I percorsi dei raggi di luce -...

download I percorsi dei raggi di luce - epsilonzeroepsilonzero.altervista.org/pdf/percorsiluce-appunti.pdf · ... che trasmettono la luce ma non le immagini). Un corpo illuminato, ... verifica

If you can't read please download the document

Transcript of I percorsi dei raggi di luce -...

  • I percorsi dei raggi di luce

    1. Il modello dei raggi luminosi e l'ottica geometrica

    La luce il fenomeno fisico che associamo all'idea della visione e all'occhio, l'organo della vista. Noi vediamo

    perch

    a) alcuni oggetti emettono luce

    b) altri oggetti rimandano (in vario modo) la luce che ricevono

    c) parte di questa luce arriva agli occhi, che nella retina contengono rivelatori i quali trasmettono segnali nervosi al

    cervello

    d) il cervello interpreta questi segnali.

    Noi cio vediamo i corpi che si trovano attorno a noi quando la luce provenienti da essi raggiunge i sensori di luce

    che si trovano nei nostri occhi, quando i segnali nervosi corrispondenti raggiungono il cervello e quando questo li

    elabora creando un'immagine di ci che ci circonda. Vediamo le sorgenti luminose, come il Sole o una lampadina,

    che emettono luce propria; ma possiamo vedere anche i corpi illuminati, che rimandano indietro, pi precisamente

    diffondono, la luce diretta ricevuta da una sorgente o quella diffusa a loro volta da altri corpi illuminati. Non

    vediamo per i corpi riflettenti, che riflettono le immagini di ci che li circonda.

    Nella maggior parte dei casi la luce viene prodotta per emissione termica, cio quando i corpi si trovano a

    temperature sufficientemente alte, approssimativamente oltre 1200 K. Il filamento di una comune lampadina, per

    esempio, viene riscaldato elettricamente attorno a 2400 K, la superficie del Sole si trova a circa 5800 K.

    I corpi opachi non trasmettono apprezzabilmente la luce che li investe; i corpi trasparenti ne lasciano passare una

    buona frazione (fra questi si chiamano traslucidi quelli, come un foglio di carta oleata, che trasmettono la luce ma

    non le immagini). Un corpo illuminato, in generale, rimanda indietro una frazione (r) della luce ricevuta, ne assorbe

    un'altra parte (a) e trasmette il resto (t); dato che la luce una forma di energia, il principio di conservazione

    dell'energia impone che sia: r+a+t = 1. La luce si propaga anche nel vuoto, che il mezzo pi trasparente perch in

    esso non si verificano fenomeni di assorbimento (t=1 e a=0). Infatti siamo illuminati dal Sole, che si trova a 150

    milioni di chilometri dalla Terra, e possiamo vedere la luce proveniente da stelle a distanze enormemente maggiori.

    I corpi chiari rimandano indietro gran parte della luce, quelli scuri una frazione minore. Ma spesso le propriet sia

    di assorbimento che di trasmissione dei corpi dipendono dal colore della luce. Un corpo rosso, per esempio, ci

    appare tale perch rimanda indietro la maggior parte della luce rossa, mentre assorbe quella degli altri colori. Un

    corpo bianco diffonde invece allo stesso modo tutti i colori, mentre un corpo nero li assorbe tutti fortemente. La

    trasparenza dei corpi dipende dall'entit dei fenomeni di assorbimento nella propagazione della luce attraverso di

    essi. Si capisce allora che la trasparenza di un corpo dipende dal suo spessore: un materiale che noi consideriamo

    usualmente opaco, come un metallo, risulta trasparente quando il suo spessore sufficientemente piccolo, mentre

    un mezzo che consideriamo trasparente, per esempio l'acqua, invece opaco per grandi spessori: nelle profondit

    del mare regna infatti il buio pi assoluto.

    La nozione di raggio luminoso che si propaga in linea retta rientra nella

    nostra esperienza comune sin dall'infanzia: quando un fascio di luce penetra

    in una stanza buia attraverso le finestre socchiuse, osserviamo i raggi

    luminosi che attraversano l'ambiente; quando la luce del Sole penetra fra le

    nuvole vediamo distintamente i raggi solari che attraversano il cielo

    sottostante.

    I raggi luminosi, di per s, sono invisibili. Noi li vediamo soltanto quando

    la luce incontra minuscole particelle sospese nell'aria (pulviscolo, fumo,

    goccioline d'acqua) che la diffondono attorno, sicch essa pu raggiungere i

    nostri occhi.

    Il concetto di raggio luminoso, indipendentemente dalla sua natura fisica, quindi inteso come ente geometrico

    derivato dall'osservazione che sia possibile realizzare sottili pennelli luminosi schematizzabili come segmenti

    rettilinei. Questo modello, che permette di interpretare in modo assai semplice molti fenomeni luminosi, ha il

    vantaggio di descrivere facilmente il processo di formazione delle immagini, ma bisogna tener presente che, per sua

    natura, un modello approssimato e non risponde alla realt: infatti non possibile isolare un raggio di luce.

    La nozione di raggio luminoso comunque alla base di quella parte dell'ottica che prende il nome di ottica

    geometrica e tratta essenzialmente della propagazione, riflessione e rifrazione della luce con particolare riferimento

    alla formazione delle immagini.

    I percorsi dei raggi di luce pag. 1

  • 2. La propagazione rettilinea.

    Alla conclusione che la luce si propaga in linea retta si arriva anche esaminando il fenomeno della formazione delle

    ombre.

    L'ostacolo intercetta una parte dei raggi emessi dalla sorgente

    puntiforme, creando un cono d'ombra che sullo schermo si

    manifesta formando un'ombra ben netta.

    Se la sorgente estesa, la presenza dell'ostacolo produce sullo

    schermo una regione di ombra totale, che nessun raggio

    luminoso raggiunge, contornata da una di penombra, che

    raggiunta soltanto da una parte dei raggi diretti verso di essa.

    Fenomeni d'ombra particolarmente vistosi,

    oggetto in passato di stupore e di timore, sono le

    eclissi, che avvengono quando la Terra, il Sole e

    la Luna si trovano allineati. L'eclissi di Sole si

    verifica quando la Luna viene a trovarsi allineata

    fra il Sole e la Terra, intercettando i raggi solari

    in modo da oscurare il Sole, tutto (eclissi totale)

    o in parte (eclissi parziale), in determinate

    regioni del nostro pianeta. Nell'eclissi di Luna

    invece la Luna a venire oscurata (tutta o in

    parte); ci avviene quando la Terra, trovandosi

    fra il Sole e la Luna, intercetta i raggi solari

    diretti verso il nostro satellite, che cos non viene

    pi illuminato.

    La propagazione rettilinea dei raggi luminosi fornisce

    una semplice spiegazione del funzionamento della

    camera oscura: uno strumento ottico di origine molto

    antica che costituisce parte essenziale delle macchine

    fotografiche e delle telecamere, per questo cos

    denominate.

