TLC p02 FundComm 2011

download TLC p02 FundComm 2011

of 96

Transcript of TLC p02 FundComm 2011

  • 7/29/2019 TLC p02 FundComm 2011

    1/96

    TelecomunicazioniDocente: Andrea Baiocchi

    Dip. INFOCOM - Stanza 35, 1 piano palazzina P. Piga

    Sede Facolt S. Pietro in Vincoli

    E-mail: [email protected]

    University of RomaLa Sapienza

    Corso di Laurea in Ingegneria Gestionale

    A.A. 2010/2011

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Programma

    1. SERVIZI E RETI DI TELECOMUNICAZIONE

    2. FONDAMENTI DI COMUNICAZIONI

    3. ARCHITETTURE DI COMUNICAZIONE

    4. MODI DI TRASFERIMENTO

    5. LO STRATO DA ESTREMO A ESTREMO: UDPE TCP

    6. LO STRATO DI RETE IN INTERNET

    7. TECNOLOGIE DI STRATO DI

    COLLEGAMENTO

  • 7/29/2019 TLC p02 FundComm 2011

    2/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Fundamentals of communicationsA roadmap! Digital Representation of Information! Digital Representation of Analog Signals! Why Digital Communications?! Characterization of Communication Channels! Fundamental Limits in Digital Transmission! Line Coding! Modems and Digital Modulation! Properties of Media and Digital Transmission Systems

    ! Error Detection and Correction

    Chapter 3

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Digital Networks

    ! Digital transmission enables networks tosupport many services

    E-mail

    Telephone

    TV

  • 7/29/2019 TLC p02 FundComm 2011

    3/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Questions of Interest

    ! Can we reduce all information to sequences of bits?How?

    ! How many bits do we need to represent a message(text, speech, image)?

    ! How fast does the network/system transferinformation? Under which quality constraints?

    ! How can we deal with errors?! How are errors introduced?

    ! How are errors detected and corrected?

    ! What transmission speed and coding of data is possibleover radio, copper cables, fiber, infrared, ?

    Fundamentals ofcommunications

    Digital Representation ofInformation

    Adapted from slides of the book:A. Leon Garcia, I. Widjaja, Communication

    networks, McGraw Hill, 2004

  • 7/29/2019 TLC p02 FundComm 2011

    4/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Bits, numbers, information

    ! Bit: BInary digiT

    ! Either symbol belonging to a set of two elements ornumber with value 0 or 1! nbits: digital representation for 0, 1, , 2n1! Byte or Octet, n= 8! Computer word, typically n= 32, or 64

    ! nbits allows enumeration of 2npossibilities! n-bit field in a header! n-bit representation of a voice sample! Message consisting of nbits

    ! The number of bits required to represent a messageis a measure of its information content! More bits -> More information

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Block vs. Stream Information

    Block

    ! Information that occurs in a single, delimiteddata unit(bit string)! Text message, Data file, JPEG image, MPEG file

    ! Size = bits / block

    Stream

    ! Information that is produced and possibly conveyedover a communication system continuously! Real-time voice (e.g. telephony)

    ! Streaming video

    ! Bit rate = bits / second

  • 7/29/2019 TLC p02 FundComm 2011

    5/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    1-8 Mbytes

    (5-30)

    38.4

    Mbytes

    8x10 in2 photo

    4002 pixels/in2

    JPEGColor

    Image

    5-54 kbytes(5-50)

    256kbytes

    A4 page200x100pixels/in2

    CCITT Group 3Fax

    (2-6)kbytes-Mbytes

    ASCIIZip, compressText

    Compressed(Ratio)

    OriginalFormatMethodType

    Examples of Block Information

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    H

    W

    = + +H

    W

    H

    W

    H

    W

    Color

    image

    Red

    component

    image

    Green

    component

    image

    Blue

    component

    image

    Total bits = 3 ! H ! W pixels ! B bits/pixel = 3HWB bits

    Example: 8!10 inch picture at 400 ! 400 pixels per inch2

    400 ! 400 ! 8 ! 10 = 12.8 million pixels

    8 bits/pixel/color12.8 megapixels ! 3 bytes/pixel = 38.4 megabytes

    Color Image

  • 7/29/2019 TLC p02 FundComm 2011

    6/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Th e s p ee ch s i g n al l e v el v a r ie s w i th t i m(e)

    Stream Information

    ! A real-time voice signal must be digitized and

    transmitted or recorded as it is produced! Analog signal level varies continuously in time

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Analog signal

    ! In communications engineering signal refersto e physically measurable entity that can beused to carry information! E.g. e.m. field, voltage and current in lumped

    circuits, air pressure

    ! An analog signal is a function x(t) defined overthe realaxis and taking values in an interval ofthe realline

    ! Information is carried by the values of x(t) ateach time t

  • 7/29/2019 TLC p02 FundComm 2011

    7/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Examples of analog signal sources

    ! Images are natively carried by analog signals, underthe form of e.m. field in the visible bandwidth, i.e. the

    range of frequencies that produces a reaction inhuman sight sensors

    ! Sounds are natively carried by analog signals, i.e.variation of air pressure that produces a reaction inhuman hearing sensors

    ! Analog nature is due to the fact that for our purposesall these phenomena are well described by classicalphysics models (Newton mechanics, Maxwell e.m. field

    theory) and classical physics rests on classical analysisto describe its models (variables taking values on acontinuum, e.g. real axis).

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Digitization of Analog Signal

    ! Sample analog signal in time and amplitude

    ! Find closest approximation

    "/2

    3"/2

    5"/2

    7"/2

    #"/2

    #3"/2

    #5"/2

    #7"/2

    Original signal

    Sample value

    Approximation

    Rs= Bit rate = # bits/sample x # samples/second

    3bits/sample

  • 7/29/2019 TLC p02 FundComm 2011

    8/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    "/2

    3"/2

    5"/2

    7"/2

    -"/2-3"/2

    -5"/2

    -7"/2

    (a) Original

    waveform and

    the sample

    values

    "/2

    3"/2

    5"/2

    7"/2

    -"/2

    -3"/2

    -5"/2

    -7"/2

    (b) Original

    waveform and

    the quantized

    values

    Figure 3.2

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Example: Voice & Audio

    Telephone voice

    ! Ws= 4 kHz -> 8000samples/sec

    ! 8 bits/sample! Rs=8 x 8000 = 64 kbps

    ! Cellular phones use morepowerful compressionalgorithms: e.g. 6.5-13kbps for GSM

    CD Audio! Ws= 22 kHertz -> 44000

    samples/sec!

    16 bits/sample! Rs=16 x 44000= 704 kbps

    per audio channel! MP3 uses more powerful

    compression algorithms:50 kbps per audio channel

  • 7/29/2019 TLC p02 FundComm 2011

    9/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Video Signal

    ! Sequence of picture frames! Each picture digitized &

    compressed! Frame repetition rate

    ! 10-30-60 frames/seconddepending on quality

    ! Frame resolution! Small frames for

    videoconferencing

    ! Standard frames for

    conventional broadcast TV! HDTV frames

    30 fps

    Rate = M bits/pixel x (WxH) pixels/frame x Fframes/second

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Video Frames

    Broadcast TV at 30 frames/sec =

    10.4 x 106 pixels/sec

    720

    480

    HDTV at 30 frames/sec =

    67 x 106 pixels/sec1080

    1920

    QCIF videoconferencing at 30 frames/sec =

    760,000 pixels/sec

    144

    176

  • 7/29/2019 TLC p02 FundComm 2011

    10/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Digital Video Signals

    19-38 Mbps1.6Gbps

    1920x1080@30 fr/sec

    MPEG2HDTV

    2-6 Mbps249Mbps

    720x480 pix@30 fr/sec

    MPEG2Full Motion

    64-1544kbps

    2-36Mbps

    176x144 or352x288 pix

    @10-30fr/sec

    H.261VideoConference

    CompressedOriginalFormatMethodType

    More recent standards: H.264, MPEG4

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Transmission of Stream Information

    ! Constant bit-rate! Signals such as digitized telephone voice produce a

    steady stream: e.g. 64 kbps! Network must support steady transfer of

    information, e.g. 64 kbps circuit! Variable bit-rate! Signals such as digitized video produce a stream

    that varies in bit rate, e.g. according to motion anddetail in a scene

    ! Network must support variable transfer rate ofinformation with possibly a guaranteed minimumrate, e.g. packet switching with traffic engineering

    functions

  • 7/29/2019 TLC p02 FundComm 2011

    11/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Stream Service Quality Issues

    Network Transmission Impairments!

    Delay: Is information delivered in timely fashion?! E.g. mean e2e delay! Jitter: Is information delivered in smooth fashion?

    ! E.g. delay standard deviation

    ! Loss: Is information delivered without loss? If lossoccurs, is delivered signal quality acceptable?! Errored data! Undelivered data! Mis-ordered data

    ! Applications & application layer protocols developedto deal with these impairments

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Transmission Delay

    Use data compression to reduceL

    Use higher speed modem to increaseRPlace far end system closer to reduced

    L number of bits in messageR bps speed of digital communication systemL/R time to transmit the messagetprop time for signal to propagate across medium

    d distance in metersc speed of light (3x108 m/s in vacuum)

    Delay = tprop + L/R = d/c + L/R seconds

  • 7/29/2019 TLC p02 FundComm 2011

    12/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Compression

    ! Information usually not representedefficiently

    ! Data compression algorithms! Represent the information using fewer bits than

    provided natively! Noiseless: original information recovered exactly

    ! E.g. zip, compress, GIF

    ! Noisy: recover information approximately.Tradeoff: # bits vs. quality! E.g. JPEG, MPEG

    ! Compression Ratio#bits (original file) / #bits (compressed file)

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Lempel-Ziv (LZ77) algorithm

  • 7/29/2019 TLC p02 FundComm 2011

    13/96

    Digital Representation of AnalogSignals

    Fundamentals of

    communications

    Adapted from slides of the book:A. Leon Garcia, I. Widjaja, Communication

    networks, McGraw Hill, 2004

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Digitization of Analog Signals

    " Sampling: obtain samples of x(t) at uniformlyspaced time intervals:

    xk=x(tk), tk=t0+kT, kinteger

    Tis the sampling time, F=1/Tis the samplingrate." Quantization: map each sample xk into an

    approximation value yk=f(xk) of finiteprecision

    " Compression: to lower bit rate further, applyadditional compression method

    ! Differential coding: cellular telephone speech! Subband coding: MP3 audio

  • 7/29/2019 TLC p02 FundComm 2011

    14/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Sampling Rate and Bandwidth

    ! A signal that varies faster needs to besampled more frequently

    ! Bandwidthmeasures how fast a signal varies

    ! What is the bandwidth of a signal?

