OpenSense2 - Nano-Tera 2016

download OpenSense2 - Nano-Tera 2016

of 29

Transcript of OpenSense2 - Nano-Tera 2016

  • 8/18/2019 OpenSense2 - Nano-Tera 2016

    1/29

    OpenSense I I

    PI: Alcherio Martinoli, EPFLCo-PIs: Karl Aberer, Boi Faltings, EPFL

    Andreas Krause, Lothar Thiele, ETH Zürich

    Lukas Emmenegger, EMPA

    Murielle Bochud, University Hospital LausanneMichael Riediker, Institute for Work and Health, Lausanne

    NT Annual Meeting, Lausanne, April 26, 2016

    OpenSense IICrowdsourcing High-Resolut ion

    Air Qual i ty Sensinghttp://opensense.epfl.ch

  • 8/18/2019 OpenSense2 - Nano-Tera 2016

    2/29

    OpenSense I I

    A I R P O L L U T I O N

    Air pollution in urban areas is a global concern• affects quality of life and health

    • urban population is increasing

    Air pollution is highly location- and time-dependent• traffic chokepoints and rush hours

    • urban canyons and weather

    • industrial installations and activities

    Air pollution monitoring today

    • Sparse, stationary and expensive stations

    • Spatial interpolation with mesoscale models (1 km2)

  • 8/18/2019 OpenSense2 - Nano-Tera 2016

    3/29

    OpenSense I I

    O U R S Y S T E M V I S I O N

    Land-use and weatherTerrain, meteorology, emission sources, population

    Measurement dataCrowdsensors, mobile sensors, monitoring stations

    High-resolution pollution mapsPhysics-based and data-driven modeling methods

    Officials, citizensHealth studies, crowdsensing methods

  • 8/18/2019 OpenSense2 - Nano-Tera 2016

    4/29

    OpenSense I I

    O V E R V I E W

    MobileSensor

    Deployments

    Data Quality

    Crowdsensing Air PollutionMapping

    Health ImpactStudy

  • 8/18/2019 OpenSense2 - Nano-Tera 2016

    5/29

    OpenSense I I

    MobileSensor

    Deployments

    Data Quality

    Crowdsensing Air PollutionMapping

    Health ImpactStudy

  • 8/18/2019 OpenSense2 - Nano-Tera 2016

    6/29

    OpenSense I I

    D E PLO YM EN TS I N L A U SA NN E A ND Z U R I C H

    10 streetcars in Zurich & 10 buses in Lausanne

    •CO, NO2, O3, CO2, UFP, temperature, humidity

    • Localization: GNSS for trams, GNSS fusioned

    with odometry and stop information for buses

    • Communication: GPRS

    On top of C-Zero electric vehicle

    • 100% electric, flexible mobility

    • system test bed, targeted investigation tool

    On top of “LuftiBus”

    • Since March 2013, covers whole Switzerland

    At NABEL stations in Dübendorf & Lausanne

    • Stations run by EMPA• Calibration and sensor drift evaluation

    • Testing new sensors

    • Augmentation with dedicated static stations

    in the city (e.g., DecentLab AirCubes)

  • 8/18/2019 OpenSense2 - Nano-Tera 2016

    7/29OpenSense I I

    L A S E R - B A S E D N O 2 M E A S U R E M E NT S O N A Z U R I C H S T R E E T C A R

    Collaboration with IRSense II

    (instrument developed byEMPA; access to OpenSense II

    network provided by TIK)

  • 8/18/2019 OpenSense2 - Nano-Tera 2016

    8/29OpenSense I I

    GPRS

    • packet parser

    • system logging

    • database server

    •GPS interpolation

    • advanced filtering

    • fault detection

    • system health monitor

    • automatic reporting

    • Unified data acquisition process

    • Web data access/filter/download

    • Sensor data archiving

    • Sensor data search

    • Time series processing

    G S N F OR B A C K E N D D A T A P R O C E S S I N G

    Data (mostly uncalibrated) publicly

    available from both deployments

  • 8/18/2019 OpenSense2 - Nano-Tera 2016

    9/29OpenSense I I

    MobileSensor

    Deployments

    Data Quality

    Crowdsensing Air PollutionMapping

    Health ImpactStudy

  • 8/18/2019 OpenSense2 - Nano-Tera 2016

    10/29

  • 8/18/2019 OpenSense2 - Nano-Tera 2016

    11/29OpenSense I I

    L E V E R A G I N G O P E NS W I S S N T S T R A T E G I C A C T I O N

    • Key design choice: separate sensor front end from communication, computation,

    and visualization backend and leverage smartphone capabilities

    • Current progress: preliminary hardware prototype; Android middleware leveraging

