3. La valutazione del cammino Cagliari 2017 · 3.1. Obiettivi della valutazione quantitativa del...

Post on 11-Aug-2020

5 views 0 download

Transcript of 3. La valutazione del cammino Cagliari 2017 · 3.1. Obiettivi della valutazione quantitativa del...

Programma

Programma delle lezioni e delle esercitazioni

3. La valutazione del cammino – Gait analysis

3.1. Obiettivi della valutazione quantitativa del cammino in ambito clinico.

3.2. Protocolli e standard internazionali.

3.3 Introduzione alla valutazione del report di prove di gait analysis : parametri spazio temporali e grafici di cinematica articolare.

3.4 Valutazione dei tracciati di dinamica articolare e di eletromiografiasuperficiale

4. – Applicazioni cliniche dell’analisi del movimento in ambito clinico

4.1. La Gait Analysis nel bambino con PCI

4.2. Analisi del movimento nel paziente con Malattia di Parkinson

4.3 Analisi del movimento nel paziente con Sclerosi Multipla.

Argomenti trattati

• Test clinici maggiormente valutati : La Gait Analysis

• Protocolli, modalità della prova

• Esercitazione pratica

Analisi del cammino

Caratteristiche di un cammino funzionale

Analisi della cinematica articolare nel cammino

Flesso-estensione

Abdo-adduzione

Intra-extrarotazione

Analisi della dinamica nel cammino

Forze di reazione al terreno

Momenti articolari

Potenze articolari

Step principali per una prova di GA, come fare una prova di cammino?

Preparazione del paziente

Acquisizione della prova

Reading a gait analysis report

Multidisciplinar approach

Since clinical decisions are based on the output of gait analysis models, we should be cautious when interpreting

our data.

The gait cycle

Stance phase : 60% Swing phase : 40%

Normal values

Stance Swing

Grandezze basografiche

Temporal parameters .Normal values

Other parameters

Stridelength = StepRight + StepLeft

Left steplengthRight steplength[cm]

Normalization for subject’s height

Step width

Step width [mm]

Cadence: It is the n. of steps taken by a person per unit of

time. It is measured as the n. of steps / sec or per minute.

Cadence = Number of steps / Time

Walking velocity:It is the rate of linear forward motion of the body, which can be measured in meters or cm/second, meters/minute, or miles/hour.

Walking velocity (meters/sec)=Distance walked (meters)/time (sec)

Distance parameters: Normal values

Two examples of report

Clinical examples

Spatio temporal parameters of an hemiplegic child

right hemiplegia

VIDEO Pdf

Children: Hemiplegia- right

Spatio –temporal parameters:Case study

Withoutorthopaedicsupport

With orthopaedic support

Spatio –temporal parameters: use of orthesis

Without orthopaedic support

139 [mm]

With orthopaedic support

38 [mm]

Marker (on the body surface)Virtual Marker (centre of rotation )

Yg

XgZg

Flexion –extension

Abdo-adduction

External internal

rotation

Alcune considerazioni

wwRichardnet/verne

1. We are working in two dimension

2.The human model is modelled as rigidsegments (HAT, Femurs, Tibias and feet)

3.Segment are linked by simple joint

4. The movement about each joint can be described by a single joint angle

Stance Swing

Normal Kinematics

sec

Gait cycle

Alcun protocolli

Helen Heyes Marker Set

R. B. Davis, “A gait analysis data collection and reduction technique,”

Hum. Mov. Sci., vol. 10, pp. 575-587, 1991.

Protocollo SAFLO

Frigo C, Rabuffetti M, Kerrigan DC, Deming LC, Pedotti A.

“Functionally oriented and clinically feasible

quantitative gait analysis method.”

Med Biol Eng Comput 1998; 36: 179-185

Variabili cinematiche

Misura parametri antropometrici

Helen Heyes Marker Set

Parametri antropometrici

Protocollo SAFLO

Dal sistema tecnico al sistema anatomico: i centri articolari

Analisi della cinematica articolare nel cammino

Flesso-estensione

Abdo-adduzione

Intra-extrarotazione

z

y

Hip = (XH, YH, ZH)

β

θ: 28.4 ± 6.6 degrees

β: 18 ± 4 degrees

0153.0115.0 legLC25 radiografie di anca

(Newington Children Hospital,1981)

C Cos ()

Lleg= antroLleg= antro

YH

dASISz

y

2sin ASIS

HdCSY

dASIS= antropdASIS= antrop

x

z

β

XH

ZH

XdisXdis

sincoscos CxX disH

2sin ASIS

HdCSY

coscossin CxZ disH

Hip = (XH, YH, ZH)

C Cos ()

Xdis= antropXdis= antrop

β

90-β

0

5.00

ker

k

KneemarK

K

ywrSz

x

0

5.00

ker

A

anklemarA

A

ywrSz

x

Esempio: ricostruzione centri articolari

Video 3D .RAW, .RIC

(3138A01)