    Gi noto ad Aristotele, studiato dal grande scienziato arabo

    Alhazen nell'XI secolo e descritto poi in dettaglio da

    Leonardo, questo strumento fu usato nei secoli scorsi da molti

    pittori, in particolare dal Canaletto e altri vedutisti veneziani,

    per ottenere prospettive realistiche. Per camera oscura,

    inizialmente, s'intendeva una stanza buia, con una parete

    dotata di un piccolo foro: chi stava al suo interno vedeva sulla

    parete opposta al foro l'immagine capovolta di ci che si

    trovava all'esterno del foro. In seguito, a partire dal

    Rinascimento, si diffuse l'impiego di camere oscure portatili,

    costituite da una scatola con un foro in una parete e la parete

    opposta costituita da un foglio di carta pergamena o di vetro

    smerigliato, sul quale si poteva osservare l'immagine.

    Funzionamento di una camera oscura.

    La parete posteriore semitrasparente della scatola raggiunta

    soltanto dai raggi passanti per il foro. L'immagine

    capovolta: il raggio proveniente dal punto A dell'oggetto

    illuminato, in alto, raggiunge la parete nel punto B, in basso.

    I percorsi dei raggi di luce pag. 2

  • Applicazione: Eratostene e la misura del raggio terrestre.

    Il matematico, geografo ed astronomo Eratostene (III secolo a.C.),

    direttore della grande biblioteca di Alessandria d'Egitto era venuto a

    conoscenza del fatto che a Syene (l'attuale Assuan), a mezzogiorno

    del solstizio d'estate (21 giugno), il Sole si trovava proprio sullo zenit,

    tanto che il fondo di un pozzo profondo ne veniva illuminato, perci

    un bastone piantato verticalmente in un terreno perfettamente

    pianeggiante non avrebbe proiettato alcuna ombra in terra. Invece ad

    Alessandria questo non succedeva mai, gli obelischi proiettavano

    comunque la loro ombra sul terreno. Eratostene ipotizz la Terra

    perfettamente sferica ed il Sole sufficientemente distante da

    considerare paralleli i raggi che la investono. Inoltre assunse che

    Alessandria e Syene si trovassero sullo stesso meridiano, cio su una

    di quelle ideali circonferenze massime che passano per i due poli

    terrestri.

    Eratostene dedusse che, se si misurava l'ombra proiettata da un

    bastoncino verticale ad Alessandria, e quindi l'angolo che i raggi del

    Sole facevano con la verticale di quel luogo, essendo nota la distanza

    fra Alessandria e Siene, con una semplice proporzione, si poteva

    ricavare il valore della circonferenza terrestre.

    Durante il solstizio d'estate calcol l'angolo di elevazione del Sole ad

    Alessandria, misurando l'ombra proiettata proprio da un bastone

    piantato in terra, ricavando approssimativamente un valore di 1/50 di

    circonferenza (cio 7 12').

    Siccome angoli uguali sottendono archi di cerchi uguali, in questo caso la parte di meridiano compresa tra le due citt, con

    una proporzione si ha la lunghezza del meridiano terrestre:

    distanza fra le citt : angolo = meridiano: 360 gradi

    La distanza tra le due citt, basata sui trasferimenti delle carovane, era stimata in 5.000 stadia (circa 800 km, tuttavia il valore

    preciso dello stadium non noto con certezza), perci la circonferenza della Terra doveva essere di 250.000 stadia (circa

    40.000 km, valore straordinariamente vicino a quello ottenuto con metodi moderni).

    3. La riflessione della luce

    Quando un raggio di luce incontra un ostacolo opaco o trasparente esso pu essere riflesso, assorbito o trasmesso

    (riflessione e assorbimento riguardano sia il corpo trasparente sia quello opaco, la trasmissione solo quello

    trasparente). Se la superficie del corpo liscia (ad esempio uno specchio o una superficie metallica lucidata), allora

    il fenomeno prende il nome di riflessione.

    Con questo semplice esperimento si pu studiare la riflessione che

    subiscono i raggi di luce incidenti su una superficie speculare, grazie

    ad uno specchio piano disposto in verticale. Non necessario

    disporre di una fonte luminosa per produrre i raggi di luce, ma si

    utilizza l'allineamento ottico tra due coppie di spilli, sfruttando la

    propriet della propagazione rettilinea della luce.

    Le due leggi della riflessione (o leggi di Snell) sono le seguenti:

    - il raggio incidente, il raggio riflesso e la normale alla superficie

    di separazione fra i due mezzi giacciono tutti nello spesso piano;

    - l'angolo di incidenza (i), compreso fra il raggio incidente e la

    normale, uguale all'angolo di riflessione (r), compreso fra il

    raggio riflesso e la normale: i = r

    I percorsi dei raggi di luce pag. 3

  • Se scambiamo la posizione della sorgente che emette il raggio incidente con quella dell'occhio che osserva il raggio

    riflesso, il percorso dei raggi di luce rester lo stesso, ma sar compiuto nel senso opposto. Questo un caso

    particolare di un principio generale dell'ottica geometrica, chiamato principio di invertibilit dei cammini ottici, che

    naturalmente vale anche per il raggio incidente e il raggio rifratto.

    Il fenomeno della riflessione pu manifestarsi in modi molto diversi. Quando inviamo un fascetto di luce su uno

    specchio, sulla superficie liscia si ha riflessione speculare: se il fascetto formato da raggi paralleli e lo specchio

    piano, anche i raggi riflessi saranno paralleli fra loro.

    Assai diverso invece ci che accade quando il fascetto di raggi investe una superficie scabra, come un foglio di

    carta, la cui superficie ricca di minuscole asperit. Le leggi della riflessione restano valide, ma la direzione della

    normale alla superficie del foglio diversa in ogni suo punto sicch i raggi riflessi vengono sparpagliati attorno: si

    ha riflessione diffusa o semplicemente diffusione. Diciamo allora che il foglio di carta diffonde attorno, pi o meno

    in tutte le direzioni, la luce che lo investe. Ci ha una importante conseguenza per la visione: quando guardiamo un

    foglio di carta (o qualsiasi altro oggetto diffondente, cio la maggior parte degli oggetti) noi vediamo il foglio di

    carta; quando invece guardiamo uno specchio, non vediamo lo specchio ma l'immagine riflessa di ci che gli sta

    attorno.

    Fenomeni analoghi si verificano anche quando lanciamo un palla contro un muro: se questo liscio possiamo

    prevedere esattamente in che direzione essa rimbalza, ma se ha una superficie irregolare la direzione del rimbalzo

    tutt'altro che determinata.

    4. Gli specchi piani

    La propriet essenziale degli specchi quella di fornire immagini. Vediamo

    in dettaglio cosa avviene, esaminando la figura.

    Ogni punto di un oggetto O, illuminato dalla luce presente nell'ambiente,

    diffonde la luce in tutte le direzioni in forma di raggi luminosi. Alcuni di

    questi raggi raggiungono la superficie dello specchio e vengono riflessi.

