CINEMATICA DEI CONTINUI

17
CINEMATICA DEI CONTINUI

description

CINEMATICA DEI CONTINUI. Si consideri un mezzo continuo i cui punti nella configurazione iniziale C, siano riferiti alla terna cartesiana ortogonale Oxyz. Si supponga ora che ciascun punto del corpo subisca uno spostamento caratterizzabile attraverso le sue componenti secondo gli assi:. - PowerPoint PPT Presentation

Transcript of CINEMATICA DEI CONTINUI

Page 1: CINEMATICA DEI CONTINUI

CINEMATICA DEI CONTINUI

Page 2: CINEMATICA DEI CONTINUI

Si consideri un mezzo continuo i cui punti nella configurazione iniziale C, siano riferiti alla terna cartesiana ortogonale Oxyz. Si supponga ora che ciascun punto del corpo subisca uno spostamento caratterizzabile attraverso le sue componenti secondo gli assi:

u = u (x, y, z), v = v (x, y, z), w = w (x, y, z).

A seguito di tale movimento il punto P si trasporterà in P' ed il corpo assumerà la nuova configurazione C’. Poichè nella trasformazione C supporremo che non avvengano compenetrazioni e lacerazioni di materia le funzioni di spostamento si supporranno continue, con le loro derivate prime, in tutta la regione definita dal volume V. Si farà inoltre l’ipotesi che le u, v, w, a meno di un eventuale moto rigido globale del corpo, siano ovunque piccolissime ed assimilabili ad infinitesimi.

(1)

Page 3: CINEMATICA DEI CONTINUI

Ciò posto si consideri il generico punto P di coordinate (x0, y0, z0) e siano u0, v0, w0 le componenti dello spostamento ad esso competente. Detto Q un secondo punto di coordinate (x, y, z) appartenente all’intorno infinitesimo di P e cioè tale che le quantità:

possano essere considerate infinitesime, e dette u, v, w, le componenti dello spostamento del punto P può porsi:

,z - z , y- y , x -x

o

0

0

, z

u

y

u

x

uu u 0

, z

v

y

v

x

v v v 0

. z

w

y

w

x

w w w 0

(2)

Page 4: CINEMATICA DEI CONTINUI

Le precedenti rappresentano lo sviluppo in serie di Taylor delle relazioni (1) in un intorno del punto P troncato ai termini del primo ordine, essendo ξ, η, e ζ, infinitesimi. Tali relazioni possono essere assunte quali leggi di variazioni delle componenti dello spostamento nell’intorno infinitesimo del punto P.

Chiamiamo con M la matrice con componenti le derivate parziali delle componenti di spostamento u, v e w:

zw

yw

xw

zv

yv

xv

zu

yu

xu

M

Page 5: CINEMATICA DEI CONTINUI

In forma matriciale le (2) possono essere scritte:

,r MU U 0

Avendo indicato con:

(3)

, wvu

U

,

wvu

U

0

0

0

0

e

le componenti dello spostamento del punto P e del punto Q, rispettivamente e

, r

vettore posizione del punto Q rispetto al punto P.

Page 6: CINEMATICA DEI CONTINUI

,

zw

yw

zv

21

xw

zu

21

yw

zv

21

yv

xv

yu

21

xw

zu

21

xv

yu

21

xu

E

La matrice M può essere decomposta in una somma di due matrici E e W definite da:

.

zw

yw

zv

21

xw

zu

21

yw

zv

21

yv

xv

yu

21

xw

zu

21

xv

yu

21

xu

W

Page 7: CINEMATICA DEI CONTINUI

La matrice E si chiama parte simmetrica di M mentre W parte emisimmetrica di M.

,xv

yu

21

yxxy

,

x

uxx

,xw

zu

21

zxxz

,yv

yy ,

yw

zv

21

zyyz

.

zw

zz

Le 6 componenti indipendenti della matrice E sono:

,

zzzyzx

yzyyyx

xzxyxx

E

Quindi la matrice E sarà:

(4’)

(4)

Page 8: CINEMATICA DEI CONTINUI

Con la decomposizione della matrice M = E + W, la (3) può essere scritta:

,r)( WEU U 0

La deformazione che subisce l’intorno di un punto può sempre pensarsi come ottenuta per sovrapposizione di moto rigido U0, di una deformazione rappresentata da una matrice emisimmetrica W, che rappresenta una rotazione rigida, e di una deformazione rappresentata dalla matrice E.Ai fini dell’analisi della deformazione, è evidente che il moto rigido di traslazione e rotazione dell’intorno risulta essere inessenziale.