    ! How is bandwidth related to sampling rate?

    1 0 1 0 1 0 1 0

    . . . . . .

    t

    1 ms

    1 1 1 1 0 0 0 0

    . . . . . .

    t

    1 ms

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Periodic Signals

    ! A periodic signal with period Tcan be represented assum of sinusoids using Fourier Series:

    DC

    long-term

    averagefundamental

    frequency f0=1/T

    first harmonic

    kth harmonic

    x(t) = a0 + a1cos(2!f0t+ "1) + a2cos(2$2f0t+ "2) + + akcos(2!kf0t+ "k) +

    |ak|2 determines amount of power in kth harmonic

    Amplitude specturm |a0|, |a1|, |a2|,

  • 7/29/2019 TLC p02 FundComm 2011

    15/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Example Fourier Series

    T1 = 1 ms

    x2(t)

    T2 =0.25 ms

    x1(t)

    Only odd harmonics have power

    x1(t) = 0 + cos(2!4000t)

    cos(2!3(4000)t)

    + cos(2!5(4000)t) +

    4!

    45!

    43!

    x2(t) = 0 + cos(2!1000t)

    cos(2!3(1000)t)

    + cos(2!5(1000)t) +

    4!

    45!

    43!

    1 0 1 0 1 0 1 0

    . . . . . .

    t

    1 1 1 1 0 0 0 0

    . . . . . .

    t

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Spectra & Bandwidth

    ! Spectrum of a signal:magnitude of amplitudes as afunction of frequency

    ! x1(t)varies faster in time &

    has more high frequencycontent than x2(t)

    ! Bandwidth Wis defined asrange of frequencies where asignal has non-negligiblepower, e.g. range of bandthat contains 99% of totalsignal power

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 3 6 9 12 15 18 21 24 27 30 33 36 39 42

    frequency (kHz)

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 3 6 9 12 15 18 21 24 27 30 33 36 39 42

    frequency (kHz)

    Spectrum ofx1(t)

    Spectrum ofx2(t)

  • 7/29/2019 TLC p02 FundComm 2011

    16/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Bandwidth of General Signals

    ! Not all signals are periodic! E.g. voice signals varies according

    to sound! Vowels are periodic, s is

    noiselike! Spectrum of long-term signal

    ! Averages over many sounds, manyspeakers! Involves Fourier transform

    ! Telephone speech: 4 kHz! CD Audio: 22 kHz

    s (noisy ) | p (air stopped) | ee (periodic) | t (stopped) | sh (noisy)

    speech

    f

    W

    X(f)

    0

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Sampling theorem

    Sampling theorem (Nyquist):

    Perfect reconstruction if sampling rate 1/T! 2W

    Interpolation

    filter t

    x(t)

    t

    x(nT)

    (b)

    Samplert

    x(t)

    t

    x(nT)(a)

  • 7/29/2019 TLC p02 FundComm 2011

    17/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Quantization error:

    noise = y(nT) x(nT)

    Quantizer maps input

    into closest of 2

    m

    representation values

    "/23"/2

    5"/2

    7"/2

    -"/2

    -3"/2

    -5"/2

    -7"/2

    Original signal

    Sample value

    Approximation

    3bits/sa

    mple

    Quantization of Analog Samples

    inputx(nT)

    output y(nT)

    0.5"1.5"

    2.5"

    3.5"

    -0.5"

    -1.5"

    -2.5"

    -3.5"

    " 2" 3" 4"

    #"#2"#3"#4"

    Uniform

    quantizer

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    M= 2m quantization levels

    Dynamic range (V, V)Quantization interval " = 2V/M(uniform quantization)

    If the number of levels Mis large, the errore(x)=y(x)xisapproximately uniformly distributed between ("/2, "/2) in

    each quantization interval

    Quantizer error

    !

    2

    ...

    error = y(nT)x(nT) = e(nT)

    input...

    !"

    2

    3"" "#2" 2"

    x(nT) V-V

    y(nT)

  • 7/29/2019 TLC p02 FundComm 2011

    18/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Quantizer performance

    ! Power of quantization error signal = average of

    squared error

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Signal-to-Noise Ratio (SNR) =

    Let %x2 be the signal power, then

    The SNR is usually stated in decibels:

    SNR dB = 10 log10(#x2/#e2) = 6m+ 10 log10(3#x2/V2)

    Example: SNR dB = 6m 7.27 dB for V/#x= 4.

    Signal-to-quantization noise ratio

    Average signal power

    Average noise power

  • 7/29/2019 TLC p02 FundComm 2011

    19/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Digital Transmission of AnalogInformation

    Interpolationfilter

    Displayor

    playout

    2Wsamples / sec

    2W m bits/secx(t)

    Bandwidth W

    Sampling(A/D)

    QuantizationAnalogsource

    2Wsamples / sec m bits / sample

    Pulse

    generator

    y(t)

    Original

    Approximation

    Transmission

    or storage

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    W= 4 kHz, so Nyquist sampling theorem

    & 2W = 8000 samples/second

    Suppose error requirement = 1% error

    SNR = 10 log10(1/.01)2 = 40 dBAssume V/#x= 4, then

    40 dB = 6m 7.27 & m= 8 bits/sample

    PCM (Pulse Code Modulation):

    Bit rate= 8000 x 8 bits/sec= 64 kbps

    Example: Telephone Speech

  • 7/29/2019 TLC p02 FundComm 2011

    20/96

    Why Digital Communications?

    Fundamentals of

    communications

    Adapted from slides of the book:A. Leon Garcia, I. Widjaja, Communication

    networks, McGraw Hill, 2004

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    A Transmission System

    Transmitter! Converts information into signalsuitable for transmission

    ! Signal = measurable physical quantity that can be modifiedaccording to the value of the data to be transmitted, conveyed overa transmissin medium and detected by a receiving device.

    ! Injects energy into communications medium or channel

    Receiver! Receives energy from medium! Converts received signal into form suitable for delivery to user

    Receiver

    Communication channel

    Transmitter

  • 7/29/2019 TLC p02 FundComm 2011

    21/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Transmission Impairments

    Communication Channel! Pair of copper wires

    ! Coaxial cable

    ! Optical fiber

    !

    Radio! Including infrared

    Transmission Impairments! Attenuation

    ! Distortion

    ! Noise

    !

    Interference! Timing errors

    Transmitted

    SignalReceived

    Signal Receiver

    Communication channel

    Transmitter

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Analog vs. Digital Transmission

    Analog transmission: all details must be reproduced accurately

    Sent

    Sent

    Received

    Received

    Distortion

    Attenuation

    Digital transmission: only discrete levels need to be reproduced

    Distortion

    AttenuationSimple Receiver:

    Was original

    pulse positive ornegative?

  • 7/29/2019 TLC p02 FundComm 2011

    22/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Analog Long-Distance Communications

    ! Each repeater attempts to restore signal to its original form! Attenuation is removed (amplifier)

    ! Distortion is not completely eliminated

    ! In-band noise & interference can be removed only in part (out of band)

    ! Signal quality decreases with # of repeaters

    Source DestinationRepeater

    Transmission segment

    Repeater. . .

    Attenuated and

    distorted signal + noise

    Equalizer

    Recovered signal +

    residual noiseRepeater

    Amp

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Digital Long-Distance Communications

    ! Regenerator recovers original data (bit) sequence fromdegraded signal and retransmits on next segment byusing a clean signal! But timing recovery is required!

    ! All impairments are condensed into bit errors

    Source DestinationRegenerator

    Transmission segment

    Regenerator. . .

    Amplifier

    equalizer

    Timing

    recovery

    Decision circuit

    and signal

    regenerator

  • 7/29/2019 TLC p02 FundComm 2011

    23/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Digital Binary Signal

    For a given communications medium:! How do we increase transmission speed?! How do we achieve reliable communications?! Are there limits to speed and reliability?

    +A

    -A

    0 T 2T 3T 4T 5T 6T

    1 1 1 10 0

    Bit rate = 1 bit / T seconds

    Signal is meaningless without associated clock

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Clock signal

    Message bits

    Baseband signalwith NRZ coding

    +d

    -d

    1

    0

    0 1 0 1 1 0 1 0 0 0 1 1 0

    Example of clock

  • 7/29/2019 TLC p02 FundComm 2011

    24/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Many wavelengths>1600 GbpsOptical fiber

    1 wavelength2.5-10 GbpsOptical fiber5 km multipoint radio1.5-45 Mbps28 GHz radio

    IEEE 802.11b/a/g wireless LANFrom 1 to 54 Mbps2.4 GHz radio

    Coexists with analog telephonesignal

    Up 8 Mbps down (ADSL)20 Mbps down (ADSL2+)50 Mbps down (VDSL)

    ADSL twistedpair

    Shared CATV return channel500 kbps-4 MbpsCable modem

    From a few m up to a fewhundreds m of unshieldedtwisted copper wire pair

    10 Mbps, 100 Mbps, 1Gbps, 10 Gbps

    Ethernettwisted pair

    4 kHz telephone channel33.6-56 kbpsTelephone

    twisted pair

    ObservationsBit RateSystem

    Bit rates of digital transmission systems

    Characterization ofCommunication Channels

    Fundamentals ofcommunications

    Adapted from slides of the book:A. Leon Garcia, I. Widjaja, Communication

    networks, McGraw Hill, 2004

  • 7/29/2019 TLC p02 FundComm 2011

    25/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Communications Channels

    ! A physical mediumis an inherent part of a

    communications system! Copper wires, radio medium, or optical fiber

    ! Communications system includes electronic oroptical devices that are part of the pathfollowed by a signal! Transmitter, equalizers, amplifiers, filters, couplers,

    detector, clocks and carrier generators

    ! By communication channelwe refer to thecombined end-to-end physical medium andattached devices

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Communication system block scheme

    SourceSource

    encoder

    Channel

    encoder

    Line

    encoder

    Modulator &

    tx front end

    Information source

    Channel

    Line

    decoder

    A/D

    converter

    Rx

    front end

    Timing

    recovery

    Channel

    decoder

    Information

    rendering

    Final

    user

    Information destination

    Demodulation,

    equalization,

    symbol decision

  • 7/29/2019 TLC p02 FundComm 2011

    26/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    How good is a channel?

