Lezione B.7 Correlare TQuArs – a.a. 2010/11 Tecniche quantitative per lanalisi nella ricerca...

24
Lezione B.7 Correlare TQuArs – a.a. 2010/11 Tecniche quantitative per l’analisi nella ricerca sociale Giuseppe A. Micheli

Transcript of Lezione B.7 Correlare TQuArs – a.a. 2010/11 Tecniche quantitative per lanalisi nella ricerca...

Page 1: Lezione B.7 Correlare TQuArs – a.a. 2010/11 Tecniche quantitative per lanalisi nella ricerca sociale Giuseppe A. Micheli.

Lezione B.7

Correlare

TQuArs – a.a. 2010/11Tecniche quantitative per l’analisi nella ricerca sociale

Giuseppe A. Micheli

Page 2: Lezione B.7 Correlare TQuArs – a.a. 2010/11 Tecniche quantitative per lanalisi nella ricerca sociale Giuseppe A. Micheli.

In questa lezione…

In questa lezione facciamo conoscenza con la principale misura di asso-ciazione, il coefficiente di correlazione lineare (xy). Esso si appli-ca a variabili entrambe quantitative, ed è efficace soprattutto se imma-giniamo ci possa essere un particolare tipo di relazione, quella definita da una funzione rettilinea.

Procederemo nella presentazione con questi passi:

Identificheremo la Covarianza come misura per eccellenza di calcolo del grado di ‘covariazione’ tra due fenomeni.

Perverremo al coefficiente xy normalizzando la covarianza e svolgeremo tramite esempi le procedure di calcolo.

Esamineremo le capacità diagnostiche di xy con riferimento alle opposte situazioni di perfetta indipendenza e di perfetta dipen-denza. Concluderemo confrontando le tre misure fin qui introdotte.

Page 3: Lezione B.7 Correlare TQuArs – a.a. 2010/11 Tecniche quantitative per lanalisi nella ricerca sociale Giuseppe A. Micheli.

Ripartiamo da uno scattern. Età al I f Mesi interc

1 16 56

2 16 72

3 17 66

4 19 75

5 20 48

6 22 54

7 23 66

8 25 36

9 25 42

10 26 48

11 26 36

12 27 39

13 29 36

14 30 33

15 32 36

16 33 27

Ripartiamo da un esempio già usato. Nel diagramma di dispersione la coordinata orizzontale indica l’età della madre al primo figlio, quella verticale il numero di mesi intercorsi tra il 2° e il 3° figlio.

25

35

45

55

65

75

15 20 25 30 35

Abbiamo già imparato che la linea ellissoida-le blu ci dà la sensa-zione che tra età al primo figlio (coordina-ta orizzontale) e inter-vallo di tempo tra le nascite successive (coordinata verticale) esista una sorta di as-sociazione inversa (più precoce la prima nascita, più ritardate le successive). Possiamo trovare qualche strumento per diagnosticare il

tipo di relazione (diretta, inversa) e per misurarla?

Page 4: Lezione B.7 Correlare TQuArs – a.a. 2010/11 Tecniche quantitative per lanalisi nella ricerca sociale Giuseppe A. Micheli.

e ripartiamo da Durkheim

La prima cosa che va chiarita è che ‘studiare l’associazione tra variabili’ non è un concetto unico, ma ne include due ben distinti:

una cosa è diagnosticare il tipo di associazione (quando au-menta X che fa Y: aumenta, cala, aumenta e poi cala, o cosa altro?)

altra cosa è studiare la strettezza dell’associazione individuata.

A noi basta fermarci (per ora) alla seconda proprietà. Ma come? Nel 1895, Durkheim aveva formulato in proposito il

Principio delle variazioni concomitanti: “se due fenomeni collettivi variano in modo concomitante tra loro o l’uno è causa dell’altro o ne è l’effetto, o comunque v’è tra essi una qualche relazione causale che passa attraverso altri caratteri intermedi”.

Page 5: Lezione B.7 Correlare TQuArs – a.a. 2010/11 Tecniche quantitative per lanalisi nella ricerca sociale Giuseppe A. Micheli.