    Alcuni raggi riflessi, infine, raggiungono i nostri occhi. Il cervello, abituato

    alla propagazione della luce in linea retta, vede il punto da cui provengono

    questi raggi come se si trovasse dietro allo specchio. Se lo specchio piano,

    come quello in figura, il punto immagine I si forma a una distanza q dallo

    specchio uguale a quella p fra lo specchio e il punto oggetto O, cio in

    posizione simmetrica rispetto allo specchio. Lo stesso avviene per qualsiasi

    altro punto dell'oggetto, sicch l'immagine complessiva diritta e ha le stesse

    dimensioni dell'oggetto, ma sembra che scambi la destra con la sinistra.

    Osservazione: La natura fisica dell'immagine fornita da uno specchio piano assai diversa da quella dell'immagine

    di una camera oscura. Quella della camera oscura una immagine reale: formata dai raggi provenienti dalla

    sorgente e quindi pu essere raccolta su uno schermo. Quella dello specchio invece un'immagine virtuale:

    sebbene sia visibile, formata dai prolungamenti all'indietro dei raggi e quindi non pu essere raccolta su uno

    schermo.

    5. Gli specchi curvi

    Per farsi un'idea del funzionamento degli specchi curvi, basta guardarsi in un cucchiaio di metallo, la cui parte

    interna uno specchio concavo, quella esterna uno specchio convesso. Si nota innanzitutto che le immagini sono

    alquanto distorte, a differenza di quanto avviene con gli specchi piani. Quando si guarda nella parte esterna del

    cucchiaio, le immagini sono diritte e rimpicciolite; guardando in quella interna, esse possono essere sia diritte che

    capovolte, sia ingrandite che rimpicciolite.

    I percorsi dei raggi di luce pag. 4

  • Specchi curvi con una geometria ben definita sono gli specchi sferici,

    costituiti da una calotta sferica, cio una porzione di superficie sferica.

    La figura rappresenta uno specchio sferico concavo: si chiama asse ottico la

    retta passante per il centro della sfera e il vertice dello specchio; apertura

    l'angolo che definisce l'estensione angolare dello specchio; raggio di

    curvatura il raggio della superficie sferica cui appartiene la calotta.

    La superficie riflettente quella interna per gli specchi concavi, esterna per

    quelli convessi.

    Consideriamo ora un fascio di raggi paralleli all'asse ottico che illumina uno

    specchio concavo, proveniente per esempio da una sorgente luminosa molto

    distante. Applicando a ciascuno dei raggi le leggi della riflessione, si trova

    che il fascio riflesso converge approssimativamente in un punto chiamato

    fuoco dello specchio (l'approssimazione molto buona per i raggi che

    incidono nella parte centrale dello specchio, meno buona per gli altri). Il

    fuoco costituisce pertanto l'immagine della sorgente: si tratta di una

    immagine reale, che pu essere raccolta su uno schermo. Il fuoco (F) si trova

    sull'asse ottico a una distanza dal vertice, che prende il nome di distanza

    focale dello specchio, pari a met del raggio di curvatura.

    Per ottenere la convergenza esatta nel fuoco per tutti i raggi di un fascio parallelo all'asse ottico occorre usare un specchio

    parabolico, la cui superficie un paraboloide ottenuto dalla rotazione di una parabola intorno al suo asse di simmetria, che

    costituisce l'asse ottico dello specchio. Questa la ragione per cui in tanti impieghi si usano specchi di questa forma

    particolare, la cui lavorazione assai meno facile di quelli sferici. Sono parabolici, per esempio, gli specchi usati nei telescopi

    a riflessione, che raccolgono al meglio la luce di stelle lontane concentrandole poi su una lastra fotografica o su un rivelatore

    elettronico. Sono parabolici gli specchi usati nei fari delle automobili; questi sono usati all'inverso, grazie al principio di

    invertibilit dei percorsi ottici: la sorgente luminosa viene posta nel fuoco della parabola per ottenere un fascio di raggi

    paralleli che illumini la strada senza disperdersi attorno. Sono paraboliche anche le antenne impiegate per ricevere i segnali Tv

    dai satelliti e quelle usate dai radioastronomi per captare i segnali radio emessi da corpi celesti.

    6. Le immagini degli specchi sferici.

    Consideriamo la costruzione delle immagini fornite da specchi sferici di piccola apertura, in modo da poter

    trascurare la distorsione delle immagini. Tale operazione facilitata quando si considerano raggi incidenti che

    hanno direzioni particolari, per i quali immediato individuare le direzioni dei raggi riflessi corrispondenti.

    Questi raggi, detti raggi principali, si possono dedurre con le leggi della riflessione:

    - i raggi paralleli all'asse ottico vengono riflessi nella direzione che passa per il fuoco;

    - i raggi che passano per il fuoco dello specchio vengono riflessi in direzione parallela all'asse ottico (percorrendo

    all'inverso il cammino dei raggi paralleli all'asse ottico);

    - i raggi che incidono normalmente allo specchio, perch passano per il suo centro, vengono riflessi all'indietro

    nella stessa direzione da cui provengono.

    I raggi principali per uno specchio sferico concavo I raggi principali per uno specchio sferico convesso

    I percorsi dei raggi di luce pag. 5

  • L'immagine di un oggetto esteso si ottiene ricavando le immagini dei suoi punti.

    Per ciascun punto P dell'oggetto si individua il corrispondente punto immagine P' dove s'incontrano due raggi

    riflessi provenienti da P (o il prolungamento all'indietro di due di essi).

    Se lo specchio, o in generale un sistema ottico, non distorce le immagini, passer per P' anche qualsiasi altro raggio

    proveniente da P, che colpisce lo specchio. Ciascuna di queste coppie di punti, P e P', prende il nome di punti

    coniugati: infatti, per il principio di invertibilit dei percorsi ottici, come il punto immagine P' raggiunto dai raggi

    provenienti dal punto oggetto P, cos P sarebbe raggiunto dai raggi che provenissero da P'.

    Le costruzioni eseguite con questo metodo, mostrano che le caratteristiche delle immagini di uno specchio concavo

    dipendono dalla posizione dell'oggetto rispetto allo specchio. In particolare,

    - quando l'oggetto si trova oltre il centro dello specchio, l'immagine reale, capovolta e rimpicciolita;

    - quando si trova fra il centro e il fuoco, l'immagine reale, capovolta e ingrandita;

    - quando si trova fra lo specchio e il fuoco, l'immagine virtuale, diritta e ingrandita.

    Nel caso di uno specchio convesso le immagini sono sempre virtuali, diritte e rimpicciolite, dovunque sia posto

    l'oggetto. Ci in accordo col fatto che i raggi che colpiscono lo specchio vengono comunque deviati in modo da

    divergere, sicch l'immagine sempre definita dai prolungamenti all'indietro dei raggi riflessi.

    Esercizio: eseguire, con matita e righello oppure utilizzando qualche simulazione al computer, la costruzione

    geometrica delle immagini con il metodo dei raggi principali descritte, verificando le propriet dell'immagine

    elencate in tabella.

