Transfert d’énergie modale dans les smart-structures ...Transfert d’énergie modale dans les...

29
Transfert d’énergie modale dans les smart-structures: récupérer et contrôler Simon CHESNE , Claire Jean-Mistral, L. Gaudiller & Z. Wang Université de Lyon, CNRS INSA-Lyon, LaMCoS Journée scientifique de la SFA Techniques de contrôle en vibrations, acoustique et musique 16-11-15

Transcript of Transfert d’énergie modale dans les smart-structures ...Transfert d’énergie modale dans les...

  • Transfert d’énergie modale dans les smart-structures:récupérer et contrôler

    Simon CHESNE , Claire Jean-Mistral,

    L. Gaudiller & Z. WangUniversité de Lyon, CNRS INSA-Lyon, LaMCoS

    Journée scientifique de la SFATechniques de contrôle en vibrations, acoustique et musique

    16-11-15

  • Overview

    Context

    Previous worksModal SSDI

    SSHI

    SSDV

    SSDH Principles

    Experimental Identification

    Simulations results & analysis

    Conclusions

    2

  • Context: Active control for embedded structuresApplication to a printed circuit board

    ■ PZT (2 sensors, 1 actuators)■ Modal active control focused on damaging modes■ PCB lifetime increased by 128■ Semi-adaptive

    • Semi-adaptive modal control of on-board electronic boards using an identification method

    B Chomette, D Remond, S Chesne, L Gaudiller - SMS, 2008

    • Damage reduction of on-board structures using piezoelectric components and active modal control

    B Chomette, S Chesne, D Rémond, L Gaudiller - MSSP, 2010

    Electronic components

    PZT

    3

  • Context: Active control for embedded structuresTransmission Loss

    3

    Transmission Loss

    improved

    Low Spillover

    PhD Thesis, V. Lhuillier, 2009 LVA

  • 0 200 400 600 800 1000 1200

    -90

    -80

    -70

    -60

    -50

    -40

    Frequency (Hz)

    dB

    (re

    f:1

    V)

    -12dB

    -8dB

    Context: Active control for embedded structuresApplication to a composite structures

    ■ Fully integrated transducers■ Identification of coupling coefficients

    Experimental identification of smart material coupling effects in composite structures

    S Chesne, C Jean-Mistral, L Gaudiller - Smart Materials and Structures, 2013

    MFC PVDF

    1

    1

    2

    2

    1( )( ) ( ) ,( )

    y sH s C sI A B

    u s

    ,,

    , 2 21

    ( ) ,2

    k lijk ln

    ident ik l

    i i i i

    M eH s

    s s

    4

  • Context: Active control for embedded structuresGlobal long-term objectives:

    Integrated transducers

    High performances

    Adaptive

    Broadband excitation

    Energetic autonomy X

    Synchronized switch approaches ?

    5

  • Context: Active control for embedded structures

    Passive

    control

    SSDI

    control

    Modal

    SSDI

    control

    Hybride

    modal

    control

    Ideal

    control

    SSDH

    Active

    modal

    control

    En

    erg

    yc

    os

    t

    Performances

    6

  • Context: Synchronized switch approachesBasic principles of switch on Inductance

    SSDI = Synchronized Switch Damping on Inductance

    Voltage Inversion on each extrema using a resonant network

    7

  • Context: Synchronized switch approachesBasic principles of switch on Inductance

    SSDI = Synchronized Switch Damping on Inductance

    Voltage Inversion on each extrema using a resonant network

    Three interesting developmentsModal SSDI

    SSDV

    SSHI7

  • Previous works: Synchronized switch approachesModal SSDI

    Voltage Inversion on each modal extrema using a resonant network

    Necessity of a modal observer to reconstruct the modal state.

    New semi-active multi-modal vibration control using

    piezoceramic components

    S Harari C. Richard L, Gaudiller; JIMSS, 2009,

    8

  • Previous works: Synchronized switch approachesSSDV (Synchronized Switch Damping on Voltage source)

    The electromechanical coupling is reinforced by artificiallyincreasing the voltage amplitude delivered by the patches,

    Semi-passive Piezoelectric Structural Damping by Synchronized Switching on Voltage Sources

    E, LEFEUVRE & al, JIMSS, 2006,

    No control

    SSDI

    SSDV

    9

  • Previous works: Synchronized switch approachesSSHI (synchronized switch harvesting on inductor)

    Artificial increase of the piezoelements’ output voltage.

