Firenze, 6 Novembre 2018 Combustori di Micro Turbine a Gas ... · Combustori di Micro Turbine a Gas...

67
Combustori di Micro Turbine a Gas Alimentati a Syngas o Miscele Gas Naturale – Idrogeno Maria Cristina CAMERETTI R affaele TUCCILLO Roberta DE ROBBIO Dipartimento di Ingegneria Industriale Università di Napoli Federico II, Italy GIORNATA DI STUDIO SUI COMBUSTORI DI TURBINA A GAS Firenze, 6 Novembre 2018 Fabrizio REALE Fabio CHIARIELLO Istituto Motori del CNR,Napoli, Italy 1

Transcript of Firenze, 6 Novembre 2018 Combustori di Micro Turbine a Gas ... · Combustori di Micro Turbine a Gas...

  • Combustori di Micro Turbine a Gas Alimentati a Syngas o Miscele

    Gas Naturale – Idrogeno

    Maria Cristina CAMERETTI

    Raffaele TUCCILLO

    Roberta DE ROBBIO

    Dipartimento di Ingegneria Industriale

    Università di Napoli Federico II, Italy

    GIORNATA DI STUDIO SUI COMBUSTORI DI TURBINA A GAS

    Firenze, 6 Novembre 2018

    Fabrizio REALE

    Fabio CHIARIELLO

    Istituto Motori del CNR,Napoli, Italy

    1

  • RESEARCH ACTIVITIES IN GAS TURBINE COMBUSTION BY CFD MODELS

    The object of the studies are two micro gas turbine withdifferent combustor:

    1. A 100kW MGT with tubular LPP combustor

    2. A 30 kW MGT with annular reverse flow combustor

    3. A 100 kW MGT with LP

    reverse flow combustor

    2

  • MGT features MICRO-GT SPECIFICATIONS Mech. Arrangement Single Shaft Pressure Ratio 3.9 Turbine Inlet Temp. 1223 K Combustor Inlet Temp. 905 K Overall fuel/air Eqv. Ratio 0.125 Rated Mech. Output/ Speed 110 kW / 64000 rpm Compressor 1 Radial Flow Compressor Turbines 1 Radial Flow Turbine

    1. A 100kW MGT with tubular LPP combustor

    3

  • Micro gas turbine (MGT) combustorfuelling with gaseous fuels from biomasstreatment or solid waste pyrolysis.

    The objective is to optimize the combustor behaviour

    under the point of view of combustion efficiency and

    pollutant control

    Cycle Analysis and CFD simulationhighlight the possible benefits and the

    major problems

    The combustion development is analyzed by a combined

    approach based on the partially stirred reactorhypothesis and on the flamelet concept within aCFD simulation

    COMBUSTION ANALYSIS IN A MICRO-GAS TURBINE

    SUPPLIED WITH GASEOUS BIO-FUELS

    4

  • Table 1. Natural gas and biogas properties

    Fuel Compos.(%, molar)

    NAT. GAS (NG)

    BIOMO BIOMABIOM(AD)

    SW

    CH4 92.00 18.00 9.00 65.00 7.00C2H6 3.70 2.00 - - - - 7.00

    C3H8 1.00 2.00 - - - - 7.00

    C4H10 0.25 2.00 - - - - - -

    N2 2.90 8.00 56.00 - - - -

    H2 - - 25.00 9.00 - - 18.00CO - - 33.00 12.00 -- 61.00CO2 0.15 10.00 20.00 35.00 - -

    H2O - - - - - - - - - -

    Mol. Mass, g/mol 17.34 21.92 28.51 25.83 23.76

    LHV, kJ/kg 47182 19198 2798 20183 21697

    fst 0.0620 0.1680 1.257 0.145 0.1530

    Tof, K 2220 2231 1571 2126 2300

    f

    j

    0.0082

    0.132

    0.0214

    0.127

    0.191

    0.151

    0.0202

    0.139

    0.0177

    0.115 5

  • THE CFD SIMULATIONS WITH THE

    STEADY FLAMELET APPROACH

    9

  • Standard and Modified pilot injector locations streamline pattern

    (Attempt to approach the MILD Combustion regime)

