U3 Termodinamica

download U3 Termodinamica

of 15

Transcript of U3 Termodinamica

  • 8/16/2019 U3 Termodinamica

    1/15

    CUPES L

    Ciencias experimentales

    Unidad 3. Termodinámica

    Recopiló: M.C. Macaria Hernández Chávez

  • 8/16/2019 U3 Termodinamica

    2/15

    Calor y temperatura

    La magnitud física que indica que tan caliente o fría es una sustancia respecto a un cuerpo

    que se toma como base o patrón es la temperatura.

    Nuestro organismo no detecta la temperatura, sino pérdidas o ganancias de calor. 

    Se denomina calor, a la transferencia de energía de una parte a otra de un cuerpo o entre

    distintos cuerpos que se encuentran a diferente temperatura.

  • 8/16/2019 U3 Termodinamica

    3/15

    Variables termodinámicas

    Las variables termodinámicas o variables de estado son las magnitudes que se

    emplean para describir el estado de un sistema termodinámico. Dependiendo dela naturaleza del sistema termodinámico objeto de estudio, pueden elegirse

    distintos conjuntos de variables termodinámicas para describirlo. En el caso de

    un gas, estas variables son:

    Masa  (m  ó n): es la cantidad de sustancia que tiene el sistema. En el Sistema

    Internacional se expresa respectivamente en kilogramos (kg) o en número demoles (mol).

    Volumen  (V ): es el espacio tridimensional que ocupa el sistema. En el Sistema

    Internacional se expresa en metros cúbicos (m3). Si bien el litro  (l ) no es una

    unidad del Sistema Internacional, es ampliamente utilizada. Su conversión a

    metros cúbicos es: 1 l  = 10-3 m3.

    Presión  ( p): Es la fuerza por unidad de área aplicada sobre un cuerpo en la

    dirección perpendicular a su superficie. En el Sistema Internacional se expresa en

    pascales (Pa). La atmósfera es una unidad de presión comúnmente utilizada. Su

    conversión a pascales es: 1 atm ≅ 105 Pa.

  • 8/16/2019 U3 Termodinamica

    4/15

     

    •Temperatura  (T   ó t ): A nivel microscópico la temperatura de un sistema está

    relacionada con la energía cinética que tienen las moléculas que lo constituyen.

    Macroscópicamente, la temperatura es una magnitud que determina el sentido enque se produce el flujo de calor cuando dos cuerpos se ponen en contacto. En el

    Sistema Internacional se mide en kelvin (K), aunque la escala Celsius se emplea con

    frecuencia. La conversión entre las dos escalas es: T (K) = t (ºC) + 273.

    En la siguiente figura se ha representado un gas encerrado en un recipiente y las

    variables termodinámicas que describen su estado.

  • 8/16/2019 U3 Termodinamica

    5/15

    Cuando un sistema se encuentra en equilibrio, las variables termodinámicas

    están relacionadas mediante una ecuación denominada ecuación de estado.

    Variables extensivas e intensivas

    En termodinámica, una variable extensiva es una magnitud cuyo valor es

    proporcional al tamaño del sistema que describe. Esta magnitud puede ser

    expresada como suma de las magnitudes de un conjunto de subsistemas que

    formen el sistema original. Por ejemplo la masa y el volumen son variables

    extensivas.

    Una variable intensiva es aquella cuyo valor no depende del tamaño ni la

    cantidad de materia del sistema. Es decir, tiene el mismo valor para un sistema

    que para cada una de sus partes consideradas como subsistemas del mismo. La

    temperatura y la presión son variables intensivas.

  • 8/16/2019 U3 Termodinamica

    6/15

    Ley cero de la termodinámica

    Esta ley explica que cuando un sistema se pone en contacto con otros, al transcurrir el tiempo,

    la temperatura será la misma, porque se encontrarán en equilibrio térmico o dicho de otra

    manera: la temperatura es una propiedad que posee cualquier sistema termodinámico y

    existirá equilibrio térmico entre dos sistemas cualesquiera, si su temperatura es la misma. 

    A está muy

    caliente

    B y C están en

    equilibrio térmico

    A, B y C están en

    equilibrio térmico

    Las leyes de la termodinámica

  • 8/16/2019 U3 Termodinamica

    7/15

    Primera Ley de la termodinámica

    Establece las relaciones entre los flujos de energía que experimenta un sistema físicoy la forma en que cambian sus propiedades

    Sentido práctico de la primera ley

    • Es posible convertir calor en trabajo mecánico útil mediante máquinas térmicas.

    • Las máquinas y turbinas de vapor, los motores de combustión interna, las turbinas de

    gas y las plantas térmicas son consecuencia práctica de esta conversión.

    • Esta conversión ha permitido el desarrollo industrial y el desarrollo tecnológico con

    base en la utilización de los combustibles fósiles.