    Piezoelectric Energy Harvesting using a Synchronized Switch Technique

    A. BADEL & al, JIMSS 2005

    10

  • Synchronized Switch Damping and HarvestingObjectives of the new approach

    Autonomous

    High performances

    On the same structure

    PrinciplesTo harvest energy on a mode (modal SSHI like)

    To enhance SSDI control to an another mode (modal SSDV like)

    10-1

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    40

    Magnitude (

    dB

    )

    Bode Diagram

    Frequency (Hz)

    10-1

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    40

    Magnitude (

    dB

    )

    Bode Diagram

    Frequency (Hz)Energy transfert11

  • DC-DC converter

    Vibration control

    Energy transfer Energy transfer

    Energy harvesting

    Synchronized switch Damping and HarvestingPrinciples of the new approach

    Autonomous

    High performances

    Schema of energy transfer circuit with SSDH technique

    and identification of the main functions.

    Enhancing Vibration Damping of Smarts Structures by Energy Transfer between Modes

    Wang Z, Jean-Mistral C , Chesné S and Gaudiller L, Applied Mechanics and Materials 201412

  • DC-DC converter

    Vibration control

    Energy transfer Energy transfer

    Energy harvesting

    Synchronized switch Damping and HarvestingVarious operation principles

    Constant intermediate voltages

    Full charge transfer

    Necessity of an accurate model to synchronize the switches.

    13

  • Experimental identification of the modelConstruction of an experimental model

    Identification of mechanical parameters using curve fitting approach

    L1

    PZT 2

    PVDF 1 PVDF 2PZT 1

    L2

    La Ls LsL3

    LT

    Experimental identification of smart material coupling effects in composite structures

    S, Chesné, C, Jean-Mistral, L, Gaudiller.. Smart Materials and Structures, 2013

    Measured FRFReconstructed FRF

    14

    Length=40cmf1= 15,8Hzf2= 91,5Hz

  • Experimental identification of the modelConstruction of an experimental model

    Indirect measurement of modal electromechanical coupling coefficients

    Experimental identification of smart material coupling effects in composite structures

    S, Chesné, C, Jean-Mistral, L, Gaudiller.. Smart Materials and Structures, 2013

    For the PZT, high coupling:

    2𝜋 ∗ ( 𝐶0[ 𝑓𝑖𝑐𝑜 2 − 𝑓𝑖

    𝑐𝑐2] = 𝐵𝑖

    𝑘

    For the PVDF, very low coupling coefficient:

    ,,

    , 2 21

    ( ) ,2

    k lijk ln

    ident ik l

    i i i i

    M eH s

    s s

    𝑀𝑖𝑘,𝑙𝑒𝑗∅𝑖

    𝑘,𝑙

    𝐵𝑖𝑘 = 𝐶𝑖

    𝑙

    15

  • The useless slide Vibration energyharvesting

    DC-DC converter

    Vibration control

    Energy transfer Energy transfer

    L1

    PZT 2

    PVDF 1 PVDF 2PZT 1

    L2

    La Ls LsL3

    LT

    Structure

    Global management

    SSHI Buck-boost

    SSDV

    16

  • Simulation results

    Bi harmonic excitation, Constant intermediate voltages Resulting voltages

    PZT 2 Voltage, Modal SSHI on mode 2

    L1

    PZT 2

    PVDF 1 PVDF 2PZT 1

    L2

    La Ls LsL3

    LT

    Vibration energyharvesting

    DC-DC converter

    Vibration control

    Energy transfer Energy transfer

    17

    ≈2mm displacement

    2 2.05 2.1 2.15-15

    -10

    -5

    0

    5

    10

    15

    Time(s)

    Voltage (

    V)

    No Control

    SSDH

    q2

    2.0423 2.0424 2.0425 2.0426 2.0427 2.0428 2.0429 2.043 2.0431 2.0432

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    Time(s)

    Voltage (

    V)

    No Control

    SSDH

    q2

  • 1.4 1.42 1.44 1.46 1.48 1.5 1.52 1.54 1.56 1.58-20

    -15

    -10

    -5

    0

    5

    10

    15

    20

    Time (s)

    Vo

    ltag

    e V

    01 (

    V)