    TinyGSN

    • On-going discussion with multiple Swiss industrial partners

    Collaboration DISAL

    (sensor frontend), LSIR(smartphone backend);

    regular consulting and

    reporting with

    OpenSense II consortium

    Droz et al., poster

  • 8/18/2019 OpenSense2 - Nano-Tera 2016

    12/29OpenSense I I

    L O C A T I O N P R I V A C Y P R OTE CT IO N A ND

    E X PE RI ME NT S U SI NG T I N YG S N

    • Location privacy protection

    • Location obfuscation algorithms

    • Semantic location & attackersimulation

    • Time aware location inference

    Android privacy protectionapplication

    • Activity recognition

    • Localization of the user in a air-

    quality map

    [Guo, Calbimonte, Zhuang, and Aberer, BigData’16]

    [Agir, Calbimonte, and Aberer, PrivOn’14]

    Agir et al., poster

  • 8/18/2019 OpenSense2 - Nano-Tera 2016

    13/29OpenSense I I

    MobileSensor

    Deployments

    Data Quality

    Crowdsensing Air PollutionMapping

    Health ImpactStudy

  • 8/18/2019 OpenSense2 - Nano-Tera 2016

    14/29

  • 8/18/2019 OpenSense2 - Nano-Tera 2016

    15/29

    OpenSense I I

    C A LI BR AT IO N O F C R O S S - S E N S I T I V E S E N S O R S

    • Low-cost gas sensors

     – Sensor response affected by environmentalchanges, e.g. temperature and humidity

     – Cross-sensitive to multiple pollutants

    • Pre-deployment testing

     – Need to uncover all cross-sensitivities and

    environmental dependencies

    • Sensor array calibration

     – Augment multiple low-cost sensors to array

     – Compensates for limiting effects of low-cost

    sensors

     – Calibrating optimized array improves

    accuracy and stability of measurements

    Reference SensorReference

    Sensor

    array

    Calibration error of NO2 measurements for

    different calibration frequencies during one year

    Simple sensor

    calibration

    Sensor array

    calibration

    Ordinary Least-

    Squares (OLS) Multiple Least-

    Squares (MLS)

    [Maag, Saukh, Hasenfratz, and Thiele, EWSN’16]

    Maag et al., poster

  • 8/18/2019 OpenSense2 - Nano-Tera 2016

    16/29

    OpenSense I I

    M I T I G A T I N G S L O W S E N S O R D Y N A M I C S

    Wind tunnel setup

    true signal

    sensor model

    noise

    deconv. filter

    estimated signal

    1. Deconvolution 2. Active sniffingMethods:

    Sensor response

    [Arfire, Marjovi, and Martinoli, EWSN’16]

    Arfire et al., poster

  • 8/18/2019 OpenSense2 - Nano-Tera 2016

    17/29

    OpenSense I I

    M I T I G A T I N G S L O W S E N S O R D Y N A M I C S

    • Parallel passive vs. active sampling

    experiment

    • Pump-based, raised-inlet sniffer

    • More than 1h drive through Lausanne

    in normal traffic

    [Arfire, Marjovi, and Martinoli, AIM’16, submitted]

    Arfire et al., poster

  • 8/18/2019 OpenSense2 - Nano-Tera 2016

    18/29

    OpenSense I I

    R E P U T A TI ON S Y S T EM S F O R O NL I N E

    I NF OR MA TI ON F US IO N

    [Radanovic and Faltings, AAMAS’16]

    Participant

    Pollution

    model

    Report

    at t = 1

    Report

    at t = 2

    Pollution map

    at t = 2

       R

       e   p   u   t   a   t   i   o   n   s   y   s   t   e   m

    Accepts or

    discards

    reports

    Quality score

    Contribution:

     A reputation system

    with provable

    guarantees – limits

    the influence of

    malicious sensors

    Simple misreporting Deceiving strategy

    Our system

    Avg. regret for not knowing the character of sensors

    Baseline

    Theory bound

    (our system)

    Radanovic and Faltings, poster

  • 8/18/2019 OpenSense2 - Nano-Tera 2016

    19/29

    OpenSense I I

    S E NS OR S EL EC TI ON

    Characterizing sensor accuracy

    - Realistic settings relevant to OpenSense II where accuracies of the sensors are unknown

    - E.g., heterogeneous and noisy sensors held by the crowd

    - Which sensors to select or query next?