Il centroide

25

35

45

55

65

75

15 20 25 30 35mx = 24,12

my=48,12

P= (my, mx)

Per capire il concetto di ‘variazione concomitante’ identifichiamo il 17.mo punto inserito nel nostro diagramma, e che mettiamo in evidenza con una stella. E’ il punto che ha per co-ordinate la media di X e la media di Y.

Sappiamo che la media è una specie di baricentro della distribuzione che sinte-tizza. Il punto all’incrocio delle due me-die è allora il baricentro della distri-buzione congiunta: non a caso lo si definisce centroidecentroide.

Prolunghiamo allora le due semirette, perpendicolari tra loro, delle coordinate di P. Esse costituiscono una nuova coppia di coordinate del grafico. Spostando l’attenzione su questa nuova coppia di assi è come se avessimo traslato l’origine degli assi nel centroide stesso.

Ora al posto della coordinata X abbiamo una sua trasformata (X - mX), e al posto della coordinata Y abbiamo la sua trasformata (Y - mY).

X-mX

Y-my

X

Y

Page 6: Lezione B.7 Correlare TQuArs – a.a. 2010/11 Tecniche quantitative per lanalisi nella ricerca sociale Giuseppe A. Micheli.

Buoni e cattivi

25

35

45

55

65

75

15 20 25 30 35mx

my

Ora il grafico è diviso in quattro parti, lungo le li-nee dei baricentri delle due variabi-li e si distinguono i buoni e i cattivi, ossia quelli so-pra e quelli sotto la media.

Sopra l’asse oriz-zontale i valori di Y sono sopra la media, sotto so-no inferiori alla media. A destra dell’asse vertica-le i valori di X sono sopra la media, a sinistra sotto la media.

(Y-my)>0 e (X-mX)<0 (Y-my)>0 e (X-mX)>0

(Y-my)<0 e (X-mX)<0 (Y-my)<0 e (X-mX)>0

IV

II

III

I

Page 7: Lezione B.7 Correlare TQuArs – a.a. 2010/11 Tecniche quantitative per lanalisi nella ricerca sociale Giuseppe A. Micheli.

Variazioni concomitanti

25

35

45

55

65

75

15 20 25 30 35mx

my

Ora le osserva-zioni si collocano tutte o quasi nel II e IV quadran-te, in cui le due coordinate hanno segno opposto: chi ha il primo fi-glio sotto i 24 anni frappone più di 48 mesi tra il secondo e il ter-zo, chi ha il pri-mo figlio oltre i 24 anni ha inve-ce intervalli infe-riori ai 4 anni tra secondo e terzo. Tra i 2 caratteri le variazioni so-no ‘concomitanti’

(Y-my)>0 e (X-mX)<0 (Y-my)>0 e (X-mX)>0

(Y-my)<0 e (X-mX)<0 (Y-my)<0 e (X-mX)>0

IV

II

III

I

Page 8: Lezione B.7 Correlare TQuArs – a.a. 2010/11 Tecniche quantitative per lanalisi nella ricerca sociale Giuseppe A. Micheli.

Distinguere tipo e intensità dell’associazione

36

42

48

54

60

66

15 18 21 24 27

X Età Y Mesi

16 40

18 40

18 45

20 45

20 48

22 54

23 53

24 56

24 61

25 58

25

35

45

55

65

75

15 20 25 30 35

Confrontiamo le situazioni A (già nota) e B: due sono le differenze importanti:

In A la relazione tra X e Y è inversa (al crescere di X cala Y), in B è diretta

In B la relazione è più stretta, in A è più lasca (lo si intuisce guardando la ‘larghezza’ delle ellissoidi con cui circoscriviamo le nuvole di punti)

I caratteri da diagnosticare e misurare sono due: tipo e intensità dell’associazioneI caratteri da diagnosticare e misurare sono due: tipo e intensità dell’associazione

A B

Page 9: Lezione B.7 Correlare TQuArs – a.a. 2010/11 Tecniche quantitative per lanalisi nella ricerca sociale Giuseppe A. Micheli.

I prodotti degli scarti come spie di una relazione

Cerchiamo allora una misura del grado di strettezza (e del tipo) dell’associazione. Dicotomizzando le variabili con i due nuovi assi abbiamo fatto assumere loro valori positivi (superiori alla media) e negativi (inferiori alla media). Diamo un’occhiata al segno delle nuove coordinate: nel I e III quadrante (quelli in cui si dovrebbero addensare i punti se c’è una relazione diretta, come nel caso B) i segni delle coordinate sono uguali tra loro, entrambi positivi (I quadrante) o entrambi negativi (III); negli altri due quadranti invece i segni sono alternati.