    ! Performance: What is the maximum reliabletransmission speed?! Speed: Bit rate, Rbps! Reliability: Bit error rate, BER=10k

    ! Focus of this section

    ! Cost: What is the cost of alternatives at a given levelof performance?! Wired vs. wireless?

    ! Electronic vs. optical?

    ! Standard A vs. standard B?

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Communications Channel

    Bandwidth

    ! In order to transfer datafaster, a signal has to varymore quickly.

    ! A channel or medium has aninherent limit on how fastthe signals it passes can vary

    ! Channel bandwidth limitshow tightly input pulses canbe packed

    Impairments! Signal attenuation! Signal distortion! Spurious noise! Interference from other

    signals! Channel impairments limit

    accuracy of measurements onreceived signal

    Transmitted

    Signal

    Received

    Signal

    ReceiverCommunication channelTransmitter

  • 7/29/2019 TLC p02 FundComm 2011

    27/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Communication channel model

    ! We often assume two basic properties of

    channels! Linearity

    y1(t)=Ch[x1(t)], y2(t)=Ch[x2(t)] =>

    y1(t)+y2(t)=Ch[x1(t)+x2(t)]! Counterexample: amplifiers distorsion

    ! Stationarity

    y1(t)=Ch[x1(t)] => y2(t+d)=Ch[x2(t+d)]for any d>0.! Counterexample: radiomobile channels

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Channel

    tt

    x(t) = Aincos(2$ft) y(t) = Aout(f)cos(2$ft+ '(f))

    Aout

    AinA(f) =

    Frequency Domain ChannelCharacterization

    ! Assumption. Channel is linear and stationary! Linear: superposition of effects holds! Stationary: input-output relationship does not vary over time

    ! Apply sinusoidal input at frequency f! Output is sinusoid at same frequency, but attenuated & phase-

    shifted! Sinusoids are autofunctions of LTI systems

  • 7/29/2019 TLC p02 FundComm 2011

    28/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Channel

    t t

    x(t) = Aincos(2$ft) y(t) = Aout(f)cos(2$ft+ '(f))

    Frequency Domain ChannelCharacterization

    ! Apply sinusoidal input at frequency f! Measure amplitude of output sinusoid (of same frequency f) and

    calculate amplitude response A(f) = ratio of output amplitude toinput amplitude! If A(f) ! 1, then input signal passes readily! If A(f) ! 0, then input signal is blocked

    ! Bandwidth Wc is range of frequencies passed by channel

    H(f) =A(f)ei'(f)Transfer function:

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Ideal Low-Pass Filter

    ! Ideal filter: all sinusoids with frequency f

  • 7/29/2019 TLC p02 FundComm 2011

    29/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Example: Low-Pass Filter

    ! Simplest non-ideal circuit that provides low-pass filtering

    H(f)=1/(1+i2$bf)! Example: RC circuit, b=RC.

    f

    1 A(f)= (1+4$2b2f2)1/2

    Amplitude Response

    f0

    $(f)= arctan(2$bf)

    -45o

    -90o

    1/2$

    Phase Response

    Wc

    1/" 2

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Example: Bandpass Channel

    ! Some channels pass signals within a band that excludeslow frequencies! ADSL modems, radio systems,

    ! Channel bandwidthis the width of the frequency bandthat passes non-negligible signal power

    !

    Example. 3dB bandwidth: frequency interval whereoutput power density is no less than 1/2 than peak value

    f

    Amplitude Response

    A(f)Wc=f2f1

    f1 f2

  • 7/29/2019 TLC p02 FundComm 2011

    30/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Channel Distortion

    ! Channel has two effects:! If amplitude response is not flat, then different frequency

    components of x(t) will be transferred by different amounts! If phase response is not linear, then different frequency

    components of x(t) will be delayed by different amounts

    ! In either case, the shape of x(t) is altered

    ! Let x(t) be a digital signal bearing data information

    ! How well does y(t) follow x(t)?

    y(t) = )kA(fk) akcos(2$fkt+ *k+ '(fk))

    Channely(t)x(t) = )kakcos(2$fkt+ *k)

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Example: Amplitude Distortion

    ! Let x(t)input to ideal lowpass filter that has zero delayand Wc= 1.5 kHz, 2.5 kHz, or 4.5 kHz

    1 0 0 0 0 0 0 1

    . . . . . .

    t1 ms

    x(t)

    ! Wc= 1.5 kHz passes only the first two terms

    ! Wc= 2.5 kHz passes the first three terms! Wc= 4.5 kHz passes the first five terms

    f0=1/T=1000 Hz

  • 7/29/2019 TLC p02 FundComm 2011

    31/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    0

    0.1

    25

    0.2

    5

    0.3

    75

    0.5

    0.6

    25

    0.7

    5

    0.8

    75 1

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    0

    0.1

    25

    0.2

    5

    0.3

    75

    0.5

    0.6

    25

    0.7

    5

    0.8

    75 1

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    0

    0.125

    0.25

    0.375

    0.5

    0.625

    0.75

    0.875 1

    Amplitude Distortion

    ! As the channelbandwidth

    increases, theoutput of thechannel resemblesthe input moreclosely

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Time-domain Characterization

    ! Time-domain characterization of a channel requiresfinding the impulse response h(t)

    ! Apply a very narrow pulse of amplitude ato a channelat time ( and observe the channel output at time t

    ! The output in case of a linear, stationary, causalchannel is

    y(t) = 0, t< ( y(t) = ah(t(), t >(

    Channel

    t0

    t

    h(t)

    td

    a

    +(t)

    0

  • 7/29/2019 TLC p02 FundComm 2011

    32/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Impulse response

    ! h(t) is the impulse response of the channel

    INPUT OUTPUT

    By definition +(t) h(t)Causality a+(t) h(t)=0 for t

  • 7/29/2019 TLC p02 FundComm 2011

    33/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    InterSymbol Interference (ISI)

    ! By sampling channel output at time nT(perfectsync

    ) we getyn= y(nT) = $kxkhnk+ zn

    with hnk= h(nTkT) and zn= z(nT).

    yn= xnh0 + $k%nxkhnk+ zn

    ! ISI is the undesired interference coming from tailsof pulses other than the n-th one and giving non-nullcontributions to the n-th output sample

    noise sampleISIuseful term

    output

    sample

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Nyquist condition for null ISI

    ! Given a channel response H(f), we can addreception and possibly transmission filters, sothat the overall (filtered) channel response is

    Hc(f) = HTX(f) H(f) HRX(f)! To get null ISI at sampling rate 1/Tit must be

    $kHc(fk/T) = cost

    ! For a low-pass channel with Hc(f)=0 for |f|>Wcthis is not possible unless 1/T

  • 7/29/2019 TLC p02 FundComm 2011

    34/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    ! For channel with ideal low-pass amplitude response ofbandwidth Wc, the impulse response is a Nyquist pulse

    h(t)=s(t(), where T=1/(2Wc), and

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7t

    T T T T T T T T T T T T T T

    ! s(t) has zero crossings at t = kT, k= 1, 2,

    ! Pulses can be packed every Tseconds with zero Inter-Symbol Interference(ISI)

    Nyquist Pulse with Zero ISI

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    -2

    -1

    0

    1

    2

    -2 -1 0 1 2 3 4

    tT T T T T T

    -1

    0

    1

    -2 -1 0 1 2 3 4

    tT T T T T T

    Example of composite waveformThree Nyquist pulsesshown separately

    ! + s(t)

    ! + s(t-T)

    ! - s(t-2T)

    Composite waveform

    r(t) = s(t)+s(t-T)-s(t-2T)

    Samples at kT

    r(0)=s(0)+s(-T)-s(-2T)=+1

    r(T)=s(T)+s(0)-s(-T)=+1

    r(2T)=s(2T)+s(T)-s(0)=-1

    Zero ISI at samplingtimes kT

    r(t)

    +s(t) +s(t-T)

    -s(t-2T)

  • 7/29/2019 TLC p02 FundComm 2011

    35/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    0f

    A(f)

    Nyquist pulse shapes! If channel is ideal low pass with Wc, then pulses maximum

    rate pulses can be transmitted without ISI is2Wc pulse/s

    ! s(t) is one example of class of Nyquist pulses with zero ISI! Problem: sidelobes in s(t) decay as 1/twhich add up quickly when

    there are slight errors in timing

    ! Raised cosine pulse below has zero ISI! Requires slightly more bandwidth than Wc! Sidelobes decay as 1/t3, so more robust to timing errors

    1

    sin(!t/T)!t/T cos(

    !,t/T)1 (2,t/T)2

    (1,)Wc Wc (1+,)Wc

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    ! 10 Gbit/s signalwithout dispersion(negligible ISI)

    ! 10 Gbit/s signal aftertransmission througha dispersive channel(with non negligibleISI)

    Eye diagram

  • 7/29/2019 TLC p02 FundComm 2011

    36/96

    Fundamental Limits in DigitalTransmission

    Fundamentals of

    communications

    Adapted from slides of the book:A. Leon Garcia, I. Widjaja, Communication

    networks, McGraw Hill, 2004

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Transmitter

    Filter

    Communication

    Medium

    Receiver

    Filter Receiver

    r(t)

    Received signal

    +A

    -A0 T 2T 3T 4T 5T

    1 1 1 10 0

    t

    Signaling with Nyquist Pulses

    ! p(t)pulse at receiver in response to a single input pulse (takes intoaccount pulse shape at input, transmitter & receiver filters, andcommunications medium)

    ! r(t)waveform that appears in response to sequence of pulses

    ! If s(t)is a Nyquist pulse, then r(t)has zero intersymbol

    interference (ISI) when sampled at multiples ofT

  • 7/29/2019 TLC p02 FundComm 2011

    37/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Multilevel Signaling! Nyquist pulses achieve the maximum signalling rate with

    zero ISI! 2Wcpulses per second or 2Wcpulses / WcHz = 2 pulses / Hz

    ! With two signal levels, each pulse carries one bit of thesource bit stream! Bit rate = 2Wc(bit/s)

    ! With M = 2msignal levels, each pulse carries mbit! Bit rate = 2Wc(pulse/s) m(bit/pulse) = 2Wcm(bit/s)

    In the absence of noise, the bit rate can be increasedwithout limit by increasingm

    BUTAdditive noise limits # of levels that can be usedreliably.