    Standard Pilot

    Location

    Modified Pilot

    Location

    10

  • CFD analysis:

    Three chemical reaction set

    1) A set of single – step oxidation of the several speciesconstituting the fuel (only the CH4 oxidation proceedsthrough two steps, i.e. partial and CO oxidation)

    6,1215,0

    104

    809

    222104

    65,1

    2

    1,0

    83

    809

    2283

    65,1

    2

    1,0

    62

    809

    22262

    25,0

    2

    18

    12

    22

    8,0

    2

    7,0

    4

    811

    224

    10256,1exp10161,4

    542

    13)5

    10256,1exp1062,5

    432

    7)4

    10256,1exp10186,6

    322

    7)3

    102exp10239,2

    2

    1)2

    102exp10012,5

    22

    3)1

    OHCRT

    R

    OHCOOHC

    OHCRT

    R

    OHCOOHC

    OHCRT

    R

    OHCOOHC

    OCORT

    R

    COOCO

    OCHRT

    R

    OHCOOCH

    f

    f

    f

    f

    f

    11

  • T

    T

    T

    T

    PPP

    T

    PPPP

    T

    P

    P

    T

    P

    PPPP

    T

    PPP

    eTONR

    NOON

    eONR

    NOON

    eTOOHNR

    NOON

    eCOOR

    NOON

    eCOOR

    NOON

    eCOR

    OCOCO

    e

    OOHCOR

    COOCO

    eCOOCHR

    OHCOOCH

    68899

    5.05.0

    22967.14

    8

    22

    52861

    22317.10

    7

    22

    69158

    7.025.02

    5.022

    592.146

    22

    31.3348.6492504880.07911.24613.2

    2

    )log(7822.48327.29

    5

    22

    6.126467480006.08888.00344.01805.1

    20376.0122.14

    4

    22

    31.3348.64925

    207163.08144.15

    3

    22

    1.7522398

    0127.0891.02

    0909.00912.02

    0109.0359.11091.0338.142

    22

    4.269219321987.001426.0

    201148.03.1

    4004628.0354.13

    1

    224

    10

    2)8

    10

    2)7

    10

    2)6

    10

    2)5

    10

    2)4

    10

    21)3

    10

    21)2

    10

    223)1

    the 8-step scheme (Novosselov and Malte,2007) accounts for both thermal and flame-prompt NO formation

    the kinetic scheme is pressure-sensitive

    Suitable for variable load operations

    CFD analysis:

    2) An eight-step scheme

    The reaction mechanism is based on the

    Finite Rate – Eddy Dissipation model

    12

  • 3) The GRIMECH 3.0 scheme (53 species, 325 reactions)

    The steady, non-adiabatic flamelet concept allows solution of such

    a complex system of non-linear equations thanks to the

    preliminary set-up of flamelet tables and, consequently, of PDF

    (probability density function) tables.

    This algorithm replaces in an effective way the attempt to the

    simultaneous solution of hundreds of kinetic equations with a

    single additional equation of the scalar variable “mean mixture

    fraction”

    ffvf

    t t

    t

    13

  • SENSITIVITY ANALYSIS ON COMBUSTIONAND TURBULENCE MODEL.

    Table 3. Volume averaged and outlet properties from CFD based

    simulations: comparison of different schemes (natural gas fuelling)

    OXIDATION SCHEME

    Volume Outlet

    O2

    %,

    mol

    TmaxK K

    [NO]

    p.p.m.

    [CO]

    p.p.m

    .