IDEA!! Facciamo il prodotto delle coordinate y*=Y-m e x*=X-m:

36

42

48

54

60

66

15 18 21 24 27

y*=Y-m

x*=X-m

y*>0

X*<0

y*<0

X*>0

y*<0

X*<0

y*>0

X*>0

quadrante

Segno della funzione:

(X-mx) (Y-my) (X-mx) x (Y-my)

I Positivo Positivo Positivo

II Negativo Positivo Negativo

III Negativo Negativo Positivo

IV Positivo Negativo NegativoA coordinate di segno uguale corrisponde un prodotto positivo; a coordinate di segno oppo-sto corrisponde un prodotto negativo.

Page 10: Lezione B.7 Correlare TQuArs – a.a. 2010/11 Tecniche quantitative per lanalisi nella ricerca sociale Giuseppe A. Micheli.

Fare la media tra i prodotti degli scarti

36

42

48

54

60

66

15 18 21 24 2725

35

45

55

65

75

15 20 25 30 35

Che succede ai prodotti (X-mx)(Y-my) in A e in B? in A i punti si collocano nel II e IV qua-drante e i pro-dotti sono tutti negativi. Nel caso B i punti si collocano nel I e III quadrante, i prodotti sono tutti positivi, la somma è una misura positiva assai elevata. Situazioni intermedie porteranno a misure intermedie.

A By*>0

X*<0

y*>0

X*<0

y*>0

X*>0

y*>0

X*>0

y*<0

X*<0y*<0

X*<0

y*<0

X*>0

y*<0

X*>0

IIII

III

I

IVIII IV

I

yxxy mYmXECov Covarianza è la media aritmetica dei Covarianza è la media aritmetica dei prodotti delle variabili-scarto ponde-prodotti delle variabili-scarto ponde-rate per le rispettive frequenze.rate per le rispettive frequenze.

Page 11: Lezione B.7 Correlare TQuArs – a.a. 2010/11 Tecniche quantitative per lanalisi nella ricerca sociale Giuseppe A. Micheli.

Calcolo della covarianza

N

nmymxmYmXECov i

iyixi

yxxy

)()(

Xii Yi ni (Xi-m) ni (Yi-m) ni (Xi-m) (Yi-m) ni

16 40 1 -5 -10 +50

18 40 1 -3 -10 +30

18 45 1 -3 -5 +15

20 45 1 -1 -5 +5

20 48 1 -1 -2 +2

22 54 1 1 4 +4

23 53 1 2 3 +6

24 56 1 3 6 +18

24 61 1 3 11 +33

25 58 1 4 8 +32

210 500 10 0 0 +195

CalcoliamoCalcoliamo la covarianza nel caso B, affiancando alle colonne delle x e delle y le colonne con i corrispondenti scarti dalle rispettive medie, poi quella dei prodotti tra gli scarti. In questo caso ogni coppia di osservazione è rilevata singolarmente quindi con numerosità 1 (la colonna delle numerosità è superflua).

Calcoli intermedi:

E(X) = 210/10=21

E(Y) = 500/10=50

E[(X-mX)(Y-mY)]=19,5

La covarianza è positiva, il che conferma la relazione

diretta tra X e Y: ma quanto è stretta? Ancora non sappiamo valutarlo..

Page 12: Lezione B.7 Correlare TQuArs – a.a. 2010/11 Tecniche quantitative per lanalisi nella ricerca sociale Giuseppe A. Micheli.

Formula operativa per il calcolo della covarianza

N

ny

N

nx

N

nyx

N

nmymxCov

ii

ii

iii

iiii

iyixi

xy

)()(

Xii Yi XiiYi

16 40 640

18 40 720

18 45 810

20 45 900

20 48 960

22 54 1188

23 53 1219

24 56 1344

24 61 1464

25 58 1450

210 500 10695

Come per la varianza, passare attraverso gli scarti dalle medie è una procedura lunga e carica di decimali. MA anche per la covarianza esiste una procedura operativa più snella. Si dimostra che la formula definitoria della CovXY equivale a

Calcoli intermedi: E(X)=210/10=21 E(Y)=500/10=50 E(XY)=1069,5 Cov(XY)=19,5

Il risultato è proprio lo stesso. Ma attenti a non invertire

minuendo e sottraendo, in tal caso senza accorgervene

invertireste il segno..