    I percorsi dei raggi di luce pag. 6

  • 7. La formula dei punti coniugati per gli specchi sferici

    La posizione del punto immagine P' di un punto oggetto P per uno specchio sferico concavo pu essere ottenuta,

    oltre che con metodi geometrici, anche utilizzando la seguente relazione algebrica chiamata formula dei punti

    coniugati, anch'essa basata sulle leggi della riflessione

    1

    p

    1

    q=

    1

    f(dove p la distanza del punto oggetto dal vertice dello specchio, q la distanza del punto immagine dal vertice

    dello specchio e f la distanza focale dello specchio).

    Esaminando la formula si osserva che essa simmetrica in p e q; ci significa che verificata anche quando si

    scambiano le posizioni dell'oggetto e dell'immagine, che infatti sono due punti coniugati fra loro. Si osserva poi

    che, fissato f, quanto pi p grande (cio l'oggetto lontano) tanto pi q piccolo (cio l'immagine vicina allo

    specchio); pi precisamente, quando p tende all'infinito, e quindi 1/p tende a zero, q tende a f cio, come gi

    sapevamo, l'immagine di un punto all'infinito si forma nel fuoco di uno specchio concavo.

    Se l'immagine virtuale, perch il punto oggetto si trova fra il fuoco e lo specchio, la posizione dell'immagine che

    si ricava dalla formula un numero negativo, dato che p minore di f e quindi 1/p maggiore di 1/f. Per esempio,

    se abbiamo f = 1 m, e p = 0,5 m, otteniamo: q = 1/(1-2) = -1 m. Il segno negativo di q s'interpreta cos: l'immagine

    non reale, ma virtuale, e quindi il punto immagine si trova dall'altra parte dello specchio, a distanza |q| dal vertice.

    La formula resta valida anche se lo specchio convesso, purch si attribuiscano alle grandezze in gioco segni

    opportuni e si interpreti opportunamente il segno dei risultati che essa fornisce.

    Pi precisamente, per qualsiasi specchio sferico

    - la distanza focale f positiva per uno specchio concavo (dove i raggi paralleli convergono nel fuoco), negativa per

    uno convesso (dove nel fuoco convergono i prolungamenti dei raggi);

    - la distanza q positiva se l'immagine reale, negativa se virtuale;

    - la distanza p positiva se l'oggetto reale (cio sempre, se si tratta di un oggetto fisico), negativa se virtuale

    (cio quando l'oggetto a sua volta una immagine, fornita da altri dispositivi).

    8. L'ingrandimento lineare delle immagini

    Abbiamo visto che gli specchi sferici forniscono, a seconda dei casi, immagini ingrandite o rimpicciolite.

    Questa caratteristica si formalizza definendo l'ingrandimento lineare G come rapporto fra la lunghezza A'B'

    dell'immagine e quella AB dell'oggetto: G=A' B '

    AB . Si dimostra che l'ingrandimento dipende dalla posizione

    dell'oggetto e da quella dell'immagine secondo la relazione: G=q

    p

    Tale espressione, nel caso particolare di uno specchio concavo che

    fornisce un'immagine reale, si ricava immediatamente dalla

    similitudine fra i triangoli ABV e A'B'V, tenendo presente che gli

    angoli i ed r sono uguali e che le frecce AB e A'B' sono dirette in

    versi opposti.

    Nel caso in figura le grandezze p e q sono entrambe positive, e

    quindi l'ingrandimento G risulta negativo: ci sta a indicare che

    l'immagine capovolta.

    La formula valida in generale, per specchi sferici concavi o

    convessi e per immagini reali o virtuali, purch si seguano le

    convenzioni per i segni date sopra e si tenga presente che un

    valore positivo dell'ingrandimento indica che l'immagine diritta,

    un valore negativo che capovolta.

    L'ingrandimento lineare A'B'/AB dato dal

    rapporto p/q. I due triangoli rettangoli in giallo

    sono infatti simili, dato che gli angoli r ed i sono

    uguali.

    I percorsi dei raggi di luce pag. 7

  • 9. La rifrazione della luce

    Guardando di fianco un bicchiere di vetro riempito d'acqua dove immersa una matita, questa ci appare spezzata;

    riempiendo d'acqua una vaschetta opaca dove sul fondo si trova una moneta, questa appare d'un tratto alla nostra

    vista. Queste curiose osservazioni, e altre simili, trovano spiegazione nel fenomeno della rifrazione, cio nel

    cambiamento di direzione che subiscono i raggi luminosi quando passano da un mezzo trasparente ad un altro come

    avviene nel passaggio dall'aria all'acqua, dall'aria al vetro ...

    La deviazione che subisce un raggio di luce nel

    passaggio da un mezzo a un altro pu essere studiata

    grazie a un blocchetto di plexiglas di forma

    semicilindrica. Questa forma particolare consente di

    ottenere una semplificazione del fenomeno da

    esaminare. Inoltre non necessario disporre di una fonte

    di luce per produrre il raggio, ma si pu utilizzare

    lallineamento ottico tra due coppie di spilli, sfruttando

    la propriet della propagazione rettilinea della luce.

    L'esperimento si pu eseguire anche con una lastra

    trasparente con le facce parallele. I punti P e Q indicano

    la posizione degli spilli che individuano il raggio

    incidente, in R ed S vanno collocati gli spilli che

    individuano il raggio che esce dalla lastra dopo due

    rifrazioni. Si pu risalire al percorso OO' dei raggi

    all'interno del mezzo trasparente e studiare quindi la

    rifrazione nel punto O. Si cerca una relazione tra i

    segmenti FH e KG.

    Il fenomeno del passaggio di un raggio di luce da un mezzo adun altro descritto dalle due seguenti leggi della rifrazione, laseconda delle quali chiamata legge di Snell-Cartesio.

    - Il raggio incidente, quello rifratto e la normale alla superficie

    di separazione giacciono in uno stesso piano; - L'angolo d'incidenza i e quello di rifrazione r sono legati dalla

    relazione: sin i

    sin r=n12

    dove n12

    una costante detta indice di rifrazione relativo del

    mezzo 2 rispetto al mezzo 1.

    Essa tabulata per le varie sostanze (ad una ben precisa lunghezza

    d'onda) assumendo come mezzo 1 il vuoto a cui,

    convenzionalmente, si attribuisce un valore di indice di rifrazione

    pari a uno. Gli indici di rifrazione cos tabulati si chiamano indice di

    rifrazione assoluti. Essi sono numeri puri sempre maggiori di 1.

    Gli indici di rifrazione assoluti consentono di ricavare gli indici di

    rifrazione relativi secondo la regola

    n1 2=n2

    n1

    Utilizzando gli indici di rifrazione assoluti la legge di Snell assume la forma n1sin 1=n2sin 2 , senza la

    necessit di distinguere tra raggio incidente e raggio rifratto, ancora per il principio di invertibilit del cammino

    ottico.