    [UHC]

    %

    1-step 18.05 2700 1180 67 117 0.407

    8-step 17.37 2348 1228 63 515 0.043

    Flamelet (k-e) 18.17 2308 1147 72 2.8 3.22

    Flamelet (k-w) 17.72 2091 1207 99 1.4 1.89

    Flamelet (RS) 17.86 2287 1064 71 2.1 3.17

    14

  • Results:Temperature distributions for

    different Reaction schemes adopted

    Temperature, K

    1-Step Oxidation

    8-Step Oxidation

    Flamelet

    flamelet approach returns much smoother temperature profiles

    than in the reduced kinetics cases

    15

  • Results: NO profiles for different oxidation

    schemes

    16

  • Results:. Axial developments of flame speed

    17

  • The effect of the increased fuel pilot rate on the progress variable and the

    turbulent flame speed

    To improve the overall reaction speed the

    amount of fuel injected through the pilot

    line has been increased

    18

  • Temperature distributions

    for different pilot injections

    BIOMO_1PIL

    BIOMO_3PIL

    BIOMO_2PIL

    SW_1PIL

    SW_3PIL

    SW_3PIL – Modified Pilot Location

    19

  • • The temperature peaks with the BIOMO and SWfuels are higher than in the methane fuelling case,

    because of the combined effect of their hydrogen

    contents with the one of the increased pilot flow rate

    Volume averaged and outlet properties from CFD based simulations: comparison of different fuels

    OXIDATIONSCHEME

    Volume Outlet

    O2

    %, mol

    TmaxK K

    [NO]p.p.m.

    [CO]p.p.m.

    [UHC]%

    Methane 18.17 2308 1147 72 2.8 3.22

    BIOMO_1PIL 18.15 2084 1146 88 3327 1.81

    BIOMO_3PIL 17.78 2513 1165 94 2832 1.54

    Biogas_3PIL 17.25 2342 1200 68 0.221 3.14SW_3PIL 17.76 2537 1198 126 3301 0.382SW_PIL (mod.) 17.97 2486 1142 62 5444 0.624

    20

  • Profiles of turbulent flame speed and nitric monoxide for different pilot

    locations (SW_3PIL case)

    21

  • LIQUID FUEL

    SPRAY ANALYSIS

    AIRBLAST ATOMIZER

    22

  • LPP Combustor

    NOx Emissions

    Abatement

    • Homogeneous Mixture• Low Flame Temperature• Hot Spots Absence

    Fuel % to pilot 10%

    Pilot line equiv. Ratio 1

    Main line equiv. Ratio 0.5

    Overall equiv. Ratio 0.1546

    23

  • LPP Combustor

    60° Sector

    25

  • AIRBLAST MODEL

    Ligament constant [m] 0.5

    Sheet breakup empirical constant 12

    Fuel flow rate [kg/s]0.0013 (kerosene)

    0.0020 (ethanol)

    Spray half angle θ Variable

    Maximum relative velocity [m/s] Variable

    Fuel Temperature [K] 300

    Injector Inner Diameter d [µm] 300

    Injector Outer Diameter D [µm] 409.8

    Airblast Atomizer

    The atomization is due to the high speed inner air flow

    • Insensitivity of the outlet temperature traverse to changes in fuel flow.• High pressure fuel pumps are not needed.• Component parts are protected from overheating by the air flowing over them.

    26

  • TURBULENCE:

    MULTIPHASE:

    SPRAY EVOLUTION:

    COMBUSTION:

    Realizable k-ε model

    Lagrangian Discrete Phase Model

    TAB model

    Finite Rate – Eddy Dissipation

    Models

    STOCHASTIC

    COLLISION:O’Rourke Algorithm

    27

  • Fuels

    FUELKerosene Bio-

    Ethanol

    LHV, kJ/kg 43124 27500

    fst 0.0685 0.0957

    Dynamic viscosity, kg/(m s) 0.0024 0.0012

    Density, kg/m3 780 794

    Surface Tension, N/m 0.0263 0.0223

    Vaporiz. Temp , K 341 271

    Normal Boiling Point, K 477 351

    Volumetric coefficient of

    expansion, 1/K0.00099 0.00112

    𝑊𝑒 =𝜌𝑔𝑈𝑅

    2𝐷

    𝜎

    𝜙 =𝑓

    𝑓𝑠𝑡

    Higher fuel consumption

    for Ethanol

    Responsible of a faster

    vaporization

    28

  • 1. Cold Flow, Non-Evaporating Conditions:

    Kerosene Results

    170° 150°

    90° 60°

    Droplet

    Diameter

    [mm]

    120°

    30

  • 1. Cold Flow, Non-Evaporating Conditions:

    Comparison

    𝑊𝑒 =𝜌𝑔𝑈𝑅

    2𝐷

    𝜎

    FUEL Kerosene Ethanol

    σ, N/m 0.0263 0.0223

    31

  • 2. Hot Flow, Evaporating Conditions:

    Results Kerosene

    32

  • 2. Hot Flow, Evaporating Conditions:

    Comparison

    170°

    170°

    34

  • 3. Burning Conditions

    60°

    60°

    37

  • SPRAY ANGLE = 60°

    Kerosene

    Ethanol

    3. Burning Conditions

    41

  • 3. Burning ConditionsFuel Kerosene Ethanol

    CO [ppm] 1683 171 1138 456

    42

  • 2. 30 kW MGT

    Annular Combustor

    The work is based on a study of the potential of a micro gas

    turbine (MGT) combustor when operated under

    unconventional conditions, both in terms of variation in the

    fuel supplied and concerning the part-load or off-design

    operation

    1. Description of the combustor of C30 micro gas turbine

    2. A CFD analysis of the reacting flow through the MGT combustor checks thecombustion effectiveness under challenging variations of the boundary condition

    3. Comparison of the combustor response at base-rating and part load

    4. Combined use of natural gas and hydrogen in the micro gas turbine

    5. Splitting the fuel delivery into two distinct streams, the first one (with only Hydrogen)

    coming from the pilot injection, the second one flowing main injector line with air and

    NG premixing

    43

  • • DESCRIPTION OF THE COMBUSTOR

    Dimension [mm]

    External diameter 242

    Minimum internal

    diameter51

    Outlet diameter 139

    Internal liner length 249

    External liner length 233

    Total length 280

    DESCRIPTION OF THE COMBUSTOR

    44

  • Domain Fine Coarse

    Pilot 1350 800

    Premix 33000 24000

    Liner 130000 55000

    Core 240000 44000

    COMPUTATIONAL MESH

    45

  • • The CFD analysis was performed with the ANSYS-FLUENT solver of the reacting flow

    • for each case the related boundary conditions were provided by a thermal cycle analysis

    30 kW MGT base-rating data

    Shaft Speed 96000 rpmFiring Temperature 1173 KPressure Ratio 3.5Fuel flow rate [kg/s] 0.0026

    Fuel Energy rate [kW] 115.4

    Fuel Heat rate [kJ/kWh] 14208

    Recovered Heat from exhausts [kW] 51.33

    Fuel Energy Utilization factor 0.695

    Overall Electric efficiency 26.05%

    CO2 [kg/h] (kg/kWh) 24.37

    (0.812)

    46

  • CHEMICAL KINETICS

    • Methane three-step oxidation mechanism (by Novosselov andMalte ) completed by a 5-equation set for the thermal and prompt