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Example of Multilevel Signaling

    ! Four levels {-1, -1/3, 1/3, +1} for {00,01,10,11}

    ! Waveform for 11,10,01 sends +1, +1/3, -1/3

    ! Zero ISI at sampling instants

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    -1 0 1 2 3

    Composite waveform

  • 7/29/2019 TLC p02 FundComm 2011

    38/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Noise & Reliable Communications

    ! All physical systems have noise

    ! Electrons always vibrate at non-zero temperature:motion of electrons induces noise

    ! Presence of noise limits accuracy ofmeasurement of received signal amplitude

    ! Errors occur if signal separation is comparableto noise level

    ! Noise places a limit on how many amplitude

    levels can be used in pulse transmission

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Four signal levels Eight signal levels

    Noise Limits Accuracy! Receiver makes decision based on (sampled) received

    signal level = source pulse level + noise! Error rate depends on relative value of noise amplitude and

    spacing between signal levels

    ! Large (positive or negative) noise values can cause wrong decision

    Typical noise

    +A

    +A/3

    -A/3

    -A

    +A

    +5A/7

    +3A/7

    +A/7

    -A/7

    -3A/7

    -5A/7

    -A

  • 7/29/2019 TLC p02 FundComm 2011

    39/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Noise! Noise signal is usually a zero-mean process z(t)

    characterized by

    ! probability distribution of amplitude samples, i.e.Pr(z(t) > u)

    ! Time auto-correlation, i.e. Rzz(t)=E[z(h)z(h+t)]

    ! Thermal electronic noise is inevitable (due tovibrations of electrons); thermal Noise can bemodeled as a white Gaussian process! Probability distribution is Gaussian zero mean

    ! Time auto-correlation is a Dirac pulse at 0! Often interference from a large number of

    scattered and similar sources can be modeledas white Gaussian noise

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    22

    2

    2

    1!

    !"

    x

    e#

    x0

    Gaussian noise

    t

    x

    Pr(X(t)>x0) = area under graph on the right ofx0

    x0

    x0

    %2 = Avg Noise Power

  • 7/29/2019 TLC p02 FundComm 2011

    40/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Probability of Error! Error occurs if noise value exceeds the

    information signal magnitude over the decision

    threshold! With two-level signalling, +A and A, probability

    of error is Q(A/%)

    1.00E-121.00E-11

    1.00E-101.00E-091.00E-08

    1.00E-071.00E-06

    1.00E-05

    1.00E-041.00E-031.00E-02

    1.00E-011.00E+00

    0 2 4 6 8

    x

    Q(x)

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Role of SNR

    ! With M=2m levels per symbol, the tx symbolvalues are ak=A+(2k1)A/M, with k=1,,M.

    ! With equiprobable symbols:E[ak2]=(M21)A2/(3M2)=PTX

    ! Received sample is (dispersive channel, zeroISI): yn=h0xn+zn.

  • 7/29/2019 TLC p02 FundComm 2011

    41/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    signal noise signal + noise

    signal noise signal + noise

    HighSNR

    Low

    SNR

    SNR =Average Signal Power

    Average Noise Power

    SNR (dB) = 10 log10 SNR

    virtually error-free

    error-prone

    Channel Noise affects Reliability

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    ! If transmitted power is limited, then as M increasesspacing between levels decreases

    ! Presence of noise at receiver causes more frequenterrors to occur as M is increased

    Shannon Channel Capacity:! The maximum reliabletransmission rate over an AWGN

    bandlimited channel with bandwidth WcHz is

    Cb= Wc log2(1+SNR) bit/s

    Shannon Channel Capacity

    X

    Input symbol

    (Gaussian)

    Y=X+Z

    Output symbol

    Z

    White gaussian noise

    2Wcsymbols/s

    Bandlimited channel (Wc)

  • 7/29/2019 TLC p02 FundComm 2011

    42/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Capacity of AWGN channel

    ! It can be shown that in case of real input

    signal the optimal source is gaussian and theAWGN capacity isC= 0.5 log2(1+P/PN) [bit/symbol]

    where PN is the additive noise power, Pis theuseful signal received power

    ! A dispersive, additive noise channel can bereduced to AWGN if zero ISI is provided; to

    that end it must be symbol rate< 2Wc. ThenCb= Wclog2(1+(Eb/N0)Rb/Wc) [bit/s]

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    ! Reliable communications is possible if the tx rate Rb Cb, then reliable communications is not possible.

    Reliable means the bit error rate (BER) can be madearbitrarily small through sufficiently complex coding.

    ! Bandwidth Wc& SNRdetermine Cb! Cbcan be used as a measure of how close a system design is to

    the best achievable performance.

    ! SNR=P/(N0Wc), with

    ! P= average power of input signal

    ! N0=noise power spectral density=k-F, k=1.381023 J/K, -=noisetemperature, typically 300 K, F=noise figure, typically 6 dB

    Shannon Channel Capacity

  • 7/29/2019 TLC p02 FundComm 2011

    43/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Example

    ! Find the Shannon channel capacity for a telephonechannel with Wc= 3400 Hz and SNR= 10000

    C= 3400 log2 (1 + 10000)

    = 3400 log10 (10001)/log102 = 45200 bps

    Note that SNR= 10000 corresponds to

    SNR(dB) = 10 log10(10000) = 40 dB

    Line Coding

    Fundamentals ofcommunications

    Adapted from slides of the book:A. Leon Garcia, I. Widjaja, Communication

    networks, McGraw Hill, 2004

  • 7/29/2019 TLC p02 FundComm 2011

    44/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    What is Line Coding?

    ! Mapping of binary information sequence into thedigital signal that enters the channel! Ex. 1 maps to +A square pulse; 0 to A pulse

    ! Line code selected to meet system requirements:! Transmitted power: Power consumption = $

    ! Bittiming: Transitions in signal help timing recovery

    ! Bandwidthefficiency: Excessive transitions wastes bw

    ! Lowfrequencycontent: Some channels block low frequencies

    ! long periods of +A or of A causes signal to droop

    ! Waveform should not have low-frequency content

    ! Errordetection: Ability to detect errors helps

    ! Complexity/cost: Is code implementable in chip at high speed?

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Line coding examples1 0 1 0 1 1 0 01

    Unipolar

    NRZ

    NRZ-inverted

    (differential

    encoding)

    Bipolar

    encoding

    Manchester

    encoding

    DifferentialManchester

    encoding

    Polar NRZ

    Figure 3.35

  • 7/29/2019 TLC p02 FundComm 2011

    45/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    00.2

    0.4

    0.6

    0.8 1

    1.2

    1.4

    1.6

    1.8 2

    fT

    po

    werdensity

    NRZ

    Bipolar

    Manchester

    Spectrum of Line codes

    ! Assume 1s & 0s independent & equiprobable

    !

    NRZ has high content atlow frequencies! Bipolar tightly packed

    around T/2! Manchester wasteful of

    bandwidth

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Unipolar & PolarNon-Return-to-Zero (NRZ)

    Unipolar NRZ! 1 maps to +A pulse! 0 maps to no pulse! High Average Power

    0.5*A2 +0.5*02=A2/2! Long strings of A or 0

    ! Poor timing! Low-frequency content

    ! Simple

    Polar NRZ! 1 maps to +A/2 pulse! 0 maps to A/2 pulse! Better Average Power

    0.5*(A/2)2 +0.5*(-A/2)2=A2/4! Long strings of +A/2 or A/2

    ! Poor timing! Low-frequency content

    ! Simple

    1 0 1 0 1 1 0 01

    Unipolar NRZ

    Polar NRZ

  • 7/29/2019 TLC p02 FundComm 2011

    46/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Bipolar Code

    ! Three signal levels: {-A, 0, +A}

    ! 1 maps to +A or A in alternation

    ! 0 maps to no pulse! Every +pulse matched by pulse so little content at low frequencies

    ! String of 1s produces a square wave! Spectrum centered at T/2

    ! Long string of 0s causes receiver to lose synch

    ! Zero-substitution codes

    1 0 1 0 1 1 0 01

    BipolarEncoding

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Manchester code & mBnB codes

    !

    1 maps into A/2 first T/2, -A/2 last T/2! 0 maps into -A/2 first T/2,

    A/2 last T/2! Every interval has transition in

    middle! Timing recovery easy! Uses double the minimum

    bandwidth! Simple to implement! Used in 10-MbpsEthernet &

    other LAN standards

    !

    mBnB line code! Maps block of mbits into n

    bits! Manchester code is 1B2B

    code! 4B5B code used in FDDI LAN! 8B10B code used in Gigabit

    Ethernet! 64B66B code used in 10G

    Ethernet

    1 0 1 0 1 1 0 01

    Manchester

    Encoding

  • 7/29/2019 TLC p02 FundComm 2011

    47/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Differential Coding

    ! Errors in some systems cause transposition in polarity, +A becomeA and vice versa! All subsequent bits in Polar NRZ coding would be in error

    ! Differential line coding provides robustness to this type of error! 1 mapped into transition in signal level! 0 mapped into no transition in signal level

    ! Same spectrum as NRZ! Errors occur in pairs! Also used with Manchester coding

    NRZ-inverted

    (differential

    encoding)

    1 0 1 0 1 1 0 01

    Differential

    Manchester

    encoding

    Modems and Digital Modulation

    Fundamentals ofcommunications

    Adapted from slides of the book:A. Leon Garcia, I. Widjaja, Communication

    networks, McGraw Hill, 2004

  • 7/29/2019 TLC p02 FundComm 2011

    48/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Bandpass Channels

    ! Bandpass channels pass a range of frequencies aroundsome center frequency fc! Radio channels, telephone & DSL modems

    ! Digital modulators embed information into waveformwith frequencies passed by bandpass channel! A sinusoidal signal with frequency fccentered in middle of

    bandpass channel is named carrier! Modulators embed information into the carrier

    fc Wc/2 fc0 fc+ Wc/2

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Information 1 1 1 10 0

    +1

    -10 T 2T 3T 4T 5T 6T

    Amplitude

    Shift

    Keying

    +1

    -1

    Frequency

    Shift

    Keying 0 T 2T 3T 4T 5T 6T

    t

    t

    Amplitude Modulation andFrequency Modulation

    Map bits into amplitude of sinusoid: 1 send sinusoid; 0 no sinusoid

    Demodulator looks for signal vs. no signal

    Map bits into frequency: 1 send frequency fc+ + ; 0 send frequency fc- +

    Demodulator looks for power around fc + + orfc- +

  • 7/29/2019 TLC p02 FundComm 2011

    49/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Phase Modulation

    ! Map bits into phase of sinusoid:! 1 send A cos(2$ft) , i.e. phase is 0

    ! 0 send A cos(2$ft+$) , i.e. phase is $

    ! Equivalent to multiplying cos(2$ft) by +A or -A! 1 send A cos(2$ft) , i.e. multiply by 1

