Bursi - Gusci e Piastre

64
1 DISPENSA DI STRUTTURE SPECIALI GUSCI PROFESSORE: ING. ORESTE BURSI

Transcript of Bursi - Gusci e Piastre

Page 1: Bursi - Gusci e Piastre

1

DISPENSA DI STRUTTURE SPECIALI

GUSCI

PROFESSORE: ING. ORESTE BURSI

Page 2: Bursi - Gusci e Piastre

2

1 INTRODUZIONE ..........................................................................................................................3 1.1 Comportamento della volta...........................................................................................................3 1.2 Classificazione ..............................................................................................................................5 2 LASTRE DI RIVOLUZIONE .......................................................................................................6 2.1 Metodo di analisi generale ...........................................................................................................7 2.2 Teoria membranale .......................................................................................................................8 2.3 Le membrane di rivoluzione caricate con simmetria radiale ........................................................8 2.4 Campo degli spostamenti .............................................................................................................12 2.5 Considerazioni sulle sollecitazioni locali nelle membrane .........................................................12 2.6 Esempio 1...................................................................................................................................14 3 TEORIA TRAVE AD ANELLO............................................................................................................16 3.1 Flessibilità e rigidezze della trave ad anello ...............................................................................16 3.2 Esempio1.....................................................................................................................................19 4 FENOMENI DI INSTABILITA’ ................................................................................................23 5 VOLTINE APPLICAZIONI ..........................................................................................................24 5.1 Comportamento...........................................................................................................................24 5.2 Metodi approssimati di soluzione ...............................................................................................25 5.3 Esempio1.....................................................................................................................................26 5.4 Esempio 2....................................................................................................................................32 6 GUSCI CILINDRICI ...................................................................................................................34 6.1 Modalità di analisi.......................................................................................................................34 6.2 Teoria membranale dei gusci cilindrici.......................................................................................35 6.3 Esempio1.....................................................................................................................................37 6.4 Esempio2.....................................................................................................................................38 6.5 Esempio3......................................................................................................................................39 6.6 Deformazioni nell’ambito della teoria membranale ...................................................................41 6.7 Esempio4.....................................................................................................................................42 6.8 Teoria flessionale dei gusci cilindrici .........................................................................................44 6.9 Teoria flessionale assialsimmetrica di gusci cilindrici a sezione circolare.................................46 6.10 Esempio5...................................................................................................................................49 7 METODO DEI COEFFICIENTI ELASTICI.............................................................................52 7.1 Esercizio 1...................................................................................................................................52 7.2 Esercizio 2...................................................................................................................................55 8 DISPOSIZIONE DELLE ARMATURE NEI GUSCI ...............................................................57 8.1 Armatura inclinata rispetto alla direzione di sollecitazione.........................................................57 8.2 Calcolo della direzione di fessurazione (mediante congruenza deformazioni) ...........................61 8.3 Dimensionamento di una piastra con armature inclinate rispetto direzioni principali di sforzo .62 8.4 Lastre con momenti flettenti non trascurabili ..............................................................................63

Page 3: Bursi - Gusci e Piastre

3

1 INTRODUZIONE Definiamo una struttura a guscio sottile come quella struttura nella quale una dimensione, lo spessore, è molto più piccola rispetto alle altre. Si può presentare curva, sfaccettata o ripiegata in modo tale che la geometria riesca ad attivare un sistema portante di sforzi assiali significativo. La teoria dei gusci sottili che adotteremo considera l’ipotesi di elasticità lineare. Questa tuttavia viene abbandonata quando si ha a che fare con spostamenti non piccoli o si devono considerare gli effetti del second’ordine. Per questo tipo di problemi, ad esempio per i gusci ribassati, si utilizzano delle teorie elastiche non lineari. Queste però, data la complessità dei problemi non lineari, devono essere il più possibile semplificate attraverso l’introduzione di opportune approssimazioni, per non trovarsi in situazioni di calcolo che possono non portare ad applicazioni pratiche ed accessibili. La teoria dei gusci elastici in piccole deformazioni si basa sulla teoria matematica dell’elasticità. Tuttavia data la geometria dei gusci, non si usano le equazioni di equilibrio nella forma generale, che risulterebbero troppo complesse per ottenere soluzioni di interesse pratico. Per questo motivo sono state sviluppate teorie semplificate per i gusci sottili in cui si fa riferimento alla superficie media ed alle sue deformazioni. Teorie dei gusci a diverso livello di accuratezza si possono derivare in funzione del grado di semplificazione delle equazioni, anche se tuttavia tale semplificazione è funzione del problema e ciò può influenzare la validità della soluzione. In ogni caso si parte con espressioni che governano il problema espresse in tre variabili spaziali Indipendenti per ridurle a un nuovo sistema con due variabili. Le varie teorie lineari si possono classificare in quattro categorie:

1) Con approssimazioni del primo ordine 2) Con approssimazioni del secondo ordine 3) Teorie speciali 4) Teoria membranale (di ordine zero o priva di momenti)