    NO formation

    𝑪𝑯𝟒 +𝟑

    𝟐𝑶𝟐 → 𝑪𝑶+ 𝟐𝑯𝟐𝑶

    𝑅1 = 1013.354−0.004628𝑃 𝐶𝐻4

    1.3−0.01148𝑃 𝑂20.01426 𝐶𝑂 0.1987

    𝑒𝑥𝑝 − 182342648 + 2.2398 × 106𝑃 /𝑅𝑇

    𝑪𝑶 +𝟏

    𝟐𝑶𝟐 → 𝑪𝑶𝟐

    𝑅2= 1014.338+0.1091𝑃 𝐶𝑂 1.359−0.0109𝑃 𝐻2𝑂

    0.0912+0.0909𝑃 𝑂20.891+0.0127𝑃

    𝑒𝑥𝑝 − 186216972 + 6.2438 × 105𝑃 /𝑅𝑇

    𝑪𝑶𝟐 → 𝑪𝑶+𝟏

    𝟐𝑶𝟐

    𝑅3= 1015.8144−0.07163𝑃 𝐶𝑂2 𝑒𝑥𝑝 − 5.3979 × 10

    8 − 2.7795 × 106𝑃 /𝑅𝑇

    𝑵𝟐 +𝑶𝟐 → 𝟐𝑵𝑶𝑅4 = 10

    14.122+0.0376𝑃 𝐶𝑂 0.8888−0.0006𝑃 𝑂21.1805+0.0344𝑃

    𝑒𝑥𝑝 − 388662872 + 1.0526 × 106𝑃 /𝑅𝑇

    𝑵𝟐 +𝑶𝟐 → 𝟐𝑵𝑶

    𝑅5 = 1029.8327−4.7822 log10 𝑃 𝐶𝑂 2.7911−0.04880𝑃 𝑂2

    2.4613

    𝑒𝑥𝑝 − 509357210 + 5.8589 × 106𝑃 /𝑅𝑇

    𝑵𝟐 +𝑶𝟐 → 𝟐𝑵𝑶

    𝑅6 = 1014.592 𝑁2 𝐻2𝑂

    0.5 𝑂20.25𝑇−0.7𝑒𝑥𝑝(−

    574979612

    𝑅𝑇)

    𝑵𝟐 +𝑶𝟐 → 𝟐𝑵𝑶

    𝑅7 = 1010.317 𝑁2 𝑂2 𝑒𝑥𝑝(−

    439486354

    𝑅𝑇)

    𝑵𝟐 +𝑶𝟐 → 𝟐𝑵𝑶

    𝑅8 = 1014.967 𝑁2 𝑂2

    0.5𝑇−0.5𝑒𝑥𝑝(−572826286

    𝑅𝑇)

    47

  • • OXIDATION MECHANISM OF THE OTHER HYDROCARBONS INNATURAL GAS (NG).

    𝑪𝟐𝑯𝟔 +𝟕

    𝟐𝑶𝟐 → 𝟐𝑪𝑶𝟐 + 𝟑𝑯𝟐𝑶

    𝑅9 = 6.186 × 109 𝐶2𝐻6

    0.1 𝑂21.65𝑒𝑥𝑝(−

    1.256 × 108

    𝑅𝑇)

    𝑪𝟑𝑯𝟖 +𝟕

    𝟐𝑶𝟐 → 𝟑𝑪𝑶𝟐 + 𝟒𝑯𝟐𝑶

    𝑅10 = 5.62 × 109 𝐶3𝐻8

    0.1 𝑂21.65𝑒𝑥 𝑝 −

    1.256 × 108

    𝑅𝑇

    𝑪𝟒𝑯𝟏𝟎 +𝟏𝟑

    𝟐𝑶𝟐 → 𝟒𝑪𝑶𝟐 + 𝟓𝑯𝟐𝑶

    𝑅11 = 4.161 × 109 𝐶4𝐻10

    0.15 𝑂21.6𝑒𝑥𝑝(−

    1.256 × 108

    𝑅𝑇)

    48

  • ALL TEST CASES INVOLVING HYDROGEN CONTENTS

    HAVE BEEN SIMULATED WITH THE JACHIMOWSKI

    REDUCED SCHEME

    𝑯+𝑶𝑯+𝑴 = 𝑯𝟐𝑶+𝑴𝑅1 = 2.21 × 10

    16 𝐻 𝑂𝐻 𝑇−2

    𝑯+𝑯+𝑴 = 𝑯𝟐 +𝑴𝑅2 = 7.3 × 10

    11 𝐻 𝐻 𝑇−1

    𝑯𝟐 +𝑶𝟐 = 𝑶𝑯+𝑶𝑯

    𝑅3 = 1.7 × 1010 𝐻2 𝑂2 𝑒𝑥𝑝(−

    2.0083 × 108

    𝑅𝑇)