    ! 0 send A cos(2$ft+$) = - A cos(2$ft) , i.e. multiply by -1

    +1

    -1

    PhaseShift

    Keying 0 T 2T 3T 4T 5T 6Tt

    Information 1 1 1 10 0

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Modulatecos(2$fct)by multiplying byAkforTseconds:

    Ak x

    cos(2$fct)

    Y(t) =Ak cos(2$fct), kT

  • 7/29/2019 TLC p02 FundComm 2011

    50/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Demodulator

    Demodulate (recoverAk) by multiplying by 2cos(2$fct)

    forTseconds and lowpass filtering (smoothing):

    x

    2cos(2$fct)2Akcos

    2(2$fct) =Ak {1 + cos(2$2fct)}

    Lowpass

    Filter

    (Smoother)

    X(t)Y(t) =Akcos(2$fct)

    Received signal

    during kth interval

    Multiplication for the local carrier and integration over a

    symbol interval takes place for every symbol

    Synchronous demodulation

    (perfect local carrier)

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    1 1 1 10 0

    +A

    -A0 T 2T 3T 4T 5T 6T

    Information

    Baseband

    Signal

    Modulated

    Signal

    x(t)

    +A

    -A0 T 2T 3T 4T 5T 6T

    Example of Modulation

    A cos(2$ft) -A cos(2$ft)

  • 7/29/2019 TLC p02 FundComm 2011

    51/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    1 1 1 10 0Recovered

    Information

    Baseband

    signal discernable

    after smoothing

    After multiplication

    at receiverx(t) cos(2$fct)

    +2A

    2A

    0 T 2T 3T 4T 5T 6T

    +A

    -A

    0 T 2T 3T 4T 5T 6T

    Example of DemodulationA {1 + cos(4$fct)} -A {1 + cos(4$fct)}

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Signaling rate andTransmission Bandwidth! Fact from modulation theory:

    Baseband signalx(t)

    with bandwidth B Hz

    If

    then B

    fc+B

    f

    f

    fc-B fc

    Modulated signalx(t)cos(2$fct) has

    bandwidth 2B Hz

    ! If bandpass channel has bandwidth WcHz,! Then baseband channel has Wc/2 Hz available, so modulation

    system supports Wc/2 x 2 = Wc pulses/second

    ! That is, Wc

    pulse/s per Wc

    Hz = 1 pulse/Hz

    ! Recall baseband transmission system supports 2 pulses/Hz

  • 7/29/2019 TLC p02 FundComm 2011

    52/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Ak x

    cos(2$fct)

    Yi(t) =Ak cos(2$fct)

    Bk x

    sin(2$fct)

    Yq(t) = Bk sin(2$fct)

    + Y(t)

    ! Yi(t) and Yq(t) both occupy the bandpass channel

    ! QAM sends 2 pulses/Hz

    Quadrature Amplitude Modulation (QAM)

    ! QAM uses two-dimensional signaling! Akmodulates in-phase cos(2$fct)

    ! Bk modulates quadrature phase cos(2$fct+ $/2) = sin(2$fct)

    Transmitted

    Signal

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    QAM Demodulation

    Y(t) x

    2cos(2!fct)2Akcos

    2(2!fct)+2Bkcos(2!fct)sin(2!fct)

    =Ak [1 + cos(4!fct)]+Bksin(4!fct)=Ak+ [Akcos(4!fct)+Bksin(4!fct)]

    Lowpass

    filter

    (smoother)

    Ak

    2Bksin2(2!fct)+2Akcos(2!fct)sin(2!fct)

    = Bk[1 cos(4!fct)]+Ak sin(4!fct)

    = Bk [Bk cos(4!fct) Ak sin(4!fct)]

    x

    2sin(2!fct)

    Bk

    Lowpass

    filter

    (smoother)

    smoothed to zero

    smoothed to zero

  • 7/29/2019 TLC p02 FundComm 2011

    53/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Complex numbers

    ! Tx signal with in-phase and quad modulation is

    x(t) = Akcos(2$fct)+Bksin(2$fct)! Let Ck=Ak+iBk; then

    x(t) = Re[Ckexp(i2$fct)]

    ! We can now generalize to any alphabet ofcomplex symbols to code information bits.! E.g. in case of polar coordinates:

    Re[Mkexp(i'k)exp(i2$fct)] = Mkcos(2$fct+'k)! This is phase modulation ifMk is a constant or mixed

    amplitude and phase modulation in the general case(QAM)

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Signal Constellations

    ! Each pair (Ak, Bk) defines a point in the plane

    ! Signal constellationset of signaling points

    4 possible points perTs

    2 bits / pulse

    Ak

    Bk

    16 possible points perTs

    4 bits / pulse

    Ak

    Bk

    (A, A)

    (A,-A)(-A,-A)

    (-A,A)

  • 7/29/2019 TLC p02 FundComm 2011

    54/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Ak

    Bk

    4 possible points perTs

    Ak

    Bk

    16 possible points perTs

    Other Signal Constellations

    ! Point selected by amplitude & phase

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Signal constellations and errors

  • 7/29/2019 TLC p02 FundComm 2011

    55/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Telephone Modem Standards

    Telephone Channel for modulation purposes has Wc=2400 Hz hence 2400 pulses per second

    Modem Standard V.32bis

    ! Trellis modulation maps m bits into one of 2m+1constellation points

    ! 14,400 bps Trellis 128 2400x6

    ! 9600 bps Trellis 32 2400x4

    ! 4800 bps QAM 4 2400x2

    Modem Standard V.34 adjusts pulse rate to channel! 2400-33600 bps Trellis 960 2400-3429 pulses/sec

    Properties of Media and DigitalTransmission Systems

    Fundamentals ofcommunications

    Adapted from slides of the book:A. Leon Garcia, I. Widjaja, Communication

    networks, McGraw Hill, 2004

  • 7/29/2019 TLC p02 FundComm 2011

    56/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Fundamental Issues in TransmissionMedia

    ! Information bearing capacity! Amplitude response & bandwidth

    ! Susceptibility to noise & interference

    ! Propagation speed of signal! c = 3 x 108 m/s in vacuum

    ! . = c/"/ speed of light in medium where />1 is the dielectricconstant of the medium

    ! . = 2.3 x 108 m/s in copper wire; . = 2.0 x 108 m/s in optical fiber

    t= 0t = d/c

    Communication channel

    dmeters

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Communications systems &Electromagnetic Spectrum

    ! Frequency of communications signals

    Analog

    telephoneDSL Cell

    phone

    WiFiOptical

    fiber

    102 104 106 108 1010 1012 1014 1016 1018 1020 1022 1024Frequency (Hz)

    Wavelength (meters)

    106 104 102 10 10-2 10-4 10-6 10-8 10-10 10-12 10-14

    Powerand

    telephone

    Broadcast

    radio

    Microwave

    radio

    Infraredlight

    Visiblelight

    Ultravioletlight

    X-rays

    Gammarays

  • 7/29/2019 TLC p02 FundComm 2011

    57/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Wireless & Wired Media

    Wireless Media

    ! Signal energy propagatesin space, limiteddirectionality

    ! Interference possible,so spectrum regulated

    ! Limited bandwidth

    ! Simple infrastructure:antennas & transmitters

    ! User/terminal can move

    Wired Media

    ! Signal energy contained& guided within medium

    ! Spectrum can be re-usedin separate media (wiresor cables), more scalable

    ! Extremely highbandwidth

    ! Complex infrastructure:ducts, conduits, poles,right-of-way

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Attenuation

    ! Attenuation varies with media! Dependence on distance of central importance

    ! Wired media has exponential dependence! Received power at d meters proportional to 100d

    ! Attenuation in dB = 0d, where 0 is dB/meter

    ! Wireless media has logarithmic dependence! Received power at d meters proportional to d-n

    ! Attenuation in dB = n log d, where nis path loss exponent; n=2in free space

    ! Signal level maintained for much longer distances

    ! Space communications possible

  • 7/29/2019 TLC p02 FundComm 2011

    58/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Twisted PairTwisted pair

    ! Two insulated copper wiresarranged in a regular spiralpattern to minimizeinterference

    ! Various thicknesses, e.g.0.016 inch (24 gauge)

    ! Low cost

    ! Telephone subscriber loopfrom customer to CO

    ! Intra-building telephonefrom wiring closet todesktop

    ! LAN cabling (Fast Ethernet,GbE)

    Attenuation(dB/mi)

    f (kHz)

    19 gauge

    22 gauge

    24 gauge

    26 gauge

    6

    12

    18

    24

    30

    110 100 1000

    Lower

    attenuation rate

    analog telephone

    Higher

    attenuation rate

    for DSL

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Twisted Pair Bit Rates

    ! Twisted pairs can providehigh bit rates at shortdistances

    ! Asymmetric DigitalSubscriber Loop (ADSL)!

    High-speed Internet Access! Above 28 kHz

    ! Much higher rates possible atshorter distances! Strategy for telephone

    companies is to bring fiberclose to home & then twistedpair

    ! Higher-speed access + video

    Data rates of 24-gauge twisted pair

    1000 feet,

    300 m

    51.840

    Mbps

    STS-1

    3000 feet,0.9 km

    25.920Mbps

    1/2 STS-1

    4500 feet,1.4 km

    12.960Mbps

    1/4 STS-1

    12,000 feet,3.7 km

    6.312Mbps

    DS2

    18,000 feet,

    5.5 km

    1.544

    Mbps

    T-1

    DistanceDataRateStandard

  • 7/29/2019 TLC p02 FundComm 2011

    59/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Ethernet LANs! Category 3 unshielded twisted pair (UTP):

    ordinary telephone wires! Category 5 UTP: tighter twisting to improve

    signal quality

    ! Shielded twisted pair (STP): to minimizeinterference; costly! 10BASE-T Ethernet

    ! 10 Mbps, Baseband, Twisted pair! Two Cat3 pairs! Manchester coding, 100 meters

    ! 100BASE-T4 FastEthernet! 100 Mbps, Baseband, Twisted pair! Four Cat3 pairs! Three pairs for one direction at-a-time! 100/3 Mbps per pair;! 3B6T line code, 100 meters

    ! Cat5 & STP provide other options

    ! ! ! ! ! !