)()()( YEXEXYEmYmXECov yxxy

La covarianza è pari alla differenza tra la media della variabile prodotto XY e il prodotto delle medie di X e Y

Page 13: Lezione B.7 Correlare TQuArs – a.a. 2010/11 Tecniche quantitative per lanalisi nella ricerca sociale Giuseppe A. Micheli.

Proprietà della covarianza

La covarianza è la misura di base della ‘covariazione’ tra due carat-teri statistici. Essa possiede queste proprietà:

CovXY è una misura che cresce al crescere dell’associazione tra X e Y, sia che essa sia diretta, sia che sia inversa.

Il segno di CovXY riflette fedelmente il tipo di relazione: diretta se il segno è positivo, inversa se è negativo.

Si può mostrare che se X e Y sono tra loro indipendenti se X e Y sono tra loro indipendenti (stocasticamente o in media) allora Cov(stocasticamente o in media) allora CovXYXY è pari a zero è pari a zero.

Non possiamo invece dire con certezza che, se CovXY=0, allora c’è indipendenza stocastica, e nemmeno semplicemente indipen-denza in media. La covarianza nulla può essere il risultato di me-re compensazioni interne di calcolo. In tal caso si parla di indi-indi-pendenza correlativapendenza correlativa.

Page 14: Lezione B.7 Correlare TQuArs – a.a. 2010/11 Tecniche quantitative per lanalisi nella ricerca sociale Giuseppe A. Micheli.

Indipendenza e covarianza

X Y XY

1 4 4

2 1 2

3 5 15

4 1 4

5 3 15

1 2 2

2 3 6

3 4 12

4 5 20

5 2 10

30 30 90

X Y XY

1 4 4

2 3 6

3 2 6

4 1 4

5 0 0

1 6 6

2 7 14

3 8 24

4 9 36

5 10 50

30 50 150

0

1

2

3

4

5

6

0 1 2 3 4 5 60

2

4

6

8

10

0 1 2 3 4 5 6

In queste due situa-zioni di indipendenza stocastica (azzurro) e in media (giallo) troviamo conferma a quanto detto.

Calcoli intermedi: E(X) = 30/10=3 E(Y) = 30/10=3 E(XY)=9 CovXY=0

Calcoli intermedi: E(X) = 30/10=3 E(Y) = 50/10=5 E(XY)=15 CovXY=0

Se tra X e Y c’è indipendenza stoca-Se tra X e Y c’è indipendenza stoca-stica o anche solo in media allora stica o anche solo in media allora

CovCovXYXY è pari a zero è pari a zero

Page 15: Lezione B.7 Correlare TQuArs – a.a. 2010/11 Tecniche quantitative per lanalisi nella ricerca sociale Giuseppe A. Micheli.

La fallacy della covarianza nulla

X Y XY

0 25 0

1 16 16

2 9 18

3 4 12

4 1 4

6 1 6

7 4 28

8 9 72

9 16 144

10 25 250

50 110 550

0

5

10

15

20

25

0 2 4 6 8 10

In questa terza simulazione la covarianza è nulla. Eppure la forma così ‘lisciata’ del grafico non lascia ombra di dubbi che tra X e Y una qualche relazione esiste, anzi una relazione esatta!

Y = (X-mX)2

Ribadiamo allora la regola generale:

Calcoli intermedi: E(X)=5 E(Y) =11 E(XY)=55 CovXY=0

Se tra X e Y c’è indipendenza sto-Se tra X e Y c’è indipendenza sto-castica ocastica o in media allora Covin media allora CovXYXY = 0, = 0,

ma se Covma se CovXYXY = 0 possiamo solo = 0 possiamo solo dire che tra X e Y c’è dire che tra X e Y c’è

indipendenza ‘correlativa’indipendenza ‘correlativa’

Da che dipende questa trappola imbarazzante? Guardando il grafico si nota come la relazione è esatta, ma non rettilinea (è una parabola). Ha a che fare con questa ‘insofferenza alle

regole ’ di CovXY?