L’ordine è definito dall’ordine dei termini delle coordinate nello spessore che vengono mantenuti nella definizione della deformazione e nella legge costitutiva. Le teorie semplificate 1) e 2) sono in genere basate sulle primitive e corrispondenti teorie di Lavè (inizio ‘800). Altre semplificazioni possono derivare dalla geometria della struttura in esame, introducendo ad esempio l’ipotesi di assialsimmetria. Per quanto riguarda le teorie sperimentali, possiamo dire che il loro sviluppo è scoraggiato dalla grande quantità di casi particolari. Le strutture a guscio non hanno un impiego esclusivamente civile, in quanto sono utilizzate, ad esempio, anche in ambito aeronautico ed aerospaziale. 1.1 Comportamento della volta Il comportamento ideale della volta consiste nel resistere ai carichi solo tramite forze membranali quasi costanti lungo la volta, ciò in realtà si verifica solo per condizioni di vincolo appropriate. Infatti variazioni improvvise di carico o di rigidezza producono localmente dei momenti flettenti necessari per equilibrare il carico o ristabilire la congruenza. Nelle volte a curvatura positiva, come le cupole, i carichi sono trasmessi ai supporti, principalmente con forze di compressione tipo arco e i disturbi di tipo flessionale applicato ai bordi si smorzano rapidamente. Nelle cupole a curvatura negativa invece, le forze di taglio rappresentano il meccanismo di resistenza primario. Queste cupole tendono a propagare i disturbi ai bordi molto più che nel caso precedente. Consideriamo ora i tre tegoli rappresentati in fig.1.1.1, si può notare come la geometria della sezione incida drasticamente sulla capacita dell’elemento di raggiungere luci elevate, le strutture b) e c) infatti resistono molto meglio a flessione rispetto alla a), poiché reagiscono tramite un comportamento ad arco. Questa capacità delle volte di raggiungere grandi luci a fronte di spessori

Page 4: Bursi - Gusci e Piastre

4

piccoli, e quindi pesi ridotti, le rende particolarmente adatte a realizzare elementi di copertura. Esempi di queste coperture sono rappresentate nelle figure 1.1.2 e 1.1.3. Comportamento a piastra in semplice appoggio Luce trave l=10m Piastra sagomata in semplice appoggio Luce trave l=20m Volta cilindrica in semplice appoggio Luce trave l=20m

figura 1.1.1

figura 1.1.2

Page 5: Bursi - Gusci e Piastre

5

figura 1.1.3

1.2 Classificazione Le volte sottili possono essere classificate in base all’impiego ed alla loro forma. Per quanto riguarda la forma faremo riferimento alla curvatura della superficie che può essere in una o due direzioni, distinguendo così in Superfici a singola curvatura, sviluppabili su un piano (coni e cilindri). Superfici a doppia curvatura, non sviluppabili su un piano. Esse sono a curvatura positiva se l’origine dei raggi di curvatura è dallo stesso lato. Ciò implica che per effetto di pressioni normali alla superficie la volta reagisce con forza dello stesso segno nelle direzioni ortogonali. Esse sono a curvatura negativa se l’origine dei raggi di curvatura si trova su lati opposti della superficie (paraboloidi iperbolici e conoidi). In tal caso per carichi normali nascono tensioni di segno opposto in direzioni ortogonali. Per quanto riguarda il loro, impiego le volte vengono usualmente utilizzate per elementi di copertura, fondazioni o strutture di contenimento. Bibliografia : • D.Belluzzi “scienza delle costruzioni ; vol. 3°”, Bologna: Zanichelli, 1980-1985 • S.Timoshenko “Theory of plates and shells”, Tokyo: Mc Graw hill, 1959 • W.Flugge “Stresses in Shells”, Berlin: Springer,1973 • AA.VV. (Wilby) “Handbook of Structural concrete”, London: Pitman publishing inc.,1983

Page 6: Bursi - Gusci e Piastre

6

2 LASTRE DI RIVOLUZIONE Si ottengono per rivoluzione del meridiano medio attorno all’asse di simmetria del medesimo, chiamato per l’appunto asse di rivoluzione, e sono dotate di uno spessore “s” definito dalla legge di variazione lungo il meridiano.

figura 2.0.1 A seconda della forma del meridiano medio posso ottenere diversi tipi di lastre:

Lastre a doppia curvatura Lastre coniche Lastre cilindriche

figura 2.0.2

Page 7: Bursi - Gusci e Piastre

7

Imponiamo ora che le lastre che andremo a considerare soddisfino inoltre le seguenti condizioni: - Ipotesi sullo spessore s: tale spessore non e sufficientemente piccolo da poter trascurare gli effetti flessionali (come invece accade nelle membrane). E’ tuttavia di dimensioni tali da poter ipotizzare una distribuzione lineare delle deformazioni sullo spessore (ipotesi di Bernoulli o delle sezioni piane).

-Ipotesi sulle condizioni di carico. Si considera il caso in cui le forze applicate siano simmetriche rispetto all’asse di rivoluzione, ovvero parleremo di condizioni di carico assialsimmetrico. Tali forze possono quindi variare al variare del parallelo considerato, ma si mantengono costanti sullo stesso.

F = F(F) F = F(X) figura 2.0.3

Per tali condizioni di carico, anche le azioni interne e le deformazioni sono in funzione di una sola variabile, quella cioè che mi individua il parallelo. E’ chiaro quindi che le equazioni differenziali che mi governeranno il problema saranno ordinarie anziché alle derivate parziali. Tuttavia nonostante l’ipotesi di assialsimmetria dei carichi la risoluzione del problema risulta alquanto laboriosa, per questo motivo spesso è più conveniente studiare la lastra utilizzando, con buona approssimazione, i risultati ottenuti per le membrane, corretti però dalle azioni che nascono sul bordo. 2.1 Metodo di analisi generale • Dividere la cupola in segmenti, un segmento per ogni cambio di geometria. • Per ogni segmento calcolare le forze membranali e gli spostamenti. • I valori di queste quantità lungo le giunzioni tra i segmenti violano la congruenza, ovvero le

condizioni di vincolo ai bordi. • Si valuta l’influenza dovuta all’applicazione di forze e momenti alle giunzioni ed ai bordi. • Si scrivono e si risolvono le equazioni di congruenza alle giunzioni ed ai bordi e si valutano le

forze correttive. • Si sovrappongono tali forze correttive alle soluzioni originali ottenute con la membrana.