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Coaxial Cable

    ! Cylindrical braided outerconductor surroundsinsulated inner wireconductor

    ! High interference immunity

    ! Higher bandwidth thantwisted pair

    ! Hundreds of MHz

    ! Cable TV distribution

    ! Long distance telephonetransmission

    ! Original Ethernet LANmedium

    35

    30

    10

    25

    20

    5

    15

    Attenuation(dB/km)

    0.1 1.0 10 100

    f (MHz)

    2.6/9.5 mm

    1.2/4.4 mm

    0.7/2.9 mm

  • 7/29/2019 TLC p02 FundComm 2011

    60/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    UpstreamDownstream

    5MHz

    42MHz

    54MHz

    500MHz

    550MHz

    750

    MHz

    Downstream

    Cable Modem & TV Spectrum

    ! Cable TV network originally unidirectional

    ! Cable plant needs upgrade to bidirectional

    ! 1 analog TV channel is 6 MHz, can support very high data rates! Cable Modem: sharedupstream & downstream

    ! 5-42 MHz upstream into network; 2 MHz channels; 500 kbps to 4 Mbps

    ! >550 MHz downstream from network; 6 MHz channels; 36 Mbps

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Cable Network Topology

    Head

    end

    Upstream fiber

    Downstream fiber

    Fiber

    node

    Coaxial

    distribution

    plant

    Fiber

    node

    = Bidirectional

    split-band

    amplifier

    Fiber Fiber

  • 7/29/2019 TLC p02 FundComm 2011

    61/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Optical Fiber

    ! Light sources (lasers, LEDs) generate pulses of light that aretransmitted on optical fiber! Very long distances (>1000 km)

    ! Very high speeds ( up ro 40 Gbps/wavelength)

    ! Nearly error-free (BER of 10-15)

    ! Profound influence on network architecture! Dominates long distance transmission

    ! Distance less of a cost factor in communications

    ! Plentiful bandwidth for new services

    Optical fiber

    Optical

    source

    ModulatorElectrical

    signalReceiver

    Electrical

    signal

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Core

    Cladding JacketLight

    1c

    Geometry of optical fiber

    Total Internal Reflection in optical fiber

    Transmission in Optical Fiber

    ! Very fine glass cylindrical core surrounded by concentric layer ofglass (cladding)

    ! Core has higher index of refraction than cladding! Light rays incident at less than critical angle 1c is completely

    reflected back into the core

  • 7/29/2019 TLC p02 FundComm 2011

    62/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    ! Multimode: Thicker core, shorter reach! Rays on different modes interfere causing dispersion & limiting bit rate

    ! Single mode: Very thin core supports only one mode! More expensive lasers, but achieves very high speeds

    Multimode fiber: multiple rays follow different paths

    Single-mode fiber: only direct path propagates in fiber

    Direct path

    Reflected path

    Multimode & Single-mode Fiber

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Optical Fiber Properties

    Advantages

    ! Very low attenuation

    ! Immunity to external e.minterference

    ! Extremely high bandwidth! Security: Very difficult to

    tap without breaking

    ! No corrosion

    ! More compact & lighter thancopper wire

    ! Wideband optical amplifiersavailable (EDFA, SOA)

    Disadvantages

    ! New types of optical signalimpairments & dispersion

    ! Shot noise

    ! Polarization dependence! Non linear effects

    ! Limited bend radius

    ! If physical arc of cable toohigh, light lost or wont reflect

    ! Will break

    ! Difficult to splice

    ! Mechanical vibration becomes

    signal noise

  • 7/29/2019 TLC p02 FundComm 2011

    63/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    100

    50

    10

    5

    1

    0.5

    0.1

    0.05

    0.010.8 1.0 1.2 1.4 1.6 1.8

    Wavelength (m)

    Loss(dB/km)

    Infrared absorption

    Rayleigh scattering

    Very Low Attenuation

    850 nm

    Low-cost

    LEDs LANs

    1300 nm

    Metropolitan Area

    Networks: Short Haul

    1550 nm

    Long Distance

    Networks: Long Haul

    Water Vapor Absorption

    (removed in new fiber

    designs)

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    100

    50

    10

    5

    1

    0.5

    0.1

    0.8 1.0 1.2 1.4 1.6 1.8

    Loss(dB/km)

    Huge Available Bandwidth

    ! Optical range from 21to21+"2 contains bandwidth

    ! Example: 21= 1450 nm21+"2 =1650 nm:

    B = !19 THz

    B = f1 f2 = v

    21+"2

    v

    21

    v"221

    2= !"2/21

    1 + "2/21

    v

    21

    2(108)m/s 200nm

    (1450 nm)2

  • 7/29/2019 TLC p02 FundComm 2011

    64/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Wavelength Division Multiplexing

    ! Different wavelengths carry separate signals

    ! Multiplex into shared optical fiber

    ! Each wavelength like a separate circuit

    ! A single fiber can carry 160 wavelengths, 10 Gbps perwavelength: 1.6 Tbps!

    21

    22

    2moptical

    mux

    21

    22

    2moptical

    demux

    21 22.

    2m

    optical

    fiber

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Coarse & Dense WDM

    Coarse WDM

    ! Few wavelengths 4-8with very wide spacing

    ! Low-cost, simpleDense WDM

    ! Many tightly-packedwavelengths

    ! ITU Grid: 0.8 nmseparation for 10Gbpssignals

    !

    0.4 nm for 2.5 Gbps

    155

    0

    156

    0

    154

    0

  • 7/29/2019 TLC p02 FundComm 2011

    65/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    193.1 THz

    1552.52 nm

    wavelength

    196.1 THz

    1528.77 nm

    193.2 THz

    1551.72 nm

    193.0 THz

    1553.33 nm

    192.1 THz

    1560.61 nm

    100

    GHz

    100

    GHz

    198.51.4 THz

    151010 nm

    Supervisionchannel

    ITU standard optical carrier grid

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    band Sband S band Cband C band Lband L

    OAOA ErbiumErbium::SilicaSilica100100 GHzGHz

    5050 GHzGHz

    4040 40404040

    80808080 8080

    1440 162015801560154015201460 16001480

    1440 162015801560154015201460 16001480

    1440 162015801560154015201460 16001480

    Carriers and optical bands

  • 7/29/2019 TLC p02 FundComm 2011

    66/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    ! Attenuation

    ! Dispersion: chromatic (guide + material), polarization(PMD)

    ! Non linear effect: Brillouin, Raman, Kerr (Self-PhaseModulation (SPM), Cross-Phase Modulation (CPM),Four Wave Mixing (FWM))

    ! Launched power of 20&mW (13 dBm) in the cross section of amonomodal fiber (50 'm2) corresponds to 40 kW/cm2.

    ! Crosstalk in (D)WDM systems

    ! Noise of optical amplifiers (ASE)! Laser phase noise

    Transmission impairments of o.f.

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    ! Optical fiber response to an input pulse x(t) is the sumof two terms:! a linear dispersive term yL(t) = "x(()h(t()d(! an instantaneous cubic non linear term yNL(t) = Ax3(t)

    ! Let x(t) be the sum of three sinusoidal terms with

    frequencies f1, f2, f3! Model for DWDM channels (extremely narrowband!!!)

    ! Besides linear terms, at the output we can findsinusoidal signals at frequencies f1f2f3! Part of these spurious harmonics falls within signal band

    OAOA

    Low dispersion fiberLow dispersion fiberinput output

    Four Wave Mixing

  • 7/29/2019 TLC p02 FundComm 2011

    67/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Power spectrum of an 8x10 Gbps DWDM signal with UnequalChannel Spacing after 50 km of G.653 fiber (2 mW/ch).

    Effect of FWM

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Standard fiber (G.652)

  • 7/29/2019 TLC p02 FundComm 2011

    68/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Dispersion shifted fiber (G.653)

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Non-zero dispersion fiber (G.655)

  • 7/29/2019 TLC p02 FundComm 2011

    69/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Regenerators & Optical Amplifiers

    ! The maximum span of an optical signal is determined bythe available power & the attenuation:! If 30 dB attenuation are allowed, then at 1550 nm, optical

    signal attenuates at 0.25 dB/km, so max span = 30 dB/0.25km/dB = 120 km

    ! Optical amplifiers increase optical signal power (noequalization, no regeneration): Pout=GPin+PASE.! Noise is added by each amplifier

    ! SNRout < SNRin, so there is a limit to the number of OAs in anoptical path

    !

    Optical signal must be regenerated when this limit isreached! Requires optical-to-electrical (O-to-E) signal conversion,

    equalization, detection and retransmission (E-to-O)

    ! Expensive

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Regenerator

    R R R R R R R R

    DWDM

    multiplexer

    R

    R

    R

    R

    R

    R

    R

    R

    R

    R

    R

    R

    R

    R

    R

    R

    DWDM & Regeneration

    ! Single signal per fiber requires 1 regenerator per span

    ! DWDM system carries many signals in one fiber

    ! At each span, a separate regenerator required per signal

    ! Very expensive

  • 7/29/2019 TLC p02 FundComm 2011

    70/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    R

    R

    R

    R

    Optical

    amplifier

    R

    R

    R

    R

    OA OA OA OA

    Optical Amplifiers

    ! Optical amplifiers can amplify the composite DWDMsignal without demuxing or O-to-E conversion

    ! Erbium Doped Fiber Amplifiers (EDFAs) boost DWDMsignals within 1530 to 1620 range

    ! Spans between regeneration points >1000 km

    ! Number of regenerators can be reduced dramatically withdramatic reduction in cost of long-distance communications

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Radio Transmission

    ! Radio signals: antenna transmits sinusoidal signal(carrier) that radiates in air/space

    ! Information embedded in carrier signal usingmodulation, e.g. QAM

    ! Communications without tethering! Cellular phones, satellite transmissions, Wireless LANs

    ! Multipath propagation causes fading; iintercation ofe.m. field with obstacles causes shadowing

    ! Interference from other users

    ! Spectrum regulated by national & internationalregulatory organizations

  • 7/29/2019 TLC p02 FundComm 2011

    71/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    104 106 107 108 109 1010 1011 1012

    Frequency (Hz)

    Wavelength (meters)

    103 102 101 1 10-1 10-2 10-3

    105

    Satellite and terrestrial

    microwave

    AM radio

    FM radio and TV

    LF MF HF VHF UHF SHF EHF104

    Cellular

    and PCS

    Wireless cable

    Radio Spectrum

    Omni-directional applications Point-to-Point applications

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Source: Motorola

    1 KHz 1 MHz 1 GHz

    AudioFrequencies

    Short-Wave Radio

    AM Broad-cast

    FM Broadcast

    Television Telecommunications

    Cellular Telephone,SMR, Packet Radio

    PCS

    ExtremelyLow

    V

    eryLow

    Medium

    Low

    High

    V

    eryHigh

    UltraHigh

    Infrared

    VisibleLight

    U

    ltraViolet

    X-rays

    Co

    smicRays

    GammaRays

    Microwave

    2.4 GHz ISM (Industrial Scientific, Medical)

    Band

    1 THz

    Spectrum allocation

  • 7/29/2019 TLC p02 FundComm 2011

    72/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Unlicensed Operation RF Bands! 902 MHz