    - Minimize monitoring while maximizing the utility of data collected

    - Exploration – exploitation tradeoff 

    - Novel ideas based on adaptive sampling

    Results and Theoretical Guarantees- Theorem 1 – Utility

    Tight guarantees (lower bounds) on the utility acquired

    - Theorem 2 – Sample complexity

    Tight guarantees (upper bounds) on the sampling cost.

    Sample

    complexity

    NON-ADAPTIVE ADAPTIVE-BEST ADAPTIVE-TOPL

    0

    200

    400

    600

    800

    1000

    1200

    1400

    0 0.5 1 1. 5 2 2. 5

    Totalnumberofqueries

    V ar i ance σ2   i n the feedback val ues

    x 103 

    ADAPTIVE-TOPL

    ADAPTIVE-BEST

    NON-ADAPTIVE

    Unknown utilities

    [Nushi et al., HCOMP’15; Singla, Tschiatschek, Krause, AAAI’16]

    Singla and Krause, poster

  • 8/18/2019 OpenSense2 - Nano-Tera 2016

    20/29

    OpenSense I I

    MobileSensor

    Deployments

    Data Quality

    Crowdsensing Air PollutionMapping

    Health ImpactStudy

    P B P M

  • 8/18/2019 OpenSense2 - Nano-Tera 2016

    21/29

    OpenSense I I

    P H Y S I C S - B A S E D P O L L U T I O N M A P P I N G :T H E G R A M M / G R A L M O D E L I N G F R A M E W O R K

    GRAMM

    Mesoscale weather

    precision model

    GRAL – Disp.

    Lagrangian dispersion

    model

    GRAL – CFD

    Computational fluid

    dynamics model

    Complex flow aroundthe city

    Accounts for topography

    and land cover effects

    Building-resolvingflow and turbulence

    Driven by GRAMM

    wind fields

    Building-resolving airpollution dispersion

    Driven by GRAL - CFD

    [Berchet et al., PHYSMOD’15; Zink et al. PHYSMOD’15]

    Zink et al., poster

  • 8/18/2019 OpenSense2 - Nano-Tera 2016

    22/29

    OpenSense I I

    M U L T I - Y E A R S I M UL A T I O N S O F N O X A N D P M 1 0

    • 5 m resolution, hourly output, 0-30 m above ground level

    •Lausanne: ten years, 10 emission categories

    • Zurich: two years (possible extension), 20 emission categories

    • Evaluation with in situ measurements:

    Bias < 10%

    Correlation > 0.7 for hourly concentrations

    Correlation > 0.8 for daily averages

    • Data transfer to IST/CHUV partners for population exposure

    Zurich, annual mean NOx

    Lausanne, annual mean NOx

    Comparison with NABEL NOx measurements in Lausanne

    Zink et al., poster

  • 8/18/2019 OpenSense2 - Nano-Tera 2016

    23/29

    OpenSense I I

    Street segment-based space

    discretization

    Modeled modality: LDSA

    (calibrated data from instrument)

    Types of models considered so

    far:

    • Log-linear regression

    • Network-based log-linear

    regression• Probabilistic Graphical Model

    • Deeply learned Artificial

    Neural Network

    D A T A - D R I V E N P O L L U T I O N M A P P I N G :

    R E C E N T E F F O R TS F O R T H E L A U S A N N E D E P L O Y M E N T

    [Marjovi et al., DCOSS’15]

    [Marjovi et al., SenSys’16, submitted]

    IDEA: Use sensor measurements in conjunction with other available explanatory data (land-

    use, meteorology) to augment pollution data for interpolation and extension beyond bus-

    network coverage

  • 8/18/2019 OpenSense2 - Nano-Tera 2016

    24/29

    OpenSense I I

    MobileSensor

    Deployments

    Data Quality

    Crowdsensing Air PollutionMapping

    Health ImpactStudy

  • 8/18/2019 OpenSense2 - Nano-Tera 2016

    25/29

    OpenSense I I

    I N TE GR AT IO N W IT H P A R A L L E L H E A L T H S T U D I E S

    Analyze association between health and pollution exposure

    Air pollution maps

    from OpenSense II

    Health data Exposure data

    Link data by GIS(N=6184, 2003-2012)

    (N=1100, 2009-2012)

    Note: preliminary work has shown association with blood pressure and short-term

    PM10 exposure [Tsai et al., Journal of Hypertension, 2015]

  • 8/18/2019 OpenSense2 - Nano-Tera 2016

    26/29

    OpenSense I I

    F I R S T C O R R E L A T I O N R E S U L T S ( P M 1 0 W I T H

    G R A M M / G R A L M O D E L A N D C O L A U S D A T A )