Page 8: Bursi - Gusci e Piastre

8

2.2 Teoria membranale Le membrane sono strutture laminari sottilissime, ad esempio un serbatoio di lamiera, che si considerano perciò prive di rigidezza a flessione e a torsione. Esse quindi sono soggette in ogni punto soltanto a sforzi assiali agenti nel piano tangente, ovvero nelle membrane ho momenti e tagli fuori piano nulli, si assume quindi che le tensioni siano uniformemente ripartite sullo spessore. Inoltre a differenza di quanto accade per le lastre piane dove gli stati deformativi giocano un ruolo fondamentale per la determinazione degli sforzi interni, nelle membrane a doppia curvatura sono invece trascurabili, in quanto la loro configurazione geometrica è di per se adatta affinché lo stato tensionale interno riesca ad equilibrare le azioni esterne. Consideriamo quindi le membrane inestensibili al fine del calcolo delle tensioni. Ovviamente tale ipotesi andrà rimossa nel momento in cui andremo a calcolare le dilatazioni. Nelle membrane a doppia curvatura quindi la struttura è staticamente determinata internamente. Perciò per la determinazione del suo stato tensionale le equazioni di equilibrio risulteranno essere necessarie e sufficienti. Ciò è particolarmente semplice nel caso delle membrane aventi la forma di una superficie di rivoluzione e caricate con simmetria radiale. Nel caso generale, forze non simmetriche o membrane di forma qualsiasi, il problema è si staticamente determinato internamente, ma richiede la soluzione di un sistema di equazioni alle derivate parziali. A questo però si può ovviare utilizzando il metodo di risoluzione appena descitto che sfrutta l’additività del problema lineare elastico. Tuttavia anche questo procedimento semplificato risulta in alcuni casi estremamente laborioso. Per questo conviene impiegare dei programmi ad elementi finiti “general-purpose”, che in molti casi contengono elementi guscio di rivoluzione per impiego in problemi simmetrici, per carico e geometria. 2.3 Le membrane di rivoluzione caricate con simmetria radiale Il carico ( peso proprio, neve o pressione interna ) è considerato uniforme per unità di superficie. A causa della simmetria del carico e della struttura, non vi sono forze di taglio sui lati dell’elemento, in quanto essendo asimmetrici risultano incompatibili. Scriviamo ora le equazioni di equilibrio alla traslazione -Equilibrio rispetto alla verticale:

P

φ0

r0

φ0Nφ∗sinφ0

figura 2.3.1 Con riferimento alla figura 2.3.1

P = - ⇒⋅⋅⋅⋅ φφπ Nr 00 sin2 00 sin2 φπφ ⋅⋅⋅

−=rPN

-P è la risultante di tutti i carichi applicati sopra il parallelo di raggio 0r .

Page 9: Bursi - Gusci e Piastre

9

-Equilibrio radiale ( lungo la direzione z):

figura 2.3.2 Schema delle forze membranali

φdRdl ⋅= 11 , θdrdl ⋅= 02 , 20

sinR

r=

φ

θφ dRdl ⋅⋅= sin22 Poiché 2ld ′ differisce da 2dl per un infinitesimo del secondo ordine, vale 2ld ′ 2dl≅ Calcoliamo le componenti delle forze agenti lungo la direzione z.

r

φ

dφ/290-dφ/2

dφ/2

−Νφdl2

−(Νφ+dNφ)d'l2dθ

r

−Νθdl2−Νθdl2

dθ/2

−pzrdθ

figura 2.3.3 figura 2.3.4

-Per gli sforzi φN (Figura 2.3.3) otteniamo: Componente di 2dlN ⋅φ lungo z:

=−°⋅⋅ )290cos(2φ

φddlN ⋅⋅≅⋅⋅ 22 2sin dlNddlN φφ

φ2

φd

Componente di ( φφ dNN + ) 2ld ′⋅ lungo z:

a meno di infinitesimi di ordine superiore risulta essere: 22φ

φddlN ⋅⋅

Sommando i due contributi troviamo infine che la componente totale è: -2 22φ

φddlN ⋅⋅⋅

Page 10: Bursi - Gusci e Piastre

10

-Analogamente per gli sforzi θN (Figura 2.3.4) otteniamo:

Componente totale lungo r (dir. tangente ai paralleli ) ⋅⋅ θN2 21θddl ⋅

Componente totale lungo z - ⋅⋅ θN2 )90cos(21 φθ −⋅⋅ ddl

- ⋅θN φθ sin1 ⋅⋅ ddl -Componente delle forze esterne agenti lungo z per unità d’area della membrana: 21 dldlPz ⋅⋅ Imponiamo infine l’equilibrio alla traslazione lungo z:

- ⋅θN φθ sin1 ⋅⋅ ddl φφ ddlN ⋅⋅− 2 + 21 dldlPz ⋅⋅ = 0 ovvero

+ ⋅θN φθφ sin1 ⋅⋅⋅ ddR φθφφ ddRN ⋅⋅⋅⋅+ sin2 = θφφ dRdRPz ⋅⋅⋅⋅⋅ ⋅ sin21 Dividendo per φφθ sin,,dd si ottiene:

+ θN 1R⋅ 2RN ⋅+ φ = ⋅⋅⋅ 21 RRPz ossia:

2RNθ

1RNφ+ = zP

Tale equazione consente di determinare θN , quando si sia calcolato φN

θN = )(1

2 RN

PR zφ−⋅

Da questa equazioni si ricavano le soluzioni per una varietà di gusci e carichi. nelle tabelle 2.3.1 e 2.3.2 ne sono riportate alcune:

continua

Page 11: Bursi - Gusci e Piastre

11

Tabella 2.3.1 Guscio sferico

Tabella 2.3.2 Guscio cilindrico

Page 12: Bursi - Gusci e Piastre

12

2.4 Campo degli spostamenti Una volta note le forze, si possono ottenere gli spostamenti u (lungo li meridiano), w (lungo R2),