    I percorsi dei raggi di luce pag. 8

  • 10. La riflessione totale

    Analizzando la legge della rifrazione si deduce che

    - quando il raggio incide normalmente alla superficie, essendo i = 0, si ha sen i = 0, sen r = 0, r = 0, e quindi il

    raggio rifratto non subisce deviazione, per qualsiasi valore degli indici di rifrazione;

    - quando il secondo mezzo pi rifrangente del primo, cio il suo indice di rifrazione maggiore di quello del

    primo mezzo, si ha sen r < sen i e quindi anche r < i, cio il raggio rifratto devia avvicinandosi alla normale;

    naturalmente avviene l'opposto nel caso contrario.

    In altri termini possiamo prevedere che nel passaggio da un mezzo a minor indice di rifrazione ad un mezzo a

    maggior indice di rifrazione il raggio rifratto si avvicina alla normale; nel passaggio da un mezzo a maggior indice

    di rifrazione ad un mezzo a minor indice di rifrazione il raggio rifratto si allontana dalla normale. In questo caso si

    pu presentare un fenomeno particolare: la riflessione totale (o interna).

    Se l'angolo di incidenza del raggio tale che, per la legge di Snell,

    l'angolo di rifrazione diventa uguale a 90 il raggio rifratto diventa

    radente alla superficie di separazione e non riesce ad uscire dal mezzo

    con indice di rifrazione maggiore. Ci accade ad un angolo ben preciso

    angolo lim

    , detto angolo limite.

    L'angolo limite lim

    dunque quel particolare angolo di incidenza 1 i

    per cui l'angolo di rifrazione 2 vale 90.

    Dalla legge della rifrazione, ponendo 1 = 90 ed essendo sen 90 = 1, si

    ha: 1/sen lim

    = n1/n2 da cui si ricava: lim = arcsen(n2/n1), dove n1

    l'indice di rifrazione del mezzo pi rifrangente, da cui proviene il raggio,

    e n2 quello del mezzo meno rifrangente.

    Per esempio, nel passaggio dall'acqua (n11,33) all'aria (n21) l'angolo

    limite vale circa 48,8; in quello dal vetro (n11,5) all'aria, circa 41,8.

    I raggi emessi dalla sorgente immersa

    nell'acqua, incontrando la superficie di

    separazione, vengono rifratti (e

    parzialmente riflessi) con angoli di

    rifrazione via via crescenti all'aumentare del

    loro angolo d'incidenza. Ma non tutti: quelli

    il cui angolo d'incidenza maggiore

    dell'angolo limite vengono infatti totalmente

    riflessi.

    Il miraggio.

    Quando il terreno molto caldo, come in un deserto o su una strada asfaltata

    sotto il Sole, l'aria immediatamente sopra il suolo si riscalda fortemente a sua

    volta, diventando meno densa e meno rifrangente di quella pi in alto.

    Avviene allora che a noi arriva una doppia immagine degli oggetti lontani:

    una diritta, costituita dai raggi che viaggiano orizzontalmente, un'altra

    capovolta, il miraggio. Quest'ultima formata dai raggi inclinati verso il

    basso che nella rifrazione vengono gradualmente deviati fino a subire un

    riflessione totale che li incurva verso l'alto fino a raggiungere anch'essi la

    nostra vista, che li interpreta come provenienti dal basso e quindi abbiamo

    l'impressione della presenza di uno specchio d'acqua, nel deserto, o di una

    pozza d'acqua, su una strada asfaltata.

    Le fibre ottiche.

    Il fenomeno della riflessione totale trova impiego nelle fibre ottiche: lunghi

    cilindretti di vetro o di plastica, delle dimensioni di un capello, nei quali un

    raggio di luce si propaga attraverso una serie di riflessioni totali sulle loro

    pareti interne molto lisce e regolari. Le fibre ottiche sono usate in medicina

    per osservare gli organi che si trovano all'interno del corpo, portandone

    l'immagine all'esterno (endoscopia). In questo caso occorre anche illuminare

    l'oggetto mediante un'altra fibra che porta luce all'interno del corpo.

    L'impiego principale delle fibre ottiche riguarda le comunicazioni a distanza,

    dove esse sostituiscono assai vantaggiosamente i tradizionali cavi elettrici.

    I percorsi dei raggi di luce pag. 9

  • 11. Le lastre e i prismi

    Un raggio di luce che attraversa una lastra di vetro, o di qualsiasi altro materiale

    trasparente, viene rifratto due volte: prima dall'aria al vetro e poi dal vetro all'aria.

    Comunque il raggio incida sulla lastra, il raggio che ne esce ha esattamente la stessa

    direzione del raggio incidente.

    Infatti le due facce della lastra sono parallele e quindi nella seconda rifrazione

    l'angolo d'incidenza coincide con l'angolo di rifrazione della prima e quindi l'angolo

    di rifrazione finale coincide con l'angolo d'incidenza iniziale.

    Ci non avviene, invece, quando le due superfici sono piane ma non parallele,

    come nei prismi, oppure sono curve, come avviene nelle lenti: in entrambi i casi i

    raggi vengono deviati.

    In un prisma retto a sezione triangolare questa deviazione, rappresentata dall'angolo

    in figura, aumenta al crescere sia dell'angolo fra le due facce del prisma sia del

    rapporto fra il suo indice di rifrazione e quello dell'aria.

    I prismi sono spesso usati sfruttandone la riflessione totale, cio come specchi di

    altissima qualit ottica, per esempio nei binocoli e nei periscopi, gli strumenti che

    consentono la visibilit da una posizione nascosta (per esempio l'interno di un

    sottomarino). Sia nei binocoli che nei periscopi si utilizzano due prismi la cui

    sezione un triangolo rettangolo: quando vengono colpiti da un raggio

    perpendicolare a una faccia cateto l'angolo d'incidenza del raggio sulla faccia

    ipotenusa 45, maggiore dell'angolo limite vetro-aria, e quindi il raggio

    totalmente riflesso in direzione normale all'altra faccia cateto, da cui fuoriesce.

    Anche entrando e uscendo da un prisma, un raggio di luce subisce due volte la

    rifrazione. Siano l'angolo di apertura del prisma, n l'indice di rifrazione del prisma

    e 1 l'indice di rifrazione dell'aria. Un raggio di luce che giunge sulla prima faccia

    con angolo di incidenza i, entra nel prisma formando un angolo R, che si calcola

    con la legge della rifrazione. Con considerazioni geometriche si determina l'angolo

    di incidenza sulla seconda faccia i = R e ancora per la legge di Snell si

    calcola finalmente R, l'angolo di rifrazione sulla seconda faccia.

    Si dimostra che l'angolo di deviazione dato da = i + R - .

    Se l'indice di rifrazione n del prisma fosse costante per tutti i colori non accadrebbe

    nulla di particolare. In realt l'indice di rifrazione cambia (sia pure di poco) da

    colore a colore. Normalmente questa piccola differenza non produce effetti visibili

    salvo quando, in particolari situazioni, le piccole differenze di indice di rifrazione

    accentuano in maniera apprezzabile la deviazione dei colori.