    𝑯 + 𝑶𝟐 = 𝑶𝑯+𝑶

    𝑅4 = 1.2 × 1014 𝐻 𝑂2 𝑇

    −0.91𝑒𝑥𝑝(−6.9086 × 107

    𝑅𝑇)

    𝑶𝑯+ 𝑯𝟐 = 𝑯𝟐𝑶+𝑯

    𝑅5 = 2.2 × 1010 𝑂𝐻 𝐻2 𝑒𝑥𝑝(−

    2.1548 × 107

    𝑅𝑇)

    𝑶+𝑯𝟐 = 𝑶𝑯+𝑯

    𝑅6 = 50.6 𝑂 𝐻2 𝑇2.67𝑒𝑥 𝑝 −

    2.6317×107

    𝑅𝑇(3)

    𝑶𝑯+𝑶𝑯 = 𝑯𝟐𝑶+ 𝑶

    𝑅7 = 6.3 × 109 𝑂𝐻 𝑂𝐻 𝑒𝑥𝑝(−

    4560560

    𝑅𝑇)

    𝑵 + 𝑵 +𝑴 = 𝑵𝟐 +𝑴𝑅8 = 2.8 × 10

    11 𝑁 𝑁 𝑇−0.8

    𝑶+ 𝑶+𝑴 = 𝑶𝟐 +𝑴𝑅9 = 1.1 × 10

    11 𝑂 𝑂 𝑇−1

    𝑵+𝑶𝟐 = 𝑵𝑶+𝑶

    𝑅10 = 6400000 × 𝑁 𝑂2 𝑇1𝑒𝑥𝑝(−

    2.6359 × 107

    𝑅𝑇)

    𝑵 + 𝑵𝑶 = 𝑵𝟐 + 𝑶𝑅11 = 1.6 × 10

    10 𝑁 𝑁𝑂

    𝑵+𝑶𝑯 = 𝑵𝑶+𝑯𝑅12 = 6.3 × 10

    8 𝑁 𝑂𝐻 𝑇0.5 49

  • • combustion modelsand turbulence-chemistry interaction

    1) FINITE RATE – EDDY DISSIPATION MODEL (FRED):

    reaction rates are compared with those evaluated by the turbulent

    mixing of the reactants, the latter estimated by a k-w model

    2) COMBUSTION MODEL BASED ON THE EDDY DISSIPATION

    CONCEPT (EDC)

    • More reliability in the treatment of multiple reactions in hydrogen turbulent combustion

    50

  • PRELIMINARY CFD ASSESSMENT

    COMPARISON BETWEEN THE TWO MODELS FREDand EDC:

    Temperature distributions (K)

    FRED Model – Fine Grid

    EDC Model – Fine Grid

    EDC Model – Coarse Grid

    mesh sensitivity analysis

    51

  • Injector plane

    Meridional plane

    Cross plane

    STREAMLINES

    53

  • Turbulent Intensity

    Specific Dissipation Rate

    54

  • • EDC model

    COMPUTATIONAL TEST-CASES

    Boundary condition data for the combustion simulation

    (NG Operation)

    Base Rating 70% Load

    Combustor Inlet Temp. (K) 870 883

    Combustor Outlet Pressure (bar) 3.20 2.62

    Fuel mass flow rate (kg/s)0.00292

    (from premixed line)0.00183

    (from pilot line)

    Oxidant mass flow rate (kg/s) 0.306 0.270

    Overall equivalence ratio 0.143 0.102

    55

  • • Testing the Pilot Line Response

    COMPUTATIONAL TEST-CASES

    Base – Rating

    Rate of

    reaction,

    kg/(m3s)

    70% Load

    56

  • • Testing the Pilot Line Response• at full load the ignition begins near the injector outlet due to

    the fuel/air premixing;

    • at part load the unmixed fuel reaches the maximum value of the reaction rate far from the injector outlet

    • The new proposal is the simultaneous employment of the premixer and pilot line in the case of combined use of natural

    gas and hydrogen.