    -0.080

    -0.060

    -0.040

    -0.020

    0.000

    0.020

    0.040

    0.060

    0.080

       1  -   d   a   y

       1  -   w   e   e    k

       1  -   m   o   n   t    h

       1  -   d   a   y

       1  -   w   e   e    k

       1  -   m   o   n   t    h

       3  -   m   o   n   t    h

       6  -   m   o   n   t    h

       1  -   d   a   y

       1  -   w   e   e    k

       1  -   m   o   n   t    h

       1  -   d   a   y

       1  -   w   e   e    k

       1  -   m   o   n   t    h

       3  -   m   o   n   t    h

       6  -   m   o   n   t    h

       1  -   d   a   y

       1  -   w   e   e    k

       1  -   m   o   n   t    h

       1  -   d   a   y

       1  -   w   e   e    k

       1  -   m   o   n   t    h

       3  -   m   o   n   t    h

       6  -   m   o   n   t    h

       1  -   d   a   y

       1  -   w   e   e    k

       1  -   m   o   n   t    h

       1  -   d   a   y

       1  -   w   e   e    k

       1  -   m   o   n   t    h

       3  -   m   o   n   t    h

       6  -   m   o   n   t    h

    NABEL Model NABEL Model NABEL Model NABEL Model

       C    h   a   n   g   e   i   n   c   y   t   o    k   i   n   e   p   e   r   1   µ

       g    /   m   3   i   n   c   r   e   a   s   e   i   n   P   M   1   0

    CRP IL-1β   IL-6 TNF-α

    Association of different exposure durations with inflammatory markers by linear mixed models, adjusting

    for age, gender, BMI, smoking, alcohol, diabetes, hypertension, pressure, temperature and season.

    Tsai et al., poster

  • 8/18/2019 OpenSense2 - Nano-Tera 2016

    27/29

    OpenSense I I

    P I L O T S TU D Y O N P H Y S I C A L A C T I V I T Y V S .

    A I R P O L L U T I O N E X P O S U R E

    Design of a pilot study about physical activity on exposure to air pollution

    Report on recommendationOnce the pilot study is complete, we will send the volunteers recommendation reports

    80% of the datagathered

    Tsai et al., poster

  • 8/18/2019 OpenSense2 - Nano-Tera 2016

    28/29

    OpenSense I I

    C O N C L U S I O N S

    • OpenSense II seeks to integrate different air quality sensing platforms,

    including vehicular sensing networks, traditional monitoring stations, andnovel crowdsensing platforms.

    • Opensense II aims at developing technology and methods leading to end-

    to-end systems: sensory platforms (design, calibration, mobility), backend

    data management, modeling for mapping, crowdsensing (incentive and

    data quality), health impact (measurement and recommendations).

    • Data quality is critical when considering mobile measurements; more so

    if the measurements are crowdsourced.

    • The development of an innovative crowdsensing platform insuring

    reliable data quality at low cost is on-going, leveraging the NT StrategicAction OpenSWISS.

    • A scientific grand challenge within the project will be to compare and

    integrate physics-based with data-driven modeling methods.

  • 8/18/2019 OpenSense2 - Nano-Tera 2016

    29/29

    OpenSense I I

    O P ENS E N S E I I T E A M

    Alcherio Martinoli, EPFL-DISAL, PI

    • Adrian Arfire, PhD student

    •Emmanuel Droz, engineer

    • Ali Marjovi, postdoc

    Karl Aberer, EPFL-LSIR, Co-PI

    • Berker Agir, PhD student

    • Jean-Paul Calbimonte, postdoc

    • Julien Eberle, PhD student

    • Tian Guo, PhD student

    • Mehdi Riahi, PhD studentMurielle Bochud, CHUV-IUMSP, Co-PI

    • Dai-Hua Tsai, postdoc

    Lukas Emmenegger, EMPA, Co-PI

    • Antoine Berchet, postdoc

    • Dominik Brunner, senior researcher

    • Christoph Hüglin , senior researcher

    • Michael Müller, postdoc

    • Katrin Zink, postdoc

    Boi Faltings, EPFL-LIA, Co-PI

    • Goran Radanovic, PhD student

    Andreas Krause, ETHZ-LAS, Co-PI

    • Adish Singla, PhD student

    Michael Riediker, IST, Co-PI

    • Nicole Charrière, technical staff 

    •Nancy Hopf, senior researcher

    • Guillaume Suarez, postdoc

    Lothar Thiele, ETHZ-TIK, Co-PI

    • David Hasenfratz, PhD

    • Balz Maag, PhD student

    • Olga Saukh, postdoc

    • Zimu Zhou, postdoc