    Questo fenomeno conosciuto come dispersione della luce.

    Come osserv gi Newton, con un prisma quindi possibile separare i diversi

    colori che compongono la luce bianca.

    Come si vede dall'immagine la luce bianca viene separata nei vari colori: dal

    violetto (massima deviazione da parte del prisma ), passando per l'indaco, l'azzurro,

    il verde, il giallo, l'arancione, si arriva al rosso (deviazione minima).

    La dispersione della luce spiega anche il fenomeno dell'arcobaleno.

    I percorsi dei raggi di luce pag. 10

  • 12. Le lenti

    Una lente un pezzo di materiale trasparente, vetro o plastica, racchiuso fra due superfici curve, oppure una curva e

    una piana.

    Anche il comportamento delle lenti (convergenti quelle pi spesse al

    centro e divergenti quelle pi spesse ai bordi) si pu intuire in prima

    approssimazione immaginando due prismi posti a contatto

    appoggiandoli per la base o per i vertici, nel modo suggerito in

    figura.

    Le lenti pi comuni sono le lenti sferiche, delimitate appunto da superfici sferiche. La retta che congiunge i centridi queste superfici l'asse ottico della lente.

    Attraversando una lente, un raggio di luce viene rifratto due volte, dall'aria al vetro e dal vetro all'aria: il raggio

    emergente risulta quindi deviato rispetto a quello incidente dato che le superfici che attraversa non sono parallele.

    Se la lente sottile, mantengono la loro direzione soltanto i raggi che passano attraverso il centro della lente,

    perch in tal caso le superfici attraversate sono localmente parallele e la lente si comporta come una lastra.

    Le immagini fornite dalle lenti sono prive di distorsioni soltanto quando lo spessore delle lenti piccolo rispetto ai

    raggi di curvatura delle superfici che le delimitano, cio si tratta di lenti sottili.

    Le lenti pi spesse al centro che ai bordi sono lenti convergenti; quelle pi spesse ai bordi che al centro sono lenti

    divergenti.

    Queste denominazioni risultano evidenti esaminando cosa avviene quando sulla lente

    incide un fascio di raggi paralleli all'asse ottico, come mostrato nella figura.

    L'effetto assai diverso nei due casi: i raggi rifratti dalla lente convergente

    convergono nel punto chiamato fuoco della lente, mentre nel fuoco di quella

    divergente convergono i prolungamenti all'indietro dei raggi rifratti, che si

    comportano infatti come se provenissero da una sorgente puntiforme collocata prima

    della lente.

    Esperimento. Esponete ai raggi del Sole una lente convergente (una lente

    d'ingrandimento) disponendo dietro di essa un foglio di carta. Sul foglio si former

    l'immagine del Sole, un cerchietto luminoso le cui dimensioni dipendono dalla

    distanza fra la lente e il foglio. Spostando la lente avanti e indietro, troverete una

    posizione per cui il cerchietto si riduce a un punto (se il Sole intenso il foglio

    potrebbe infiammarsi). Rovesciando la lente, riotterrete il punto luminoso con la

    lente nella stessa posizione di prima. Ripetendo l'esperimento con una lente

    divergente (per esempio una lente da occhiali per miopi), non riuscirete a focalizzare

    il Sole sul foglio, comunque sposterete la lente.

    Questo semplice esperimento mette in evidenza una importante differenza fra lenti convergenti e divergenti: la

    lente convergente pu fornire una immagine reale del Sole, raccolta sul foglio di carta, mentre con la lente

    divergente ci non possibile. In generale, si trova che le lenti convergenti, come gli specchi concavi, possono

    fornire immagini sia reali che virtuali; mentre le lenti divergenti, come gli specchi convessi, forniscono soltanto

    immagini virtuali.

    La grandezza pi importante che caratterizza il comportamento di una lente

    sottile la sua distanza focale f, cio la distanza fra il centro della lente

    (centro ottico) e il suo fuoco, anzi i suoi fuochi, dato che ogni lente ne

    possiede due. I due fuochi sono disposti simmetricamente rispetto al centro

    ottico, anche quando i raggi di curvatura delle due superfici che delimitano la

    lente sono diversi. Per convenzione, si attribuisce segno positivo alla distanza

    focale delle lenti convergenti, segno negativo a quella delle lenti divergenti.

    Si usa spesso caratterizzare una lente con il suo potere diottrico D, che ilreciproco della distanza focale espressa in metri: D = 1/f. Cos si pu dire

    che una lente convergente con lunghezza focale di 0,5 m ha un potere

    diottrico di 2 diottrie e che una lente divergente il cui fuoco dista 0,2 m dal

    suo centro ha un potere diottrico di 5 diottrie. La capacit di deviare i raggi

    luminosi aumenta al crescere del valore assoluto del potere diottrico delle

    lenti. Ponendo a contatto fra loro due lenti sottili, esse si comporteranno

    come un'unica lente con potere diottrico dato dallo somma dei poteri diottrici

    delle due lenti.

    I percorsi dei raggi di luce pag. 11

  • 13. Le immagini fornite dalle lenti

    La costruzione delle immagini fornite da una lente segue criteri analoghi a quelli discussi per gli specchi.

    L'immagine di un oggetto esteso si ottiene ricavando le immagini dei punti dell'oggetto: per ciascun punto oggetto

    P, si individua il corrispondente punto immagine P' dove s'incontrano due raggi rifratti provenienti da P oppure i

    prolungamenti all'indietro di due di essi, sapendo che se la lente non distorce l'immagine qualsiasi altro raggio

    proveniente da P passer per P' (e viceversa, dato che P e P' sono punti coniugati).

    Anche per le lenti la costruzione delle immagini facilitata quando si considerano raggi incidenti che hanno

    direzioni particolari, per i quali immediato individuare le direzioni dei raggi rifratti corrispondenti, cio i raggi

    principali. Questi sono mostrati nella figura per una lente convergente e per una divergente

    - i raggi paralleli all'asse ottico vengono rifratti nella direzione che passa per il secondo fuoco (lenti convergenti) o

    in quella determinata dal passaggio per il fuoco dei loro prolungamenti all'indietro (lenti divergenti);

    - i raggi che passano per un fuoco della lente, o che vi passano i loro prolungamenti, vengono rifratti in direzione

    parallela all'asse ottico;

    - i raggi che passano per il suo centro ottico incidono normalmente alla lente e proseguono indisturbati perch qui

    la lente si comporta come una lastra a facce piane e parallele.

    Le figure seguenti mostrano due esempi di costruzione delle immagini con il metodo descritto per una lente

    convergente. Si pu constatare che le caratteristiche delle immagini dipendono dalla posizione dell'oggetto rispetto

    alla lente. In particolare, quando l'oggetto si trova oltre il doppio della distanza focale, l'immagine reale,

    capovolta e rimpicciolita; quando si trova fra il fuoco e il centro della lente, l'immagine virtuale, diritta e

    ingrandita.