    • The purpose is overcoming typical early ignition and flashback limits when firing hydrogen

    COMPUTATIONAL TEST-CASES

    57

  • Test cases with combined fuelling of Natural Gas and

    Hydrogen

    case#1 Base – Rating, Natural Gas from premixer

    case#290% NG from premixer – 10% H2 from pilot

    (Nitric Oxides from Novosellov and Malte scheme)

    case#390% NG from premixer – 10% H2 from pilot

    (Nitric Oxides from Jachimowski scheme)

    case#475% NG from premixer – 25% H2 from pilot

    (Nitric Oxides from Jachimowski scheme)

    case#575% NG– 25% H2 mixture from premixer

    (Nitric Oxides from Jachimowski scheme)

    COMPUTATIONAL TEST-CASES

    58

  • COMPUTATIONAL TEST-CASES

    Volume averaged and outlet properties from CFD

    based simulations

    CASE

    Volume Outlet

    TmaxK

    ToutK

    [NO]

    p.p.m.

    [CO]

    p.p.m.

    Burned

    [CH4] %

    Burned

    [H2] %

    # 1 2567 1206 5.07 462 99.86 --

    #2 2274 1159 3.82 841 99.60 99.99

    #3 2296 1178 5.38 1153 99.80 99.99

    #4 2140 1178 5.88 836 99.63 99.87

    #5 2717 1153 8.01 728 99.79 99.99

    59

  • COMPUTATIONAL TEST-CASES

    Volume-averaged and maximum

    of reactions and nitric oxides rates

    Case VALUEOverall NO rate,

    kg/(m3s)

    CH4 oxidation

    rate,

    kg/(m3s)

    H2 oxidation

    rate,

    kg/(m3s)

    #1Average 1.06 x 10-5 3.97 x 10

    -13.46 x 10-5

    Maximum 2.70 x 100 23.95 2.27 x 10-1

    #2Average 9.64 x 10-5 3.09 x 10

    -14.03 x 10-2

    Maximum 4.27 x 10-2 5.82 28.49

    #3Average 1.87 x 10-6 3.09 x 10

    -14.03 x 10-2

    Maximum 2.07 x 10-2 12.77 27.92

    #4Average 1.48 x 10-6 2.15 x 10

    -18.30 x 10-2

    Maximum 1.42 x 10-2 14.28 23.46

    #5Average 1.76 x 10-4 1.36 x 10

    -14.90 x 10-2

    Maximum 8.28 x 102 30.77 38.1360

  • Case#1

    Temperature distributions in the combustor, K

    Case#2

    Case#3

    Case#4

    Case#5

    61

  • Case#2

    Case#3

    Case#4

    Case#5

    Methane Reaction Rate Hydrogen Reaction Ratekg/(m3s)

    62

  • H2 frompilot

    NG frompremixer

    Comparison between the species mass fraction when injecting H2 from pilot or premixer.

    NG and H2 From premixer

    63

  • Comparison between the reaction rates of H2when injected from the pilot or the premixer.

    kg/(m3s)

    64

  • Detailed chemistry and flamelet – pdf based approach may provide a

    further proof: (TEMPERATURE DISTRIBUTIONS)

    Grimech 3.0 and flameletReduced mechanisms and EDC67

  • 68

    Detailed chemistry and Detached Eddy Simulation (DES)

  • Detailed chemistry and Detached Eddy Simulation (DES)

    69

    Methane

    Premixed CH4/H2 80%- 20%

    Premixed CH4/H2 - Part Load

    H2 From Pilot Line- Part Load

    Methane

    Premixed CH4/H2 80%- 20%

    Premixed CH4/H2 - Part Load

    H2 From Pilot Line- Part Load

  • 70

  • authors’ papers:

    -- CYCLE OPTIMIZATION AND COMBUSTION ANALYSIS IN A LOW-NOX MICRO-GAS TURBINETURBO-EXPO AND JRNL. OF GAS TURBINES AND POWER 2006