Angoli assoluti

z

x

y

LEFTRIGHT

Angoli assoluti

Rotazione attorno a Y

z

x

y

Rotazione attorno a X

Angoli assoluti

z

x

y

Rotazione attorno a Z

Angoli assoluti

Descrizione delle rotazioni relative di un segmento rispetto ad un altro considerato segmento di riferimento

DISTALE RISPETTO A PROSSIMALE

Angoli relativi

Angoli relativi

Angoli relativi

Angoli relativi

Angoli relativi

PELVIS

HIP

KNEE

ANKLE

Piano Frontale Sagittale Orizzontale

PELVIS

HIP

KNEE

ANKLE

Frontal Sagittal Horizontal

Reading the graphs: other format

Gait Analysis data evaluation: consistency

Right vs Right vs Right vs Right

Left vs Left vs Left vs Left

Trials n. 2782xA04, 2782xA05, 2782xA06, 2782xA07da mod

(pdf format)

Main considerations: high consistency both in kinematics and kinetics patterns

Gait Analysis data evaluation: mean curves

Mean of n. 2782xA04, 2782xA05, 2782xA06, 2782xA07

(pdf format)

Clinical examples

Kinematics of an hemiplegic child

right hemiplegia

Pdf

Ankle

LEFTRIGHT

Knee

Hip joint

Pdf

Hip joint sagittalplane

Hip joint frontalplane

Pelvis

Pdf

Standing

Detailed graph description

Kinetics computation;

Kinetics of normal gait.

KINETICS

-

Kinetics (displacement,

velocity, acceleretion)

Foot – ground reactions

Inertial properties of the segments

ModelsResultant forces and joint torques

Muscular forces

INVERSE DYNAMIC PROBLEM

Interest: comprension of the mechanisms involved in motor control

Clinical evaluation: diagnosis, identification of project criteria forprosthesis

Foot-groundreaction

M knee

F knee

Gait complexity

KINETICS DESCRIBE THE CAUSES OF THE MOVEMENT

Ground Reaction Forces Measured

Ground-reaction force: Action Reaction

Magnitude

Direction

Point of application

Internal Forces

External Forces

GROUND REACTION FORCES and COP

Ant/posterior Medial/lateral

Vertical CoP

Ground Reaction Forces

Gravitational forces

Ff=mfg

Fs=msg

Ft=mtg

Foot

Shank

Thigh-bone

Ground Reaction Forces

Gravitational forces

Inertial forces Fi= -ma

Ffi=- mfa

Fsi=- msa

Fti=-mta

Foot

Shank

Thigh-bone

Ground Reaction Forces

Gravitational forces

Inertial forcesMeasured

and computed

Biomech modelForces Joint Moment

MOMENT OF FORCE

A force acting at a distance from the rotational center causing the body to rotate

M = F x D

MOMENT

F x b

FexbMex

Courtesy of the National Institutes of Health - USA

Mex= M int

Mint

M int= ligament and muscles

actions

Forces and moment

INTERNAL

F e M produced by muscles, ligaments and

soft tissues

EXTERNAL

F e M produced by ground reaction forces, by segments

weight and inertial forces

Plan

Dorsi

THE BODY PRODUCES >>>> INTERNAL MOMENTS

IN RESPONSE TO >>>>>>>>>EXTERNAL LOADS

THAT PRODUCE>>>>>>>EXTERNAL MOMENTS

EQUILIBRIUM Internal Moments = External Moments

POWER

M x

M

.

Courtesy of the National Institutes of Health - USA

Power

Power indicates the rate at which a moment is rotated

Power = Moment x Angular Velocity

Power = Force x Distance x Angular Velocity

[W]

Generated power > 0

Momentum and movement are in the same direction

Flex-extension velocity increases

Muscle concentric contraction (the contracting muscle shortens under tension)

Absorbed power < 0

Momentum and movement are not in the same direction

Flex-extension velocity decreases

Muscle eccentric contraction (the contracting muscle lengthens under tension)

GEN

ABS

SAGITTAL PLANE: KNEE

FIRST PART

Flexion 

Extension moment

Absorbed power

Eccentric contraction of the extensors

SECOND PART

Flexion 

Flexion moment

Eccentric contraction of the gastrocnemius

THIRD PART

Extension

Flexion moment

Absorbed power

Eccentric contraction of the flexors

Hip joint kinetics

MOVEMENT:

FLEXION

EXTERNAL MOMENT: 

EXTENSION MOMENT

INTERNAL MOMENT: 

FLEXION MOMENT

SAGITTAL PLANE: HIPFIRST PART

Extension

Extension moment

Generated power

Concentric contraction extensors

SECOND PART

Extension 

Flexion moment

Absorbed power

Silent extensors

gravity

THIRD PART

Flexion

Flexion moment

Generated power

Concentric contraction of the ileopsoas (rectus 

femoris)

FOURTH PART

Flexion 

Extension moment

Concentric contraction extensors

Fi= ‐m*a

Clinical examples

Kinetics of an hemiplegic child

right hemiplegia

Pdf

Clinical example - Ankle kinetics

Sagittal plane kinematics and kinetics :ankle

Sagittal plane kinematics and kinetics : knee

Sagittal plane kinematics and kinetics : hip

How read a clinical report?