φ∆ , tramite le equazioni:

u = ( ) φφφ

sinsin

⋅⎥⎦

⎤⎢⎣

⎡+⋅∫ CdNf

w = u )(cot 2φθ νφ NN

EtR

⋅−−

φ∆ = φdR

dwRu

⋅+

11

Dove:

( ) ( ) ( )[ ]12211, RRNRRNEt

NNf ⋅+⋅−⋅+⋅⋅= νν θφθφ

ν è il rapporto di Poisson C rappresenta il moto rigido lungo l’asse di rotazione che ripristina la congruenza ai vincoli. t è lo spessore del guscio 2.5 Considerazioni sulle sollecitazioni locali nelle membrane • Nelle membrane a simmetria radiale si ha il regime statico più favorevole che si possa desiderare ( analogamente allo stato di tensione assiale per le barre), nel quale le sollecitazioni sono

uniformemente ripartite nello spessore ed il materiale è utilizzato nel miglior modo possibile. • Le strisce secondo i paralleli, esercitano un’azione di cerchiamento su quelle disposte lungo i

meridiani, le quali subiscono in genere delle deformazioni molto piccole, nonostante la rigidezza flessionale sia nulla o comunque trascurabile.

• Le strisce meridiane non sono in grado di trasmettere a distanza le sollecitazioni trasversali

(flessione o taglio). Tale trasmissione subisce uno smorzamento dovuto alla suddetta azione di cerchiamento. Da ciò deriva, il rapido decadimento delle sollecitazioni dovute ai vincoli e che le deformazioni più importanti dipendano dai valori locali di θN ed φN .

• Gli sforzi membranali, sussistono in ogni punto sino al bordo, e non sono accompagnati da

momenti rilevanti solo se il bordo stesso non altera tale regime degli sforzi. Ovvero il bordo deve trasmettere soltanto lo sforzo φN agente lungo il meridiano (supposto che il bordo o contorno coincida con un parallelo).

• Dunque la reazione del vincolo non deve avere una componente nella direzione z normale alla

superficie della membrana, né un momento rispetto alla tangente al contorno. Quindi il vincolo deve essere costituito da un appoggio articolato e scorrevole sopra una sede conica coassiale con la membrana; oppure in modo equivalente da tiranti pendolari diretti secondo le tangenti ai meridiani(vedi fig. 2.5.1) .

• Quando il contorno è scorrevole sopra un piano orizzontale e l’inclinazione φ al contorno è

diversa da 90°, la reazione verticale V, si può decomporre in una componente φN ed in una

Page 13: Bursi - Gusci e Piastre

13

componente orizzontale che è maggiore di quella posseduta da φN . Tale componente in eccesso genera delle sollecitazioni “locali” di flessione e di taglio. Tali sollecitazioni hanno valori considerevoli a piccole distanze dal contorno e si smorzano rapidamente al crescere della distanza.

• Comportamenti analoghi si hanno quando il contorno è rinforzato da una trave ad anello di cintura

che può scorrere sopra un piano orizzontale. O quando il contorno è vincolato al suolo con una articolazione che si oppone alla libera dilatazione o contrazione dei paralleli prossimi al contorno. Se il contorno è incastrato, si ha anche un momento di incastro, il cui effetto è anch’esso locale.

• Come detto in precedenza, anche in presenza di tali alterazioni, si calcolano in ogni caso gli sforzi

di membrana, considerando successivamente le sollecitazioni locali, tramite opportune correzioni. • Tali correzioni coinvolgono la soluzione delle equazioni differenziale della teoria della flessione.

Vi sono diverse soluzioni approssimate in letteratura. Se l’angolo φ eccede i 30° si può impiegare la soluzione di Beckler o quella di un cilindro equivalente.

• Nelle tabelle 3.2.1 e 3.2.2 sono fornite forze interne e spostamenti quando forze e momenti unitari

sono applicati ai bordi. Tali valori possono essere sovrapposti, in virtù della linearità del problema, alle sollecitazioni di membrana.

• La soluzione approssimata di Beckler è relativa ai gusci di rivoluzione (chiusi) sollecitati lungo il

bordo con forze e coppie uniformemente distribuite dove le sollecitazioni si smorzano rapidamente all’aumentare della distanza dal bordo stesso.

H

VNφ

figura 2.5.1 vincoli consistenti con il regime tensionale di membrana

figura 2.5.2 vincoli non consistenti con il regime tensionale di membrana

Page 14: Bursi - Gusci e Piastre

14

2.6 Esempio 1 Si analizzi un guscio sferico di spessore costante sollecitato dal peso proprio.

φsin⋅= EX PP φcos⋅= EZ PP

zx

Pz

figura 2.6.1

Effetto del peso proprio. Dalla teoria della membrana, con l’uso della tabella 2.3.1 delle tensioni si ottiene:

φφ cos1+⋅

=rP

N E [ ]LF ; ⎟⎟

⎞⎜⎜⎝

⎛−

+⋅= φ

φθ coscos11rPN E [ ]L

F

EP : peso proprio per unità di superficie.

Si veda la distribuzione delle tensioni

figura 2.6.2

Se il guscio è caricato con una forza uniformemente distribuita lungo un piano ortogonale all’asse del guscio. Caso della neve

Ps

x zφ

r

figura 2.6.3

φφ cossin ⋅⋅= SX PP φ2cos⋅= SZ PP

Page 15: Bursi - Gusci e Piastre

15

2rP

N S ⋅−=φ ; φθ 2cos

2⋅

⋅−=

rPN S

Graficamente

figura 2.6.4 figura 2.6.5 Gli spostamenti del guscio sotto peso proprio, determinate con le equazioni generali viste in precedenza sono:

φφφφ

φνsin

cos11

cos11

cos1cos1ln

)1(2

⋅⎥⎥⎦

⎢⎢⎣

+−

++

++

⋅⋅

+⋅⋅=

CC

E

tErP

u

( ) +⋅⎥⎥⎦

⎢⎢⎣

+−+

−++

⋅⋅

+⋅⋅= φ

φφφφ

φφν cos

cos1coscos1

cos1cos1ln)1(2

C

C

C

E cotE

rPwtErPE

⋅⋅ 2

φcos⋅

Quindi gli spostamenti ai bordi valgono

CCC

E

tErP

H φφφ

ν sincoscos1

12

⋅⎟⎟⎠

⎞⎜⎜⎝

⎛−

++

⋅⋅⋅

−=∆ spostamento orizzontale

( ) CE

tErP

φνφ sin2 ⋅+⋅⋅⋅

−=∆ rotazione

Bibliografia : • D.Belluzzi “scienza delle costruzioni ; vol. 3°”, Bologna: Zanichelli,1980-1985 • Mark Fintel “Handbook of concrete engineering”, New York: Van nostrand reinhold company

1985

Page 16: Bursi - Gusci e Piastre

16

3 TEORIA TRAVE AD ANELLO 3.1 Flessibilità e rigidezze della trave ad anello -Rigidezza tangenziale e radiale

figura 3.1.1 Definiamo H come una forza per unità di lunghezza avente direzione radiale e l’area A come, A = 1⋅s , dove s è lo spessore dell’anello Sezioniamo la trave rispetto un piano passante per il centro, e imponiamo l’equilibrio alla traslazione in modo da ricavare la forza assiale N:

[ ] ( )[ ] HrHrHrdHrdrHN iiiii⋅⋅=+−−⋅⋅−=−⋅⋅=⋅⋅⋅=⋅⋅⋅⋅=⋅ ∫∫ 211cossinsin12 000

πππααααα

poiché assumiamo s piccolo rispetto ad R possiamo confondere ir con R, da cui:

HRN ⋅⋅=⋅ 22 HRN ⋅=

Quindi la tensione normale nella trave, costante sullo spessore sarà:

AHR

AN ⋅

==σ

e la deformazione normale o tangenziale: ( )

RR

RR

EAHR

E∆

=⋅⋅⋅⋅∆

=⋅⋅

==ππσε

22

Allungamento radiale ξ :

ξ =AEHRRR

⋅⋅

=⋅=∆2

ε

Ponendo H=1 otteniamo : ξ ( flessibilità ) =AE

R⋅

2

che esprime l’allungamento tangenziale o radiale per unità di lunghezza.

La relativa rigidezza vale AE

RWh ⋅=

2

Page 17: Bursi - Gusci e Piastre

17

Mentre i coefficienti mhξ e mhW sono nulli, poiché se la trave ad anello si espande non subisce alcuna rotazione. - Rigidezza rotazionale

figura 3.1.2 Definiamo “m” come momento per unità di lunghezza. Il momento torcente non può esistere per ragioni di simmetria. Inoltre introduciamo l’ipotesi di trave a piccola curvatura: dimensione della sezione nella direzione del raggio è abbastanza piccolo rispetto al raggio stesso, quindi trascureremo l’allungamento delle diverse fibre periferiche. Analogamente a quanto fatto prima imponiamo l’equilibrio alla rotazione:

α

α

α

figura 3.1.3

RmdRmdRmM ⋅⋅=⋅⋅⋅=⋅⋅⋅=⋅ ∫∫ 2sinsin200

ππαααα

RmM ⋅= L’equazione precedentemente scritta è un’equazione esatta derivante dall’equilibrio. Si trascuri ora la curvatura, ossia la lunghezza delle fibre tra due sezioni rette vicinissime, in modo che possiamo adottare come distribuzione approssimata delle tensioni la soluzione di de S. Venant per la flessione retta.

yJ

RmyJM

⋅⋅

=⋅=σ

Sia l’asse neutro baricentrico e sul piano dell’anello. Si valuti l’angolo α di cui ruota ciascuna sezione nel proprio piano, con il teorema di Clapeyron.

Page 18: Bursi - Gusci e Piastre

18

Teorema di Clapeyron: Il lavoro virtuale compiuto da un sistema di n forze su un corpo elastico è

uguale a: i

n

iii

n

iie MPL ϕδ ⋅=⋅= ∑∑

== 11 21

21

Dove iP rappresenta la i-esima forza applicata e iδ il valore del relativo spostamento finale.

Le = απαπ ⋅⋅⋅=⋅⋅⋅⋅⋅ RmRmMOMENTO

43421 221

Li =

}322

2

)(221 Rm

JERRm

JER

JEMR

JEMM

ROTAZIONE

LUNGHEZZACURVATURA

⋅⋅⋅

=⋅⋅⋅⋅

=⋅⋅

⋅=⋅⋅⋅⋅

⋅⋅ππππ

444 3444 21

876

Dunque per il principio dei lavori virtuali possiamo scrivere

Le = Li 32 RmJE

Rm ⋅⋅⋅

=⋅⋅⋅παπ

JERm⋅

⋅=

2

α ponendo mϕα = ed 1=m , ottengo infine ( )JE

Rtàflessibilim ⋅=

2

ϕ

mϕ rappresenta la flessibilità rotazionale dovuta al momento applicato m.

Mentre la relativa rigidezza rotazionale varrà: 2RJEWm

⋅=

I relativi coefficienti hmϕ e hmW sono nulli poiché nell’ambito delle ipotesi, quando la trave ad anello ruota non si espande.