    No Control

    modal SSDI

    SSHD

    q1

    Simulation results

    Bi harmonic excitation, Constant intermediate voltages Resulting voltages

    L1

    PZT 2

    PVDF 1 PVDF 2PZT 1

    L2

    La Ls LsL3

    LT

    Vibration energyharvesting

    DC-DC converter

    Vibration control

    Energy transfer Energy transfer

    18

    ≈2mm displacement

    PZT 1 Voltage, Modal SSDV on mode 1

  • 1.4 1.42 1.44 1.46 1.48 1.5 1.52 1.54 1.56 1.58-20

    -15

    -10

    -5

    0

    5

    10

    15

    20

    Time (s)

    Vo

    lta

    ge

    V0

    1 (

    V)

    No Control

    modal SSDI

    SSHD

    q1

    1.5954 1.5956 1.5958 1.596 1.5962 1.5964 1.5966 1.5968-15

    -10

    -5

    0

    5

    10

    15

    Time (s)

    Vo

    lta

    ge

    V0

    1 (

    V)

    Simulation results

    Bi harmonic excitation, Constant intermediate voltages Resulting voltages

    L1

    PZT 2

    PVDF 1 PVDF 2PZT 1

    L2

    La Ls LsL3

    LT

    Vibration energyharvesting

    DC-DC converter

    Vibration control

    Energy transfer Energy transfer

    Inversion factorSSDI: 0,745SSDH: 0,96

    18

    ≈2mm displacement

    PZT 1 Voltage, Modal SSDV on mode 1

  • Simulation resultsBi-harmonic excitation, Constant intermediate voltages

    Modal state, mode1

    2 2.05 2.1 2.15-2

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2x 10

    -4

    Time (s)

    q1 No Control

    q1 SSDH

    q1 SSDI

    Amplitude reductionSSDI: -13,5dBSSDH: -26,7dB

    19

  • Simulation resultsBi-harmonic excitation, Constant intermediate voltages

    Modal state, mode2

    Amplitude reductionSSDH: -6dB

    2 2.05 2.1 2.15-1.5

    -1

    -0.5

    0

    0.5

    1

    1.5x 10

    -5

    Time (s)

    q2 No Control

    q2 SSDH

    20

  • Theoretical Attenuation

    SSDI ->14,5dB

    SSDV ->27dB

    SSDH -> 26,7dB

    Simulation resultsComparison with theoretical SSDV / SSDI

    Considering a voltage source of 2V (equivalent to our intermediate storage)

    Analytical formulae are given for a 1DoF system : an equivalent modal model is used.

    ∅𝑇𝑀∅

    ∅𝑇

    K∅𝑇

    qi

    ∅𝑇F

    Equivalent modal model.

    21

  • Simulation resultsImpulse response

    21

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    x 10-3

    10

    20

    30

    40

    50

    60

    70

    Frequency (kHz)

    Pow

    er/

    frequency (

    dB

    /Hz)

    Welch Power Spectral Density Estimate

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-1500

    -1000

    -500

    0

    500

    1000

    1500

    Time

    mV

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-30

    -20

    -10

    0

    10

    20

    30

    Time (s)

    V

    Self-sustained excitationNecessity of an adaptive step (as SSDV)

    -17dB

    Sensor voltage

    Actuator voltage

  • Energetic analysis

    iLB(t)

    Imax

    t1t2

    Step 1 Step 2

    Perspectives

    0 0.0005

    -15

    -10

    -5

    0

    5

    10

    15

    Time (s)

    Voltage (

    V)

    VB

    V01

    0 0.0002 0.00040

    1

    2

    3

    4

    5

    6

    Time (s)

    Vo

    lta

    ge

    (V

    )

    V02

    Vint

    SSHI Buck Boost SSDVc

    Mechanicalexcitation

    Dissipatedenergy

    1st & 2nd mode

    ? Steady state ?

    2nd mode 1st mode

    1st mode

    i2

    iLB

    f1= 15,8Hzf2= 91Hz fbb= 10000Hz

  • Perspectives

    Focusing + Harvesting

    Structronic project

  • ConclusionsNew concept to enhance modal vibration damping thanks to energy transfer between modes.

    Global optimization (mechanical & electrical)

    Performances similar to SSDV (-27dB), without voltage source!

    It highlights the interest of the association of smart functions (cf. Structronic project).

    Multi modal harvesting.

    Experimentation in progress

    22

  • ConclusionsExperimentation in progress

    0,0073 0,0016

    Thank you.23