Page 16: Lezione B.7 Correlare TQuArs – a.a. 2010/11 Tecniche quantitative per lanalisi nella ricerca sociale Giuseppe A. Micheli.

Normalizzare la covarianza

Per rispondere all’ultima domanda occorre concludere l’elenco delle proprietà della covarianza, esaminando quelle che concernono il suo massimo

Sia in positivo sia in negativo, CovXY raggiunge lo stesso massi-mo quando l’associazione tra X e Y non solo è perfetta (conosciamo già il significato di perfetta dipendenza funzionale) ma si esprime in una relazione di tipo rettilineo.

A differenza della varianza, che non aveva un massimo (dipenden-do dall’ordine di grandezza e dalla numerosità della popolazione), CovXY possiede un massimo in valore assoluto (‘in modulo’), identificato dalla disuguaglianza di Cauchydisuguaglianza di Cauchy:

yxxyyx covyxxy covovvero

Usiamo separatamente le due proprietà. Con la seconda possiamo normalizzare la covarianza, rapportandola al suo massimo. Riprenderemo poi la prima proprietà, per dare una risposta alla domanda sulla fallacy della covarianza nulla.

Page 17: Lezione B.7 Correlare TQuArs – a.a. 2010/11 Tecniche quantitative per lanalisi nella ricerca sociale Giuseppe A. Micheli.

Il coefficiente di correlazione lineare

Chiamiamo la CovXY normalizzata coeffi-ciente di CORRELAZIONE LINEARE:CORRELAZIONE LINEARE:

1cov

1 yx

xyxy

Se guardiamo dentro alla formula, esplicitando le formule di covarianza e varianze, scopriamo che il coefficiente di correlazione lineare è la media del prodotto tra variabili standardizzate:

)(/)()(cov ****

iii

iiii

y

yi

i x

xi

yx

xyxy yxENnyx

N

nmymx

xy ha lo stesso segno della covarianza, perché il denominatore a cui viene rapportato è il prodotto di misure sempre positive (xy).

xy vale 1 in caso di perfetta correlazione lineare (cioè rettilinea) diretta, vale –1 in caso di perfetta correlazione lineare inversa. Se c’è indipendenza stocastica vale zero: ma non vale l’inverso..

Page 18: Lezione B.7 Correlare TQuArs – a.a. 2010/11 Tecniche quantitative per lanalisi nella ricerca sociale Giuseppe A. Micheli.

In caso di relazione non lineare..

Facciamo l’ipotesi di una relazione iperbolica Y=10/X. In tal caso tra X e Y c’è una relazione di perfetta dipendenza funzionale ma il coefficiente di correlazione non è massimo (confrontatelo col caso rettilineo a fianco). Come mai?

0

2

4

6

8

10

0 1 2 3 4 5 6 7

X Y XY

1 10 10

2 5 10

3 3,3 10

4 2,5 10

5 2 10

6 1,7 10

21 24,5 60

X Y XY

1 10 10

2 8 16

3 6 18

4 4 16

5 2 10

6 0 0

21 30 70

0

2

4

6

8

10

0 1 2 3 4 5 6 7

Il fatto è che in caso di relazioni - monotone almeno non decrescenti - anche perfette ma non lineari tra X e Y, pur essendoci perfetta associazione la cova-rianza non sarà massima perché alcuni punti della nuvola, non essendo rettilinea, si collocheranno nel quadrante ‘sbagliato’!

Per l’iperbole è cov=-4,29. Per la retta invece cov=-5,83. Ma

per confrontarle occorre passare ai coefficienti rxy (rispettivamente -0,879 e –1)

Page 19: Lezione B.7 Correlare TQuArs – a.a. 2010/11 Tecniche quantitative per lanalisi nella ricerca sociale Giuseppe A. Micheli.

..mantenere opportune cautele

La trappola si complica ancora se la relazione non solo non è lineare, ma nemmeno monotona. Se i punti della nuvola giacciono tutti su una parabola a due rami, come nell’esempio già fatto (ma anche su altre funzioni esatte, come una sinusoide), i segni dei prodotti degli scarti delle coordinate si compenseranno tra loro e produrranno addirittura una covarianza nulla!