Page 19: Bursi - Gusci e Piastre

19

3.2 Esempio1

Figura 3.2.1 Figura 3.2.2 a) spostamenti dovuti ad H b) forze per ripristinare la compatibilità Si analizzi il guscio solidale ad una trave ad anello di figura sottoposta a carichi verticali. Lo spessore del guscio è di 7.62 centimetri. L trave ad anello è a sua volta supportata da delle colonne. Si assuma un peso proprio globale di 2.394 2mKN e 0=ν per semplicità. Soluzione • Si calcola la soluzione per lo stato membranale • Correggiamo la soluzione precedentemente ottenuta tenendo conto delle condizioni di vincolo Forze e spostamenti membranali

59.31cos1

−=+

⋅−=

φφrPN E mKN ( bordo )

95.27cos1

−=+

⋅−=

φφrP

N E mKN ( vertice )

⎟⎟⎠

⎞⎜⎜⎝

⎛−

+⋅= φ

φθ coscos11rPN E = -11.18 mKN ( bordo )

⎟⎟⎠

⎞⎜⎜⎝

⎛−

+⋅= φ

φθ coscos11rPN E = -27.95 mKN ( vertice )

( ) CC tEN

rrH φεφ θθ sinsin ⋅

⋅⋅=⋅⋅=∆

20.2sin −=⋅⋅=∆⋅ cShell

tN

rHE φθ mKN ( rientrante )

CZ

tErpu

ddw

φφ sin21

⋅⋅⋅

⋅−=⎟⎟⎠

⎞⎜⎜⎝

⎛+=∆

24.943−=∆⋅ ShellE φ 2mKN ( orario apertura della cupola )

Page 20: Bursi - Gusci e Piastre

20

Deformazione della trave ad anello Componente orizzontale di φN

24.2440cos2168cos =°⋅=⋅= CNH φφ mKN ( forza uscente ) Componenti di deformazione della trave ad anello

20.181592

0 =⋅⋅

=∆⋅dbrH

E beamH mKN ( uscente )

0=∆⋅ beamE φ nessuna rotazione, poiché φN passa per il baricentro delle masse. Ovviamente non c’è congruenza tra trave e guscio. Per ripristinarla devono nascere forze addizionali H e momenti M ai bordi. Imponiamo quindi la congruenza alla traslazione(fig.3.2.2):

BMH

BHH

BH

SMH

SHH

SH EEEEEE ∆⋅+∆⋅+∆⋅=∆⋅+∆⋅+∆⋅

dove: SH

HE ∆⋅ contributo di deformazione al guscio dovuto ad H BM

HE ∆⋅ contributo di deformazione alla trave dovuto a M Congruenza alla rotazione:

BMBHBSMSHS EEEEEE φφφφφφ ∆⋅+∆⋅+∆⋅=∆⋅+∆⋅+∆⋅ Dobbiamo quindi calcolarci gli spostamenti che appaiono nelle equazioni dovuti alle forze di bordo sui singoli elementi ovvero: Spostamenti e rotazioni che nascono applicando forze e momenti lungo il bordo superiore di una trave ad anello:

( ) HHdb

rHE BHH ⋅=⋅

⋅⋅

=⋅

⋅⋅=∆⋅ 3000

5.06.01544 22

( rientrante )

BMHE ∆⋅ = ( )

( )MM

dbrM

⋅−=⋅⋅⋅

−=⋅

⋅⋅− 9000

5.06.01566

2

2

2

2

( uscente )

BHE φ∆⋅ = ( )( )

HHdb

rH⋅−=⋅

⋅⋅

−=⋅

⋅⋅− 9000

5.06.01566

2

2

2

2

( rotazione oraria )

BME φ∆⋅ = ( )( )

MMdb

rM⋅=⋅

⋅⋅

=⋅

⋅⋅ 5400005.06.0

1512123

3

3

3

( rotazione antioraria )

Spostamenti e rotazioni del bordo di un guscio dovuti a forze e momenti anch’essi applicati sul bordo: (si veda le tabelle 3.2.1-3.2.2)

SHHE ∆⋅ = ( ) HHH

tr

C ⋅−=⋅⋅⋅⋅

=⋅⋅⋅⋅

− 5827643.0076.0

348.23232sin2 22 φβ ( uscente )

SMHE ∆⋅ = MM

t C ⋅−=⋅⋅⋅

− 7.8927sin2 2

φβ ( uscente )

SHE φ∆⋅ = HHt C ⋅−=⋅⋅

⋅− 2.8927sin2 2

φβ ( uscente )

SME φ∆⋅ = MMt

⋅−=⋅⋅⋅

− 4.27443342

β ( orario )

Page 21: Bursi - Gusci e Piastre

21

inserendo i valori ottenuti nelle due equazioni di congruenza ottengo: H = 2.31 mKN M =- 0.041 mKN

Adesso si possono calcolare le tensioni risultanti nel guscio. Che saranno la somma di quelle dovute a H e M, che possiamo calcolarci utilizzando i valori della tabella, più la soluzione della membrana.

θN =44 344 21444444 3444444 21

mKNFM

tFH C 17893.1132sin2 23 −⋅⋅

⋅+⋅⋅⋅⋅ φβ = 56.67 mKN

valori da tabella sol. Della membrana L’eccesso di tensione va a zero quando

θN 766≅ ftlbs ovvero 1≅⋅φβ , '302°≅φ

Quindi l’effetto di bordo non si estende oltre 1 m . Questa forza di 56.67 mKN deve essere soppressa ponendo uno stato di precompressione nella trave

Tabella 3.2.1 per i valori di F si veda la tabella 3.2.2

Page 22: Bursi - Gusci e Piastre

22

Tabella3.2.2 Bibliografia : • D.Belluzzi “scienza delle costruzioni ; vol. 3°”, Bologna: Zanichelli,1980-1985 • Mark Fintel “Handbook of concrete engineering”, New York: Van nostrand reinhold company

1985

Page 23: Bursi - Gusci e Piastre

23

4 FENOMENI DI INSTABILITA’ L’instabilità di molti gusci è molto sensibile alle imperfezioni iniziali ed al tipo di condizioni di vincolo. Per cui esistono marcate differenze per i valori teorici e quelli di progetto. Quindi si devono assumere dei fattori di sicurezza non trascurabili. Per un guscio sferico la pressione di instabilità vale

2

⎟⎠⎞

⎜⎝⎛⋅⋅=

RtECPes

C coefficiente che tiene conto delle condizioni di vincolo, imperfezioni etc.