    --NOX SUPPRESSION FROM A MICRO-GAS TURBINE APPROACHING THE MILD-COMBUSTION REGIME, TURBO-EXPO 2007

    --COMBUSTION SIMULATION OF AN EGR OPERATED MICRO-GAS TURBINE TURBO-EXPO AND JRNL. OF GAS TURBINES AND POWER 2008

    --CFD ANALYSIS OF THE FLAMELESS COMBUSTION IN A MICRO-TURBINE

    TURBO-EXPO 2009

    --COMPARISON OF EXTERNAL AND INTERNAL EGR CONCEPTS FOR LOW EMISSION MICRO GAS TURBINES. ASME TURBO EXPO 2010

    -- LIQUID BIO-FUELS IN AN EGR EQUIPPED MICRO GAS TURBINE ASME TURBO EXPO 2011

    --FUELLING AN EGR EQUIPPED MICRO GAS TURBINE WITH BIO-FUELS. ASME TURBO EXPO 2012

    -- STUDY OF AN EXHAUST GAS RECIRCULATION EQUIPPED MICRO GAS TURBINE SUPPLIED WITH BIO-FUELS. APPLIED THERMAL ENGINEERING 2013

    - COMBUSTION FEATURES OF A BIO-FUELLED MICRO-GAS TURBINE, APPLIED THERMAL

    ENGINEERING , 2015

    - CFD STUDY OF A MGT COMBUSTOR SUPPLIED WITH SYNGAS, ENERGY PROCEDIA, 2016

    - INNOVATIVE COMBUSTION ANALYSIS OF A MICRO-GAS TURBINE BURNER SUPPLIED WITH

    HYDROGEN-NATURAL GAS MIXTURES”. ENERGY PROCEDIA. 2017

    - THERMAL CYCLE AND COMBUSTION ANALYSIS OF A SOLAR-ASSISTED MICRO GAS TURBINE.

    ENERGIES 2017

    - NUMERICAL INVESTIGATION OF SPRAY DEVELOPMENT IN A MICRO GAS TURBINE LPP

    COMBUSTOR WITH AIRBLAST ATOMIZER. ASME TURBO EXPO 201871

  • 72

    A 100 kW MGT with Lean Premixed reverse flow combustor

  • 73

    EXPERIMENTAL EQUIPMENT

  • 74

    T100 COMBUSTOR

    tetrahedral grid of 4.7 million of nodes

  • 75

    Flow Field inside the T100 Combustor

  • 76

    Methane – Hydrogen BlendsNovosellov and Malte + Jachimowski Schemes

  • 77

    Methane – Hydrogen BlendsTemperature Distributions

  • 78

    Methane – Hydrogen BlendsNitric Monoxide Distributions

  • 79

    Methane – Hydrogen BlendsReaction Rates

  • 80

    • di Gaeta, A., Reale, F., Chiariello, F., Massoli, P., 2017, "A dynamic model of a 100kW micro gas turbine fuelled with natural gas and hydrogen blends and its applicationin a hybrid energy grid", Energy, Volume 129, Pages 299-320

    • Calabria, R. , Chiariello, F., Massoli, P., Reale, F., 2014, “Part load behavior of amicro gas turbine fed with different fuels”, ASME paper no. GT2014-26631

    • Reale F., Iannotta V., Tuccillo R. ,“ Numerical Study of a Micro Gas TurbineIntegrated With a Supercritical CO2 Brayton Cycle Turbine", ASME paper no.GT2018- 76656

    • Calabria, R. , Chiariello, F., Massoli, P., Reale, F., 2015, “CFD Analysis of TurbecT100 Combustor at Part Load by Varying Fuels”, ASME paper no. GT2015-43455

    • Reale, F., Calabria, R., Chiariello, F., Pagliara, R., and Massoli, P., 2012, "A microgas turbine fuelled by methane-hydrogen blends", Applied Mechanics and Materials,232, pp. 792-796.

    Papers on T100 Combustor form I.M. researchers

  • 81

    Thanks for your attention !!

    [email protected]

    [email protected]

    [email protected]

    [email protected]

    [email protected]

    mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]