando è cresciuto un intero strato.2.b. Il gas (ZrCl4) in eccesso viene rimosso dalla camera.3-4. Viene introdotto nella camera H2O gassoso. L’O reagisce con il Zr, formando ZrO2 mentre il rimanente H e Cl rimangono nel gas. Ulteriore ossigeno non può aderire sull’ossigeno. Quindi si ottiene un perfetto monostrato di ZrO2.4.b. I gas rimanenti (H, Cl e H2O in eccesso) vengono pompati via.5. Si ritorna al punto 1, o si termina il processo.

Atomic Layer Deposition

Deposizioni da soluzione (CSD, MOD)