    •  Antes de estos descubrimientos se dependía de las energías humana, animal, eólicae hidráulica para realizar trabajo mecánico útil.

  • 8/16/2019 U3 Termodinamica

    8/15

    Segunda ley de la termodinámica

    Es imposible construir un aparato que opere en un ciclo y cuyo único efecto sea generar

    trabajo a partir del intercambio de calor con una única fuente de calor.

    Es imposible construir un aparato que opere en un ciclo y cuyo único efecto seatransmitir calor de fuente fría a una fuente caliente.

    Consecuencias prácticas de la segunda ley

    Las máquinas que generan potencia mecánica a partir del calor recibido de unafuente caliente, generan calor de desecho y deben contar con una fuente fría quereciba ese calor.

    Los equipos de refigeración necesitan potencia mecánica y por ello entregan a lafuente caliente mayor calor que el que extraen al refrigerar la fuente fría.

  • 8/16/2019 U3 Termodinamica

    9/15

    Tercera Ley de la Termodinámica.

    La tercera ley tiene varios enunciados equivalentes:

    "No se puede llegar al cero absoluto mediante una serie finita de procesos“ 

    Es el calor que entra desde el "mundo exterior" lo que impide que en los experimentos

    se alcancen temperaturas más bajas. El cero absoluto es la temperatura teórica más

    baja posible y se caracteriza por la total ausencia de calor. Es la temperatura a la cualcesa el movimiento de las partículas. El cero absoluto (0 K) corresponde

    aproximadamente a la temperatura de - 273,16ºC. Nunca se ha alcanzado tal

    temperatura y la termodinámica asegura que es inalcanzable.

  • 8/16/2019 U3 Termodinamica

    10/15

    Vi

    Vf

    V = Vi  - Vf

    Trabajo termodinámico

    El cilindro contiene gas encerrado por un pistón o émbolo. Para comprimir el gas se debe aplicar

    una fuerza al émbolo, el cual al recorrer una cierta distancia disminuirá el volumen del gas,

    realizando un trabajo de compresión. EL valor del trabajo efectuado puede calcularse de acuerdo

    con la siguiente fórmula :

    T = P(Vf   – Vi)

    T = trabajo realizado en joules a una presión constante del gasP = presión constante del gas en N/m2

    Vf   – Vi = variación de volumen en el gas en metros cúbicos m

    3

    Original  Al aplicar la fuerza 

    En la compresión de un gas , el

    volumen final es menor al inicial, por

    tanto, el trabajo realizado es negativo

    y se dice que se realizó un trabajo de

    los alrededores sobre el sistema 

     Al expandirse un gas el volumen final

    es mayor al inicial y, por tanto, el

    trabajo es positivo, entonces el

    sistema realiza un trabajo sobre los

    alrededores. 

  • 8/16/2019 U3 Termodinamica

    11/15

    Calcular el trabajo realizado al comprimir un gas que está a una presión de 2.5 atmósferas

    desde un volumen inicial de 800 cm3 a un volumen final de 500 cm3. Expresar el resultado en

     joules.

    Datos Fórmula

    T = ? T = P(Vf  ─   Vi)P = 2.5 atm

    Vi = 800 cm3

    Vf = 500 cm3 

    Conversión de unidades

    Sustitución y resultado

    El signo menos del trabajo indica que serealizó trabajo sobre el sistema

  • 8/16/2019 U3 Termodinamica

    12/15

     

    Resuelve el siguiente problema propuesto. Envía tu procedimiento detallado

    escaneado al Buzón de Tareas.

    Calcular el trabajo realizado al comprimir un gas que está a una presión de 5 atmósferasdesde un volumen inicial de 1600 cm3 a un volumen final de 1000 cm3. Expresar el resultado

    en joules.

  • 8/16/2019 U3 Termodinamica

    13/15

    Máquinas térmicas

    • Máquinas térmicas: Son dispositivos que pueden transformar la energía térmica en

    otras formas de energía, mecánica o eléctrica. Las más conocidas son: máquina devapor, turbina de vapor y motor de explosión o combustión interna.

    Máquina y turbina de vapor

    • Una máquina de vapor transforma en energía mecánica la energía calorífica que se

    desprende en la combustión.

  • 8/16/2019 U3 Termodinamica

    14/15

    Motor de combustión

    • El combustible es quemado dentro del motor,

    comprimiendo antes los gases. El gas resultante

    empuja el émbolo que toma un movimiento

    alternativo y rotatorio mediante una biela y unamanivela.

    Central Térmica

  • 8/16/2019 U3 Termodinamica

    15/15

    Referencias

    http://acer.forestales.upm.es/basicas/udfisica/asignaturas/fisica/termo1p/variables.h

    tml