Questi sono casi limite. Ma in generale possiamo affermare che

Un xy=0 non è garanzia di indipendenza tra X e Y, perché si può ottenere anche solo per mera compensazione interna tra i segni dei prodotti; meglio limitarsi a dire che tra X e Y sussiste indipendenza correlativa.

Un xy<1 non è garanzia di assenza di dipendenza funzionale perché questa misura isola come caso a sé solo quello della perfetta relazione lineare.

Page 20: Lezione B.7 Correlare TQuArs – a.a. 2010/11 Tecniche quantitative per lanalisi nella ricerca sociale Giuseppe A. Micheli.

Un primo esempio regione X Y X2 Y2 XY

Italia 0,42 0,82 0,176 0,672 0,344

Portogallo 0,59 0,76 0,348 0,578 0,448

Gran Bret. 0,65 0,74 0,422 0,548 0,481

Grecia 0,44 0,68 0,194 0,462 0,299

Spagna 0,32 0,67 0,102 0,449 0,214

Irlanda 0,39 0,67 0,152 0,449 0,261

Olanda 0,60 0,61 0,360 0,372 0,366

Austria 0,56 0,51 0,314 0,260 0,286

Belgio 0,60 0,50 0,360 0,250 0,300

Germania 0,53 0,50 0,281 0,250 0,265

Finlandia 0,72 0,45 0,518 0,202 0,324

Danimarca 0,78 0,42 0,608 0,177 0,328

TOTALE/N 0,55 0,61 0,320 0,389 0,326

L’European Community Household Pa-nel (1995), mette in relazione per 12 paesi europei due indicatori di ‘pari op-portunità’: X è la % di donne che lavo-ra, Y una misura ritenuta robusta della disuguaglianza nella distribuzione dei redditi familiari (niente di più del buon vecchio coefficiente di variazione!).

Cinque colonne bastano per calcolare deviazioni standard e covarianza.

0,4

0,5

0,6

0,7

0,8

0,9

0,3 0,4 0,5 0,6 0,7 0,8

E(X)=0,55; E(X2)=0,320; V(X)=0,0175 E(Y)=0,61; E(Y2)=0,389; V(Y)=0,0169 E(XY)=0,326; E(X)E(Y)=0,3355; Cov=-0,0095; XY= 0,0172; XY=-(0,0095/0,0172)=-0,55

Page 21: Lezione B.7 Correlare TQuArs – a.a. 2010/11 Tecniche quantitative per lanalisi nella ricerca sociale Giuseppe A. Micheli.

Altro esempio altra trappola regione X Y X2 Y2 XY

Piemonte 0,88 1,14 0,7744 1,2996 1,0032

Lombardia 0,88 0,75 0,7744 0,5625 0,6600

Trentino 0,91 1,00 0,8281 1,0000 0,9100

Veneto 0,89 0,85 0,7921 0,7225 0,7565

Friuli 0,85 1,23 0,7225 1,5129 1,0455

Liguria 0,80 0,96 0,6400 0,9216 0,7680

Emilia 0,88 1,29 0,7744 1,6641 1,1352

Toscana 0,84 0,86 0,7056 0,7396 0,7224

Umbria 0,83 1,01 0,6889 1,0201 0,8383

Marche 0,84 0,82 0,7056 0,6724 0,6888

Lazio 0,70 0,60 0,4900 0,3600 0,4200

Abruzzi 0,76 0,61 0,5776 0,3721 0,4636

Molise 0,71 0,58 0,5041 0,3364 0,4118

Campania 0,58 0,38 0,3364 0,1444 0,2204

Puglie 0,70 0,48 0,4900 0,2304 0,3360

Basilicata 0,64 0,67 0,4096 0,4489 0,4288

Calabria 0,55 0,46 0,3025 0,2116 0,2530

Sicilia 0,63 0,67 0,3969 0,4489 0,4221

Sardegna 0,65 0,86 0,4225 0,7396 0,5590

Un altro esempio su 19 regioni ita-liane (senza la Val d’Aosta). Sia X= tasso di occupazione giovani 25-34 anni e Y=suicidi per milione di abi-tanti (‘92). Dalle colonne si ottiene Cov=+0,0258 XY= 0,0353, quindi XY=+0,73. Il coefficiente è mol-to elevato: ma siamo davvero sicuri che occupazione e suicidio vadano di pari passo? (si considerino sepa-ratamente le due cerchie delle re-gioni del centronord e del sud)

0,3

0,5

0,7

0,9

1,1

1,3

0,5 0,6 0,7 0,8 0,9 1

Page 22: Lezione B.7 Correlare TQuArs – a.a. 2010/11 Tecniche quantitative per lanalisi nella ricerca sociale Giuseppe A. Micheli.