( )2132

231

ν−⋅⋅=C con

23 coefficiente di sicurezza

00

0 12

σσ

εσ

−⋅⋅

=E dove con 00 ,εσ si intendono le quantità massime

Si veda “Backer et. al “ Structural Analysis of shells Mc Graw-Hill, New York, 1992” per adattare i risultati teorici ai gusci di rivoluzione.

Page 24: Bursi - Gusci e Piastre

24

5 VOLTINE APPLICAZIONI 5.1 Comportamento Le voltine sostengono i carichi applicati tramite due tipi di azioni,

- trasferimento del carico dal colmo ai bordi tramite l’azione trasversale ad arco; - trasferimento longitudinale del carico tramite il comportamento a trave.

I diversi comportamenti dipendono dalla geometria della trave, - Se l’angolo di apertura θ dell’arco è piccolo rispetto alla luce in direzione longitudinale,

allora l’effetto ad arco è dominante solo sugli appoggi e conviene applicare la teoria della trave (caso a);

- Se l’arco è grande rispetto alla dimensione longitudinale allora l’effetto ad arco è predominante (caso b).

Si considerino le seguenti sollecitazioni per unità di lunghezza Schema dei versi positivi

xN equivale alla longσ in una trave θxN equivale alla τ in una trave

θN predominante in una membrana

θM momento di cerchiatura

Page 25: Bursi - Gusci e Piastre

25

5.2 Metodi approssimati di soluzione Soluzione membranale più soluzione di lastra per la correzione ai bordi; esso si adotta quando l’effetto arco è predominante sulla luce. Soluzione a trave; tale metodo si adotta per luci elevate e nell’ipotesi che le sezioni piane rimangano tale. Cioè nella sezione trasversale della voltina si assume una variazione lineare di XN rispetto all’asse z. A quel punto si applica la teoria della trave per la determinazione di XN . Tale metodo si applica quando (carico distribuito e simmetrico):

- Voltine singole senza travi di bordo con 5>RL

- Voltine singole con travi di bordo con 3>RL

- Sistemi di voltine multiple con 3>RL

Dunque, si calcolano le seguenti forze per unità di lunghezza

ItM

N Yx

⋅=

tbIQVN x ⋅

⋅⋅

Dove: I è il momento di inerzia della sezione; (vedi tabella)

VM , momento e taglio di trave Q , momento statico della parte di sezione rispetto l’asse neutro b è l’ampiezza della corda in esame

Tabella 5.2.1 Per calcolare le forze θθ XX NNN ,, ed θM si possono usare le tabelle, evitando così di fare i calcoli con il metodo della trave, quando ciò è consentito Se la luce è molto grande tende a diventare piatta sotto il carico distribuito, dobbiamo quindi tenere in conto anche gli effetti del secondo ordine, al riguardo vi sono altre due tabelle che forniscono la correzione della soluzione.

Page 26: Bursi - Gusci e Piastre

26

5.3 Esempio1

figura 5.3.1 Si veda la voltina multipla in figura

Dati: cmt 62.7= , ⇒== 262.724.15

RL voltina con luce non elevata

Azioni: peso della voltina + peso tetto ( dp ) = 915.1 2mKN +

Peso neve ( up ) = 1.436 2mKN = ________________ 3.351 2mKN

poiché RL è piccolo non vi è alcuna correzione, per l’ingobbamento non si applica il metodo della

trave. Dunque applicando le tabelle troviamo che le sollecitazioni valgono,

[ ])5()1( colonnapcolonnapLRLN duX ⋅+⋅⋅⋅=

[ ])5()3( colonnapcolonnapLN duX ⋅+⋅⋅−=θ [ ])8()4(2 colonnapcolonnapRM du ⋅+⋅⋅=θ

I risultati sono tabellati in funzione e frazione di Kθ .

Tabella 5.3.1

Page 27: Bursi - Gusci e Piastre

27

Filosofia del posizionamento delle armature Si pongono armature diagonali inclinate a 45° vicino ai supporti, che funzionano come le staffe diagonali nelle travi. Le armature partono quindi da un’estremità della trave e raggiungeranno il bordo laterale. Le armature longitudinali sono impiegate per assorbire le forze di trazione XN nella zona inferiore della voltina, delimitata dall’ asse neutro. Asse neutro, y

figura 5.3.2

mRRy KK

K 6766.0cossin=⋅−

⋅= θ

θθ

La forza totale di trazione si valuta in modo approssimato assumendo una variazione lineare di XN in zona tesa. (A favore di sicurezza considero MAXXN , )

MAXXN , = 27.693)2

,0( ===LxN KX θ mKN

( ) 44.587695.127.69321

21

, =⋅⋅=⋅⋅= yNT MAXXS KN

L’are delle armature longitudinali, secondo le tensioni ammissibili, sarà

22, 57.42

/8.13587 cm

cmKNKNT

Aadm

SnecessariaS ===

σ

Armature trasversali (perpendicolari a quelle longitudinali) sono impiegate per assorbire .θθ edMN L’entità di tali armature è pari a quelle longitudinali, salvo infittimento nelle zone con θN maggiore (al colmo). Vedremo nell’esempio successivo l’impiego di reti.

RMAXXN ,

Page 28: Bursi - Gusci e Piastre

28

figura 5.3.3

Page 29: Bursi - Gusci e Piastre

29

Tabella valida per ogni RL

Tabella 5.3.2 sforzi dovuti a carichi verticali Continua alla pagina seguente

Page 30: Bursi - Gusci e Piastre

30

Tabella 5.3.2

Tabella 5.3.3 spostamenti orizzontali membranali per carichi uniformi

Page 31: Bursi - Gusci e Piastre

31

Tabella 5.3.4 Correzione della soluzione per l’effetto dell’ingobbamento

Page 32: Bursi - Gusci e Piastre

32

5.4 Esempio 2

figura 5.4.1 Si voglia analizzare il guscio cilindrico singolo con travi di bordo. Le dimensioni sono fornite in figura.