    ! 26 MHz BW! Crowded

    ! Worldwide limited! 2.4 GHz

    ! 83.5 MHz BW! Available worldwide! IEEE802.11 WLANs

    ! 5.1 GHz! 300 MHz BW

    discontinuous! Developing

    902 928

    North & South America902MHz

    2400 2500 24802440

    Americas, most of Europe

    France

    Spain

    Japan

    2.4GHz

    *Frequency Allocations are pending

    U-NII: Unlicensed National Information Infrastructure5100 5200 5300 5400 5500 5600 5700 5800 5900

    U-NII

    Europe

    HiperLAN1

    U-NII

    Europe

    HiperLAN2*

    Japan*

    5.1GHz

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Examples

    Cellular Phone! Allocated (licensed) spectrum! First generation:

    ! 800, 900 MHz! Initially analog voice

    ! Second generation:! 1800-1900 MHz! Digital voice, messaging

    WirelessLAN! Unlicenced ISM spectrum

    ! Industrial, Scientific, Medical! 902-928 MHz, 2.400-2.4835

    GHz, 5.725-5.850 GHz! IEEE 802.11 LAN standard

    ! 11-54 Mbps

    Point-to-MultipointSystems! Directional antennas at

    microwave frequencies! High-speed digital

    communications between sites

    ! High-speed Internet AccessRadio backbone links for ruralareas

    SatelliteCommunications! Geostationary satellite @

    36000 km above equator! Relays microwave signals from

    uplink frequency to downlinkfrequency

    ! Long distance telephone

    ! Satellite TV broadcast

  • 7/29/2019 TLC p02 FundComm 2011

    73/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    GSM: radio characteristics

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Radio spectrum allocated to UMTS

    ! Frequency Division Duplex.

    ! 1920-1980 for Uplink.(12x5MHz)

    ! 2110-2170 for Downlink.(12x5Mhz)

    ! Time Division Duplex.

    ! 1900-1920 (4x5Mhz)

    ! 2010-2025 (3x5Mhz)

  • 7/29/2019 TLC p02 FundComm 2011

    74/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Wireless Internet Service Provider

    UMTS Operator

    Node B

    UTRANUTRANRNC

    UMTS

    IPv4 Core Network

    GGSN

    SGSN

    Node B

    IPv4 over WAN

    Wireless LANs IEEE 802.11Wireless LANs IEEE 802.11

    Server farm and IMS WWW

    E-mail.,

    Diameter

    SIP proxy

    Dynamic DNS

    .

    ,

    Signaling

    Gateway

    Profiles

    DBs

    IPv4 backbone

    UMTS: (3GPP)

    MM:Ad-Hoc ProtocolsAA:Ad-Hoc Protocols

    WLAN: (IETF)

    MM: Mobile IP, Cellular IP, etc

    AA: User Name/Pwd

    Current 3G scenario

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    ! Applications! Local wireless networking (infrastructured, ad hoc)

    ! Public hot spots

    ! Home Networking

    ! Sensor networks

    WLAN and WPAN standards

  • 7/29/2019 TLC p02 FundComm 2011

    75/96

    Error Detection and Correction

    Fundamentals of

    communications

    Adapted from slides of the book:A. Leon Garcia, I. Widjaja, Communication

    networks, McGraw Hill, 2004

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Error Control

    ! Digital transmission systems introduce errors

    ! Applications require certain reliability level

    ! Data applications require error-free transfer

    ! Voice & video applications tolerate some errors, the less themore source coding removes redundancy from original signal

    ! Error control used when transmission system does notmeet application requirement

    ! Two basic approaches:

    Error detection& retransmission (ARQ)

    Forward error correction(FEC)

  • 7/29/2019 TLC p02 FundComm 2011

    76/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Key Idea

    ! All transmitted data blocks (codewords) satisfy apattern

    ! If received block doesnt satisfy pattern, it is in error! If it satisfies pattern, it is assumedto be correct

    ! Redundancy: Only a subset of all possible blocks can becodewords

    ! Example: spell checking by taking dictionary words with sameinitial as letter to be spelled out

    ChannelEncoderUser

    information

    Pattern

    checking

    All inputs to channel

    satisfy pattern or condition

    Channel

    output

    Deliver user

    information or

    set error alarm

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Single Parity Check! Given a data block of kbits, add one more bit so as to

    make the number of 1s even! Same as making 0 the xor of the coded (k+1)-bit block

    Info Bits: b1, b2, b3, , bk

    Check Bit: bk+1 = b13b23b33 3bkCodeword: (b1, b2, b3, , bk,, bk+1)

    ! Receiver checks to see if # of 1s is even! All error patterns that change an odd # of bits are detectable;

    all even-numbered patterns are undetectable

    ! Parity bit used in ASCII code

  • 7/29/2019 TLC p02 FundComm 2011

    77/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Example of Single Parity Code

    ! Information (7 bits): (0, 1, 0, 1, 1, 0, 0)

    ! Parity Bit: b8

    = 0 + 1 +0 + 1 +1 + 0 = 1

    ! Codeword (8 bits): (0, 1, 0, 1, 1, 0, 0, 1)

    ! If single error in bit 3 : (0, 1, 1, 1, 1, 0, 0, 1)! # of 1s =5, odd

    ! Error detected

    ! If errors in bits 3 and 5: (0, 1, 1, 1, 0, 0, 0, 1)! # of 1s =4, even! Error not detected

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Checkbits & Error Detection

    Information

    accepted if

    check bits match

    Calculate

    check bitsChannel

    Recalculate

    check bitsCompare

    Information bits

    kbitappend

    nkbit

    n bit

    Sent codeword

    n bit

    Received codeword

    Received

    info bits

    Received

    check bits

    Systematic code concept

  • 7/29/2019 TLC p02 FundComm 2011

    78/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    How good is the single parity checkcode?

    ! Redundancy: Single parity check code adds 1 redundant

    bit per kinformation bits: overhead = 1/(k+1)! Coverage: all error patterns with odd # of errors can

    be detected

    ! An error patten is a binary (k+ 1)-tuple with 1s where errorsoccur and 0s elsewhere

    ! Of 2k+1 binary (k+1)-tuples, 1/2 have odd weight, so 50% of errorpatterns can be detected

    ! Is it possible to detect more errors if we add more

    check bits?! Yes, with the right codes

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    What if bit errors are random?

    ! Many transmission channels introduce bit errors atrandom, independently of each other, with probability p

    ! Some error patterns are more probable than others:

    ! In any worthwhile channel p

  • 7/29/2019 TLC p02 FundComm 2011

    79/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Single parity check code withrandom bit errors

    ! Undetectable error pattern if even # of bit errors:

    ! Example: Evaluate above for n= 32, p= 103

    ! For this example, roughly 1 in 2000 error patterns isundetectable

    P[error detection failure] = P[undetectable error pattern]= P[error patterns with even number of 1s]

    = p2(1 p)n-2 + p4(1 p)n-4 + n

    2

    n

    4

    P[undetectable error] = (103)2 (1 103)30 + (103)4 (1 103)28

    $ 496 (106) + 35960 (1012) $ 4.96 (104)

    32

    232

    4

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Two-Dimensional Parity Check

    1 0 0 1 0 0

    0 1 0 0 0 1

    1 0 0 1 0 0

    1 1 0 1 1 0

    1 0 0 1 1 1

    Bottom row consists of

    check bit for each column

    Last column consists

    of check bits for each

    row

    ! More parity bits toimprove coverage

    ! Arrange information ascolumns! Add single parity bit to

    each column

    ! Add a parity column

    ! Used in early errorcontrol systems

  • 7/29/2019 TLC p02 FundComm 2011

    80/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    1 0 0 1 0 0

    0 0 0 1 0 1

    1 0 0 1 0 0

    1 0 0 0 1 0

    1 0 0 1 1 1

    1 0 0 1 0 0

    0 0 0 0 0 1

    1 0 0 1 0 0

    1 0 0 1 1 0

    1 0 0 1 1 1

    1 0 0 1 0 0

    0 0 0 1 0 1

    1 0 0 1 0 0

    1 0 0 1 1 0

    1 0 0 1 1 1

    1 0 0 1 0 0

    0 0 0 0 0 11 0 0 1 0 0

    1 1 0 1 1 0

    1 0 0 1 1 1

    Arrows indicate failed check bits

    Two

    errorsOne error

    Three

    errors Four errors(undetectable)

    Error-detecting capability

    1, 2, or 3 errors

    can always be

    detected; Not all

    patterns >4 errors

    can be detected

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    x = codewords

    o = noncodewords

    x

    x x

    x

    x

    x

    x

    o

    oo

    oo

    oo

    ooo

    o

    o

    o

    x

    x x

    x

    xx

    x

    oo

    oo

    oooo

    o

    o

    oPoor

    distance

    properties

    What is a good code?

    ! Many channels havepreference for errorpatterns that have fewer# of errors

    ! These error patterns maptransmitted codeword tonearby n-tuple

    ! If codewords close toeach other then detectionfailures will occur

    ! Good codes shouldmaximize separation

    between codewords

    Good

    distance

    properties

  • 7/29/2019 TLC p02 FundComm 2011

    81/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Other Error Detection Codes

    ! Many applications require very low error rate!