    Il caso di una lente divergente, rappresentato in figura,

    pi semplice: le immagini sono sempre virtuali, diritte e

    rimpicciolite, dovunque sia posto l'oggetto.

    Ci in accordo col fatto che i raggi che colpiscono la

    lente vengono comunque rifratti in modo da divergere,

    sicch l'immagine sempre definita dai prolungamenti

    all'indietro dei raggi rifratti e perci virtuale e

    rimpicciolita.

    14. La formula dei punti coniugati e l'ingrandimento per le lenti sottili.

    Anche le caratteristiche delle immagini fornite dalle lenti sottili possono essere ricavate algebricamente, utilizzando

    una relazione, la formula dei punti coniugati per le lenti sottili, che formalmente identica a quella riguardante

    gli specchi sferici, ma implica convenzioni un po' diverse per le grandezze in gioco, in particolare per quanto

    riguarda i segni: 1

    p

    1

    q=

    1

    fIn questa formula f rappresenta la distanza focale della lente, a cui si attribuisce segno positivo per le lenti

    convergenti, negativo per quelle divergenti; p rappresenta la distanza dell'oggetto dal centro ottico della lente, con

    segno positivo per gli oggetti reali, negativo per quelli virtuali (cio quando si tratta di immagini provenienti da

    altri dispositivi ottici); q rappresenta la distanza dell'immagine dal centro ottico della lente, con segno positivo

    quando l'immagine si forma dall'altra parte della lente rispetto all'oggetto, negativo quando si forma dalla stessa

    parte. Come nel caso degli specchi, il segno della distanza q stabilisce se l'immagine reale (q > 0) oppure virtuale

    (q < 0). Anche 'ingrandimento lineare delle lenti definito come per gli specchi ed espresso dalla stessa relazione

    fra la distanza q dell'immagine dalla lente e quella p dell'oggetto: G=q

    p Anche qui il segno

    dell'ingrandimento fornisce informazioni sull'immagine: quando I ha segno positivo l'immagine diritta, quando

    negativo capovolta.

    I percorsi dei raggi di luce pag. 12

  • La tabella che segue riassume le propriet essenziali delle immagini fornite dalle lenti sottili, che si ottengono dalle

    relazioni precedenti o attraverso la costruzione geometrica delle immagini con il metodo dei raggi principali.

    15. L'occhio e gli strumenti ottici.

    L'occhio un sistema ottico che forma sulla retina un'immagine reale dell'oggetto da esaminare. Una delle

    principali funzioni dell'occhio quindi di rifrangere i raggi di luce in modo tale che vadano a fuoco sulla retina: il

    sistema ottico dell'occhio (il cui elemento essenziale il cristallino, una lente convergente con distanza focale

    variabile) deve essere quindi molto potente per focalizzare i raggi di luce in un breve spazio.

    Il cristallino una lente biconvessa ad assetto variabile, che

    serve per l'accomodamento dell'occhio: infatti il suo spessore

    pu variare grazie a muscoli specifici, i muscoli ciliari, in modo

    che l'immagine si formi sempre sulla retina. Quando i muscoli

    sono a riposo il cristallino mette a fuoco sulla retina oggetti

    molto lontani; per focalizzare oggetti pi vicini i muscoli si

    contraggono aumentando cos la curvatura della superficie del

    cristallino. La formazione dell'immagine sulla retina non

    comunque sufficiente a spiegare la visione, che in realt un

    fenomeno molto complesso e necessita dell'intervento del

    cervello. Le immagini raccolte dalla retina passano, sotto forma

    di impulsi nervosi, nei due nervi ottici e raggiungono le cellule

    dell'area visiva della corteccia cerebrale dove le immagini

    vengono raddrizzate.

    Grazie al suo potere di accomodamento, il cristallino di un occhio normale e senza difetti riesce a mettere a fuoco

    distintamente ed immediatamente qualunque oggetto posto tra l'infinito e una distanza di circa 25 cm, detta distanza

    della visione distinta, che la pi favorevole distanza alla quale un oggetto pu essere focalizzato sulla retina senza

    sensibile sforzo di adattamento. L'occhio per pu vedere distintamente anche a distanze minori. Le distanze

    estreme per le quali ancora possibile una visione distinta sono dette punto remoto e punto prossimo dell'occhio. Il

    punto remoto di un occhio normale l'infinito. La posizione del punto prossimo dipende dalla massima curvatura

    che pu assumere il cristallino durante il processo di accomodamento e varia da persona a persona; con l'et

    (intorno ai 45 anni) si allontana in quanto il cristallino perde in parte la sua capacit di adattamento (presbiopia).

    In tutte le situazioni in cui i raggi luminosi, per svariati motivi, non sono focalizzati sulla retina si configura

    pertanto un errore di rifrazione. I pi comuni difetti ottici dell'occhio si hanno quando i raggi luminosi provenienti

    dall'infinito non vanno a fuoco sulla retina, ma davanti (miopia) o dietro (ipermetropia e presbiopia), oppure parte

    sulla retina e parte davanti o dietro (astigmatismo).

    Difetti che dipendono dalla struttura dell'occhio sono la miopia e l'ipermetropia.

    La miopia associata ad un allungamento del bulbo oculare in conseguenza del quale l'immagine di un oggetto

    posto all'infinito non si focalizza sulla retina, ma davanti ad essa. Il punto remoto a una distanza finita dall'occhio

    e il punto prossimo ulteriormente ravvicinato rispetto al valore normale. La miopia non richiede correzione per la

    visione ravvicinata, mentre per la visione a grande distanza esige l'uso di lenti divergenti.

    In un occhio ipermetrope il bulbo oculare accorciato rispetto a quello normale e perci i raggi provenienti da un

    punto all'infinito cadono oltre la retina. L'ipermetropia si corregge con l'uso di lenti convergenti, che permettono di

    focalizzare gli oggetti all'infinito sulla retina.

    I percorsi dei raggi di luce pag. 13

  • Altri difetti dell'occhio, che dipendono dal cristallino, sono la presbiopia e l'astigmatismo.

    La presbiopia consiste nell'incapacit di contrarre e di distendere il cristallino per realizzare l'accomodamento pi opportuno.

    Un occhio presbite perci vede distintamente gli oggetti all'infinito, mentre non pi, o quasi, in grado di focalizzare gli

    oggetti vicini. La presbiopia non richiede correttivi per la visione a grande distanza, mentre per la visione a piccola distanza

    richiede lenti convergenti che forniscono l'opportuno accomodamento. Questo difetto progredisce con l'avanzare dell'et

    poich il potere di accomodamento si riduce e il punto prossimo si allontana.

    Anche l'astigmatismo un difetto del cristallino che si presenta quando le superfici del cristallino hanno un raggio di curvatura

    diverso nei differenti piani e presentano un potere diottrico differente per i raggi luminosi contenuti in piani diversi. Questo

    difetto pu essere corretto con lenti i cui raggi di curvatura formano con il cristallino un sistema avente la stessa distanza focale

    in tutti i piani. Lenti di questo tipo sono dette cilindriche perch, in casi particolari, sono tagliate da un blocco di vetro

    cilindrico anzich sferico.