Page 9: CINEMATICA DEI CONTINUI

Componenti di moto rigido e componenti di deformazione

La deformazione che subisce l’intorno di un punto interno P può sempre pensarsi come ottenuta per sovrapposizione di un moto rigido e di un moto di deformazione pura responsabile delle variazioni di geometria dell’intorno stesso.

Ai fini dell’analisi della deformazione, il moto rigido dell’intorno risulta essere inessenziale. E’ opportuno quindi suddividere le aliquote che competono al moto rigido da quelle di deformazione reale.

0U E

r

Wr

Page 10: CINEMATICA DEI CONTINUI

Con riferimento ad un elemento lineare infinitesimo lungo l’asse x nella configurazione iniziale, che indichiamo con dx, di estremi l’origine O ed il punto A avremo:

Er

dxO O’A

A’

,00dx

r

,r E U

In componenti si ha: ,dxu xx

,dxv xy

,dxw xz

Page 11: CINEMATICA DEI CONTINUI

,dxdxdx)1(L 2xz

2xy

2xxf

.dx)e1(dxe21L xxxxf

La lunghezza finale risulta:

Trascurando i termini quadratici nelle deformazioni ε si ha:

la lunghezza iniziale Li è dx, quindi ricavando la deformazione εxx:

εxx si definisce coefficiente di dilatazione lineare.

.L

LL

i

ifxx

Page 12: CINEMATICA DEI CONTINUI

Per vedere il significato fisico dei termini ad indice diverso, assumiamo che solo εxy sia diverso da zero. Prendiamo inoltre un elemento infinitesimo di lati dx e dy.

Er

dxO O’A

A’

dy

B B’

,

000

00

00

yx

xy

E

C C’

Il punto 0 non subisce spostamenti, il punto B si sposterà in direzione x di (εxy dy), il punto A si sposterà in direzione y di (εxy dx) ed il punto C si sposterà in direzione x di (εxy dy) ed in direzione y di (εxy dx).

Se la deformazione è

x x

y y

B

A O

Page 13: CINEMATICA DEI CONTINUI

, dx

dx A'OA ant xy

xy

In particolare l’angolo in O del triangolo AOA’ risulta:

Per le ipotesi fatte di deformazioni infinitesime, la tangente è approssimabile con il valore del seno e quindi al valore dell’angolo (in radianti):

, A'OA xy

Analogamento per l’angolo in O del triangolo BOB’ risulta:

, dy

dy B'O Bant xy

xy

. B'O B xy

e quindi per le ipotesi fatte di deformazioni infinitesime:

Page 14: CINEMATICA DEI CONTINUI

Spesso si parla di scorrimento angolare definito da:

quindi la componente εxy del tensore di deformazione infinitesima E rappresenta la metà dello scorrimento angolare tra le direzioni x ed y.

, yxxyxy

Page 15: CINEMATICA DEI CONTINUI

Quando è assegnata la deformazione mediante una terna di spostamenti u in direzione x, v in direzione y e w in direzione z, che sono funzioni continue con le derivate prime e monodrome è sempre possibile determinare il tensore delle deformazioni mediante:

Ci si può chiedere se, assegnate comunque ad arbitrio le 6 deformazioni indipendenti εxx, …, εyz pensate come le componenti di un tensore delle deformazioni, sia possibile far loro corrispondere una deformazione effettiva per il corpo B , ossia un campo di spostamenti a cui corrispondano le deformazioni stesse in accordo con le relazioni spostamenti-deformazioni.

,

zw

yw

zv

21

xw

zu

21

yw

zv

21

yv

xv

yu

21

xw

zu

21

xv

yu

21

xu

E

Page 16: CINEMATICA DEI CONTINUI

La riposta a tale quesito in generale è no e risiede evidentemente nella possibilità di integrare il sistema di equazioni differenziali alle derivate parziali. Si possono determinare delle condizioni necessarie per l’esistenza di un campo di spostamenti in grado di individuare una corrispondenza biunivoca tra le due situazioni di struttura deformata ed indeformata. Esse sono state trovate per la prima volta da Saint-Venant e sono note come equazioni esplicite di congruenza o anche come equazioni di Saint-Venant.

Page 17: CINEMATICA DEI CONTINUI

Osservazione:Si può porre il seguente problema: dato il tensore di deformazione infinitesimo E verificare se esistono una o più direzioni per le quali accade che lo spostamento è di pura deformazione lungo la direzioni stesse.

Si può ripetere quanto detto per le tensioni costruendo il problema agli valori. Sempre esistono tre radici reali (eventualmente coincidenti) che individuano le deformazioni principali in corrispondenza alle quali si individuano tre direzioni principali di deformazione che è semplice mostrare risultano ortogonali fra loro.

Nel caso piano è possibile costruire un cerchio di Mohr per le deformazioni in modo simile.