How to interprete a Gait Analysis report:

1) Kind of interpretation; 2) Synthetic and punctual indexes;3) Evaluation of data consistency;4) Mean curves? Selected trial?

ESMAC Lab Peer review

EMG

Gait analysis test

Patient preparation How to do a gait analysis data acqusitions

Data analysis

Equipment: EMG

Tibialis Anterior

Gastrocnemius

ILEOPSOAS: hip flexion (M)

GLUTEUS: hip extension, rotation, abduction (M)

HAMSTRINGS: hip extension, knee flexion (B)

RECTUS FEMORIS: knee extension, hip flexion (B)

VASTUS: knee flexion (M)

ADDUCTORS

Main muscles involved in gait .

GASTROCNEMIUS: knee flexion, ankle plantar flexion

(B)

SOLEUS: ankle platar flexion (M)

TIBIALIS ANTERIOR: ankle dorsi flexion (M)

Main muscles involved in gait .

Normal walking : muscle activity

Normal walking : muscle activity

EMG + kinematics+kinetics

quantitative multi-factorial evaluation of gait =

GAIT ANALYSIS

Example of interpretation of GA reports

1) Examples 1 and 2 : use of GA in the choice of the surgical treatment

Case study Surgery

F.S

Formisano

Clinical Case : pre and post surgery

F.S. 10 years, male, CP (diplegia)

Preterm (7 weeks before) with respiratory problems

Spasticity of gastrocnemius (left > right)

No crouches

No previous treatments

TREATMENT EVALUATION

Gait Analysis PRE

Gait Analysis PRE

Bilateral Achille tendon lenghtening

Muscular weakness

The question??

Reduced power

P= M * w

Good momentum but….

M= F * b

Reduced range of motion

Moment?

Range of motion?

POST OP. (15 MONTHS)

Gait Analysis POST (15 months)

Gait Analysis POST (15 months)

Case study I.A- twins 13 years old- toewalkers- Why GA test? To better define the walking strategy

and facilitate the decision making process.

Formisano

Video

SkeletonFront Back

Consistency

evaluation

Video post 1 month

SkeletonFront Back

Post 1 month

Consistency

evaluation

Case study I.S- twins 13 years old- ……….- toewalkers- Why GA test? To better define the walking strategy

and facilitate the decision making process.

Video pre

SkeletonFront Back

Consistency

evaluation

Video post surgery 1 month

SkeletonFront Back

Post 1 month - exercises

Consistency

evaluation

Gait analysis is a tool

Better evalution of functional limitation

and the involved joints Optimal treatment outcome

evaluation

Before treatment After treatment

Gait analysis is a tool

UnderstandingBiomechanics

Diagnosis and Treatment

Planning

AssessingOutcome

Conclusions

After these examples……

Only qualitative evaluation????

Is it possible?????

George’ s opinion

No Martini? No Party

No GA? No Rehab!!!

Gait Analysis is a Tool (Gage, 2007)

Specifically it’s a measurement tool, like a carpenter’s measuring tape.

The tape doesn’t tell the carpenter how to build a house –that knowledge lies within the carpenter

But he can’t build a home without it !

Thank you

Pelvic obliquity

NORMALITY

IC: 0°

LOADING RESPONSE: 5°

MIDSTANCE: 0°

TERMINAL-STANCE/PRE-SWING: -5°

TERMINAL-SWING: 0°

Anterior Posterior Tilt

NORMALITYIC: 10°

ROM: 5°

MEAN VALUE: 10°

Pelvic rotation

NORMALITY

IC: 5°

TERMINAL-STANCE/PRE-SWING: -5°

TERMINAL-SWING: 5°

Hip Abd/adduction

NORMALITY

IC: 0°

LOADING RESPONSE: 5°

MIDSTANCE: 0°

TERMINAL-STANCE/PRE-SWING: -5°

TERMINAL-SWING: 0°

From Esmac/Siamoc course 2001

+=add

Hip flexion extension-

NORMALITY

IC: 35°

TERMINAL-STANCE: -5° ; -10°

TOE-OFF: 0°

MID-SWING/TERMINAL-SWING: 35°

+

-

HIP ROTATION

-30

-20

-10

0

10

20

30

% gait cyclede

gree

s

MEDIA MEDIA - DS MEDIA + DS

NORMALITY

ROM <10°

IC: -10°

LOADING RESPONSE: 0°

-100

1020304050607080

0 20 40 60 80 100

degr

ees

% gait cycle

Media Media+Dev.St Media-Dev.St

Flx

Ext

Knee flexion estention

NORMALITY

IC: 10°

LOADING RESPONSE: 20°

MIDSTANCE: 5°

TOE-OFF: 40° - 50°

EARLY-SWING: 60°

TERMINAL-SWING: 5°

ROM: 55°

Knee varo Valgus

NORMALITY

STANCE PHASE : 0°

LATE-STANCE/SWING PHASE: 10°