    Quando si vuole esaminare un piccolo oggetto nei suoi dettagli, lo si avvicina il pi possibile agli occhi, affinch

    l'angolo di osservazione sia il pi piccolo possibile e l'immagine retinica la pi grande possibile, ma la minima

    distanza alla quale l'occhio pu adattarsi quella del punto prossimo, quindi si deve ricorrere all'uso di sistemi di

    lenti ed in particolare al microscopio semplice o a quello composto.

    Il microscopio semplice una lente convergente posta tra l'occhio e l'oggetto da osservare in modo che quest'ultimo

    si trovi in posizione intermedia tra il primo piano focale e la lente stessa. In tali condizioni la lente fornisce

    un'immagine virtuale, diritta e ingrandita dell'oggetto osservabile dall'occhio anche se si trova ad una distanza

    dall'oggetto inferiore alla distanza di visione distinta.

    Per le immagini retiniche non si parla di ingrandimento

    lineare, dato dal rapporto fra le dimensioni lineari

    dell'immagine e dell'oggetto, perch il cristallino non

    una lente sottile e non gli si possono applicare relazioni

    semplificate (equazione delle lenti sottili).

    L'ingrandimento angolare, ottenuto osservando con una

    lente convergente (d'ingrandimento) un oggetto posto

    tra il fuoco e la lente stessa, misurato dal rapporto fra

    l'angolo visuale sotteso dall'immagine dell'oggetto e

    l'angolo visuale sotteso dall'oggetto posto alla distanza

    della visione distinta. Si ha quindi

    M=

    0

    =h/ f

    h/d=

    25cm

    f.

    Dalla relazione risulta che l'ingrandimento angolare di una lente convergente tanto pi grande quanto pi piccola

    la sua lunghezza focale. Praticamente per, a causa delle aberrazioni che intervengono, non si possono utilizzare

    lenti con lunghezza focale inferiore a 20-30 mm. Di conseguenza il massimo ingrandimento angolare ottenibile con

    una singola lente di 8-10 volte.Il fenomeno dell'aberrazione cromatica dovuto al fatto che la luce bianca composta di radiazioni elettromagnetiche di varie

    frequenze che si manifestano agli occhi con vari colori. Il fenomeno della rifrazione diverso per radiazioni di colori diversi.

    La luce rossa viene deviata da una lente meno della luce violetta. Il risultato di questo fenomeno che si hanno in realt pi

    fuochi, uno per ogni colore e quindi l'immagine risulta sfuocata.

    I percorsi dei raggi di luce pag. 14

  • Ingrandimenti maggiori si possono raggiungere grazie al

    microscopio composto, un sistema di due lenti

    convergenti dette, rispettivamente, obiettivo e oculare.

    L'oggetto da osservare O viene posto davanti

    all'obiettivo (ad una distanza maggiore della sua

    lunghezza focale), che ne fornisce un'immagine I1 reale,

    capovolta e ingrandita. Questa immagine viene fatta

    cadere davanti all'oculare a distanza opportuna (minore

    della distanza focale dell'oculare), che ne d un'altra I2,

    virtuale, ingrandita e capovolta rispetto all'originale. In

    pratica queste due lenti sono a loro volta costituite da

    combinazioni di lenti diverse tali da correggere e ridurre

    al minimo le aberrazioni, ma dal punto di vista

    funzionale il discorso non muta.

    Un'altra applicazione delle leggi dell'ottica geometrica si ha nella costruzioni di telescopi, cannocchiali e binocoli,

    tutti strumenti utili ad ingrandire oggetti lontani. Si chiamano telescopi rifrattori o rifrangenti se, essendo formati

    da lenti, sfruttano il fenomeno della rifrazione; telescopi riflettori o riflettenti se utilizzano uno specchio per la

    convergenza dei raggi di luce. I telescopi galileiano e kepleriano sono rifrattori, il telescopio newtoniano il pi

    semplice dei telescopi a riflessione.

    Galileo, negli anni 1609 e 1610, costru ed utilizz, prima per uso terrestre-militare e poi astronomico, il telescopio

    (o cannocchiale) che porta il suo nome utilizzando la tecnologia delle lenti che stava nascendo in quegli anni in

    Olanda. Galileo non fu quindi l'inventore del telescopio, ma riconosciuto essere stato il primo che lo utilizz per

    osservare il cielo. Il telescopio galileiano utilizza una lente convergente come obiettivo ed una lente divergente

    come oculare e permette di ottenere immagini virtuali, diritte ed ingrandite.

    Il telescopio kepleriano utilizza due lenti convergenti: la

    prima immagine I1 dell'oggetto luminoso prodotta

    dall'obiettivo, reale, capovolta e rimpicciolita, si forma

    oltre il fuoco Fo dell'obiettivo. L'oculare ha il proprio

    fuoco Fe posto in modo che la prima immagine I1 sia

    posizionata fra Fe stesso e l'oculare. Si forma perci una

    seconda immagine I2 virtuale, diritta (rispetto ad I1) ed

    ingrandita. L'osservatore vede perci una immagine

    virtuale, rovesciata ed ingrandita dell'oggetto.

    L'ingrandimento dato dal rapporto fra la focale

    dell'obiettivo e la focale dell'oculare.

    Diminuendo a parit di focale dell'obiettivo la focale

    dell'oculare, in teoria si potrebbero ottenere quindi

    immagini ingrandite quanto si vuole, ma aumentando

    l'ingrandimento oltre certi limiti, si ottengono immagini

    sempre peggiori a causa della diminuzione della

    luminosit e dell'aberrazione cromatica.

    Newton conosceva i fenomeni di dispersione della luce (scomposizione nei vari

    colori) per cui pens di utilizzare uno specchio concavo per fare convergere i raggi di

    luce. In questo modo, non usando pi il fenomeno della rifrazione, si ottiene una

    prima immagine presso il fuoco dello specchio non soggetta ad aberrazione

    cromatica. Con una lente convergente, usata come oculare, si ottiene poi l'immagine

    finale ingrandita (ingrandimento per soggetto alle limitazioni dei fenomeni di

    diminuzione della luminosit e dell'aberrazione cromatica causata dall'oculare). I

    raggi riflessi dallo specchio concavo (specchio primario) del telescopio (di solito

    parabolico o sferico di piccola apertura) vengono deviati lateralmente da uno specchio

    piano (specchio secondario) ed inviati all'oculare per l'ingrandimento dell'immagine.

    Per questo motivo, una parte centrale dello specchio non viene utilizzata per

    l'osservazione (lo specchio secondario copre la parte centrale dello specchio

    primario).

    Il telescopio newtoniano il pi semplice dei telescopi a specchio. Successivamente vennero fatte molte modifiche

    migliorative al telescopio newtoniano originario che portarono alla creazione di diverse tipologie di telescopi a

    riflessione il cui principio di funzionamento analogo.

    I percorsi dei raggi di luce pag. 15