Calcolare la covarianza su tabelle a due entrate

N

ny

N

nx

N

nyx

N

nmymxCov

ji

ji

iii

ijjii

ijyjxi

xy

)()(

Il calcolo della covarianza e di può essere effettuato su qualunque coppia di va-riabili quantitative, anche se in forma di tabella. In questo caso nella formula compare correttamente il doppio suffisso per riga (i) e colonna (j).

Come per le serie disaggregate le statistiche intermedie da calcolare sono 6:

la numerosità N la numerosità N

La media di X E(X)La media di X E(X)

La media di Y E(Y)La media di Y E(Y)

Il momento secondo di X E(XIl momento secondo di X E(X22))

Il momento secondo di Y E(YIl momento secondo di Y E(Y22))

La media del prodotto, E(XY).La media del prodotto, E(XY).

L’unica statistica noiosa da calcolare, in questo caso, è E(XY). Occorre infatti,

per ogni casella non nulla della tabella, calcolare il prodotto tra le due modalità

di riga e di colonna e la numerosità riportata in casella (xiyjnij), sommarle

poi tutte e dividerle per N.

Page 23: Lezione B.7 Correlare TQuArs – a.a. 2010/11 Tecniche quantitative per lanalisi nella ricerca sociale Giuseppe A. Micheli.

Un ultimo esempio

Yj =I.Vec

Xi=P.Letto

60-120y1=90

120-180y2=150

180-240y3=210 Nj Xi ni Xi

2ni

100-250[x1=125] 1 2 1 4 500 62500

50-100 [x2=75] 4 2 0 6 450 33750

0-50 [x3=25] 3 4 3 10 250 6250

N.j 8 8 4 N=20 1200 102500

Yj nj 720 1200 840 2760

Yj2nj 64800 180000 176400 421200

Riprendiamo l’esempio della distribuzione delle 20 regioni per indice di vecchiaia e numero di posti letto geriatrici. In blu le numerosità congiunte, in nero modalità e numerosità, in rosso le elaborazioni successive, in marrone il calcolo di E(XY).

E(X)=60 E(X2)=5125 E(Y)=138 E(Y2)=21060 V(X)=1525 V(Y)=2016 X=39,05 y=44,90

E(XY)={(125x90x1)+(125x150x2)+(125x210x1)+ (75x90x4)+(75x150x2)+(25x90x3)+(25x150x4)+ (25x210x3)}/20= {11250+37500+26250+27000+ 22500+6750+15000+15750}/20 = 8100

Cov = E(XY) – E(X)E(Y) = 8100-(60x138)= -180

XY=rXY=(-180)/(39,05x44,90)= -180/1753 = -0,10

Page 24: Lezione B.7 Correlare TQuArs – a.a. 2010/11 Tecniche quantitative per lanalisi nella ricerca sociale Giuseppe A. Micheli.

Confrontare tre misure

Il coefficiente di correlazione è dunque per certi versi molto occhiuto (separa at-tentamente diversi tipi di dipendenza perfetta), per altri molto miope (non distin-gue diversi tipi di indipendenza). Confrontiamo allora le capacità diagnostiche delle tre misure di associazione studiate: 2 , 2 , ||

Situazioni di Indipendenza 2 = 2 = || =

Indipendenza stocastica 0 0 0

Indipendenza in media Tra 0 e 1 0 0

Indipendenza correlativa Tra 0 e 1 Tra 0 e 1 0

Situazioni di Dipendenza 2 = 2 = || =

Relazione non lineare non monotona 1 1 <1

Relazione non lineare monotona 1 1 >0 e <1

Relazione lineare 1 1 1

Misure diverse sono sensibili a situazioni limite differenti. Utilizzarne dunque più di una permette un miglior dettaglio nella diagnosi