    Single parity check codes do not detect enougherrors

    ! Two-dimensional codes require too many check bits

    ! The following error detecting codes are usedin practice:

    ! Internet Check Sums

    ! CRC Polynomial Codes

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Internet Checksum

    ! Several Internet protocols (e.g. IP, TCP, UDP) usecheck bits to detect errors in the IP header(or in theheader and data for TCP/UDP)

    ! A checksum is calculated for header/segment contents and

    included in a special field.! Checksum recalculated at every router, so algorithm selected

    for ease of implementation in software

    ! Let header consist of L, 16-bit words,

    b0, b1, b2, ..., bL1

    ! The algorithm appends a 16-bit checksum bL

  • 7/29/2019 TLC p02 FundComm 2011

    82/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    The checksum bL is calculated as follows:

    ! Treating each 16-bit word as an integer, findx = b0 + b1 + b2 + ... + bL1 modulo 2161

    ! The checksum is then given by:

    bL= x modulo 2161

    Thus, the headers must satisfy the followingpattern:

    0 = b0 + b1 + b2+ ...+ bL1 + bL modulo 2161

    ! The checksum calculation can be carried out insoftware at speed compatible with router operations

    Checksum Calculation

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Internet Checksum Example

    Use Modulo Arithmetic

    ! Assume 4-bit words

    ! Use mod 24-1arithmetic

    ! b0=1100 = 12! b1=1010 = 10

    ! b0+b1=12+10=7 mod15

    ! b2 = -7 = 8 mod15

    ! Therefore

    ! b2=1000

    Use Binary Arithmetic

    ! Note 16=1 mod15

    ! So: 10000 = 0001 mod15

    ! leading bit wraps around

    b0+b1 =1100+1010

    =10110

    =10000+0110

    =0001+0110

    =0111 (=7)

    Take 1-complement

    b2 = 0111 =1000

  • 7/29/2019 TLC p02 FundComm 2011

    83/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Polynomial Codes

    ! Binary codewords can be associated to polynomials

    ! Coefficients of polynominal are orderly equal to bits of thecodeword, e.g. MSB being the coefficient of the leading powerof the polynomial

    ! Polynomial arithmetic instead of check sums

    ! Implemented using shift-register circuits

    ! Also called cyclic redundancy check (CRC)codes

    ! Most data communications standards use polynomial

    codes for error detection! Polynomial codes also basis for powerful error-correction

    methods

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Addition:

    Multiplication:

    Binary Polynomial Arithmetic

    ! Binary vectors map to polynomials

    (bk-1 ,bk-2 ,, b2 , b1 , b0) #

    bk-1xk-1 + bk-2x

    k-2 + + b2x2 + b1x+ b0

    (x7 +x6 + 1) + (x6 + x5) =x7 +x6 + x6 +x5 + 1

    =x7 +(1+1)x6+x5 + 1

    =x7 +x5 + 1 since 1+1=0 mod2

    (x+ 1) (x2 + x + 1) =x(x2 +x + 1) + 1(x2 +x+ 1)

    =x3

    +x2

    + x) + (x2

    +x

    + 1)=x3 + 1

  • 7/29/2019 TLC p02 FundComm 2011

    84/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Binary Polynomial Division

    ! Division with Decimal Numbers

    32

    35 | 1222

    3

    105

    17 2

    4

    140divisor

    quotient

    remainder

    dividend1222 = 34 x 35 + 32

    dividend = quotient x divisor + remainder

    ! Polynomial Division x3 +x+ 1 |x6 +x5x6 + x4 +x3

    x5 +x4 +x3

    x5 + x3 +x2

    x4 + x2

    x4 + x2 +x

    x

    = q(x) quotient

    = r(x) remainder

    divisordividend

    +x+x2x3

    Note: Degree of r(x) is less

    than degree of divisor

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Polynomial Coding

    ! Code has binarygenerating polynomialof degree nk

    ! k information bitsdefine polynomial of degree (k1

    ! Find remainder polynomialof at most degree nk1

    g(x) |xn-k i(x)

    q(x)

    r(x)

    xn-ki(x) = q(x)g(x) + r(x)

    ! Define the codeword polynomialof degree (n1

    b(x) =xn-k

    i(x) + r(x)n bits kbits n-kbits

    g(x) =xn-k+ gn-k-1xn-k-1 + + g2x

    2 + g1x+ 1

    i(x) = ik-1xk-1

    + ik-2xk-2

    + + i2x2

    + i1x+ i0

  • 7/29/2019 TLC p02 FundComm 2011

    85/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Transmitted codeword: b(x) = x6+ x5+ x b = (1,1,0,0,0,1,0)

    1011 | 1100000

    1110

    1011

    1110

    1011

    1010

    1011

    010

    x3 + x+ 1 | x6+ x5

    x3 + x2+ x

    x6+ x4 + x3

    x5+ x4 + x3

    x5+ x3 + x2

    x4 + x2

    x4 + x2+ x

    x

    Polynomial example: k=4, nk=3

    Generator polynomial: g(x) = x3 + x+ 1

    Information: (1,1,0,0): i(x) = x3 + x2

    Encoding: x3i(x) = x6 + x5

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Calcolo con shift register

    G(x) = x3+ x+1

    Reg 0 ++

    g3= 1

    M(x)

    g0= 1 g1 =1

    M(x)= x3+ x

    Encoder for

    Reg 1 Reg 2

  • 7/29/2019 TLC p02 FundComm 2011

    86/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    The Patternin Polynomial Coding

    ! All codewords satisfy the following pattern:

    ! All codewords are a multiple ofg(x)!

    ! Receiver should divide received n-tuple byg(x)and check if remainder is zero

    ! If remainder is nonzero, then received n-tuple

    is not a codeword

    b(x) =xn-ki(x) + r(x) = q(x)g(x) + r(x) + r(x) = q(x)g(x)

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Undetectable error patterns

    ! e(x)has 1s in error locations & 0s elsewhere! Receiver divides the received polynomial R(x)byg(x)! Blindspot: If e(x) is a multiple ofg(x), that is, e(x) is

    a nonzero codeword, then R(x) = b(x) + e(x) = q(x)g(x) + q(x)g(x)! The set of undetectable error polynomials is the set

    of nonzero code polynomials!

    Choose the generator polynomial so that mostcommon error patterns can be detected.

    b(x)

    e(x)

    R(x)=b(x)+e(x)+

    (Receiver)(Transmitter)

    Error polynomial(Channel)

  • 7/29/2019 TLC p02 FundComm 2011

    87/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Designing good polynomial codes

    ! Select generator polynomial so that likely errorpatterns are not multiples ofg(x)

    ! Detecting Single Errors

    ! e(x) = xi for error in location i+1

    ! If g(x)has more than 1 term, it cannot divide xi

    ! Detecting Double Errors

    ! e(x) = xi + xj= xi(xj-i+1) where j> i

    ! If g(x)has more than 1 term, it cannot divide xi

    ! Ifg(x) is a primitivepolynomial, it cannot divide xm+1 for allm

  • 7/29/2019 TLC p02 FundComm 2011

    88/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Standard Generator Polynomials

    ! CRC-8:

    ! CRC-16:

    ! CCITT-16:

    ! CCITT-32:

    CRC = cyclic redundancy check

    HDLC, XMODEM, V.41

    IEEE 802, DoD, V.42

    Bisync

    ATM= x8+ x2+ x + 1

    = x16+ x15+ x2+ 1

    = (x+ 1)(x15+ x + 1)

    = x16+ x12+ x5+ 1

    = x32+ x26+ x23 +x22+ x16+ x12+ x11

    + x10+ x8+x7+ x5+ x4 + x2+ x+ 1

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Hamming Codes

    ! Class of error-correctingcodes

    ! Capable of correcting all single-errorpatterns

    ! For each m> 2, there is a Hamming code of lengthn= 2m 1 with n k= mparity check bits

    57

    26

    11

    4

    k= nm

    6/63636

    5/31315

    4/15154

    3/773

    m/nn= 2m1m

    Redundancy

  • 7/29/2019 TLC p02 FundComm 2011

    89/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    m= 3 Hamming Code

    ! Information bits are b1, b2, b3, b4! Equations for parity checks b

    5, b

    6, b

    7

    ! There are 24 = 16 codewords

    ! (0,0,0,0,0,0,0) is a codeword

    b5 = b1 + b3 + b4

    b6 = b1 + b2 + b4

    b7 = + b2 + b3 + b4

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Hamming (7,4) code

    71 1 1 1 1 1 11 1 1 1

    31 1 1 0 0 0 01 1 1 041 1 0 1 0 1 01 1 0 1

    41 1 0 0 1 0 11 1 0 0

    41 0 1 1 1 0 01 0 1 1

    41 0 1 0 0 1 11 0 1 0

    31 0 0 1 0 0 11 0 0 1

    31 0 0 0 1 1 01 0 0 0

    40 1 1 1 0 0 10 1 1 1

    40 1 1 0 1 1 00 1 1 0

    30 1 0 1 1 0 00 1 0 1

    30 1 0 0 0 1 10 1 0 0

    30 0 1 1 0 1 00 0 1 1

    30 0 1 0 1 0 10 0 1 0

    40 0 0 1 1 1 10 0 0 1

    00 0 0 0 0 0 00 0 0 0

    w(b)b1 b2 b3 b4 b5 b6 b7b1 b2 b3 b4

    WeightCodewordInformation

  • 7/29/2019 TLC p02 FundComm 2011

    90/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Parity Check Equations

    ! Rearrange parity check equations:

    ! All codewords must

    satisfy these equations! Note: each nonzero 3-

    tuple appears once as acolumn in check matrix H

    ! In matrix form:

    0 = b5 + b5 = b1 + b3 + b4 + b50 = b6 + b6 = b1 + b2 + b4 + b6

    0 = b7 + b7 = + b2 + b3 + b4 + b7

    b1

    b2

    0 = 1 0 1 1 1 0 0 b3

    0 = 1 1 0 1 0 1 0 b4 = Hbt

    = 00 = 0 1 1 1 0 0 1 b5

    b6

    b7

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    0

    0

    1

    0

    0

    0

    0

    s = H e= =1

    0

    1

    Single error detected

    0

    1

    0

    0

    1

    0

    0

    s = H e= = + =0

    1

    1

    Double error detected1

    0

    0

    1 0 1 1 1 0 01 1 0 1 0 1 0

    0 1 1 1 0 0 1

    1

    1

    1

    0

    0

    0

    0

    s = H e= = + + = 0110

    Triple error notdetected

    01

    1

    10

    1

    1 0 1 1 1 0 0

    1 1 0 1 0 1 0

    0 1 1 1 0 0 1

    1 0 1 1 1 0 0

    1 1 0 1 0 1 0

    0 1 1 1 0 0 1

    1

    1

    1

    Error Detection with Hamming Code

  • 7/29/2019 TLC p02 FundComm 2011

    91/96

    Telecomunicazioni - a.a. 2010/2011 - Prof. Andrea Baiocchi

    Minimum distance of Hamming Code

    ! With Hamming (7,4) code undetectable error patternmust have 3 or more bits, i.e. at least 3 bits must be

    changed to convert one codeword into another codeword

    b1 b2o o

    o

    o

    oo

    o

    o

    Set ofn-tuples

    within distance

    1 of b1

    Set ofn-tuples

    within distance

    1 of b2

    ! Spheres of distan