⇒== 462.748.30

RL voltina con luce elevata, l’analisi strutturale è condotta con il metodo della trave

Analisi dei carichi: carico permanente + sovraccarico 2.394 2mKN (guscio) peso proprio della trave 8.756 2mKN Per simmetria consideriamo una metà del guscio. Esso è diviso in sei parti, le proprietà geometriche di queste parti e quelle della trave sono riportate nelle prime quattro colonne della tabella sottostante.

tabella 5.4.1

Determinazione asse neutro, per semplicità trascuriamo il contributo delle armature omogeneizzate al calcestruzzo (semplificazione del procedimento usuale).

Area ogni elementino 2

deg

05067.00762.06

18030

62.7 mtRA

rad

=⋅⎟⎠⎞

⎜⎝⎛ ⋅

⋅=⋅⋅=

→ 48476

πδθδ

Area totale ( ) 26756.03048.02192.161663.0 mATOT =⋅+⋅= area trave Posizione dell’asse neutro:

( ) 22653.00784.405067.082/2192.1)3048.02192.1( −⋅=−⋅=⋅⋅−⋅=⋅ ∑∑ ηδηδη AAATOT

quindi, m0294.0−=η

Page 33: Bursi - Gusci e Piastre

33

Segmento del guscio

L/2

S segmento 3

3

Si preferisce che l’asse neutro cada nella trave al fine di avere un xN di compressione nel guscio Momento d’inerzia della trave equivalente

( ) 420

2 3524027.0 myAIAyI TRAVETRAVE =⋅++⋅= ∑ δ Carico (per unità di lunghezza): Guscio + sovraccarico = mKNR /55.9180/562.76394.26394.2 =⋅⋅⋅⋅=⋅⋅⋅ πδθ Trave = mKN /756.8 __________ mKN /31.18

( ) mKNLWM MAX ⋅=⋅⋅=⋅⋅= 2126)48.30(31.1881

81 22

MAXXN , (colmo guscio) =

(compr.)

XN (trave)= ( ) ( ) mKN /8.21870294.02192.113524.0

2126=−⋅⋅

figura 5.4.2

Bibliografia : • Mark Fintel “Handbook of concrete engineering”, New York: Van nostrand reinhold company

1985

( )[ ]( ) ( )[ ] mKN

yRtI

M MAX

/92.4820294.0866.0162.70762.03524.0

2126

)30cos(1

=+−⋅⋅⋅=

=+−⋅⋅⋅

Page 34: Bursi - Gusci e Piastre

34

6 GUSCI CILINDRICI Tali strutture trovano impiego in molte opere civili, soprattutto per la realizzazione di:

- Recipienti in pressione (centrali nucleari ) - Recipienti di contenimento - Coperture

Da un punto di vista strutturale sono elementi a singola curvatura, la cui superficie è quindi sviluppabile in un piano. A differenza di quanto visto per le cupole, per come questa struttura resiste al carico non solo le tensioni membranali ma anche quelle flessionali possono essere importanti, sopratutto in alcune configurazioni geometriche.Vediamo ad esempio come il comportamento ai bordi può variare a seconda che la sezione sia chiusa od aperta. • Se il cilindro è chiuso, le sezioni di vincolo sono costituite da anelli, che vincolano gli

spostamenti ortogonali alla superficie e quindi disturbi applicati ai bordi si smorzano rapidamente.

• Se il cilindro è aperto, ed il bordo non riesce a vincolare gli spostamenti ortogonali, le tensioni di flessione penetrano in profondità.

6.1 Modalità di analisi • Metodo approssimato:

1) Determinazione degli sforzi membranali; 2) Determinazione delle sollecitazioni considerando le lastre resistenti a flessione tramite il

rispetto della congruenza ai bordi; 3) Sovrapposizione delle due soluzioni.

• Metodo basato sugli elementi finiti.

Page 35: Bursi - Gusci e Piastre

35

6.2 Teoria membranale dei gusci cilindrici

figura 6.2.1 X, Y, Z, sono le forze per unità di superficie applicate

dxx

NNN XXX ⋅

∂∂

+=′

φφ

φφφ dR

RN

NN ⋅⋅∂⋅

∂+=′ gli sforzi N sono forze per unità di lunghezza

φφ

φφφ dR

RN

NN xxx ⋅⋅

∂⋅

∂+=′

Equilibrio in direzione x

0=⋅⋅⋅+⋅−⋅⎟⎟⎠

⎞⎜⎜⎝

⎛⋅⋅

∂⋅

∂++⋅⋅−⋅⋅⎟

⎠⎞

⎜⎝⎛ ⋅

∂∂

+ φφφ

φφ φφ

φ dRdxXdxNdxdRR

NNdRNdRdx

xN

N xx

xXX

X

Dividendo per l’area φdRdx ⋅⋅

XR

Nx

N XX −=∂⋅

∂+

∂∂

φφ

Equilibrio in direzione y Procedendo in maniera analoga alla precedente ottengo:

Yx

NR

N X −=∂

∂+

∂⋅

∂ φφ

φ

Equilibrio in direzione z

02

sin2

sin =⋅⋅⋅+⋅⋅⎟⎟⎠

⎞⎜⎜⎝

⎛⋅

∂++⋅⋅ dxdRZddxd

NNddxN φφφ

φφ φ

φφ

Trascurando gli infinitesimi di ordine superiore si ottiene

02

2 =⋅⋅⋅+⋅⋅⋅ φφφ ddxRZddxN RZN −=φ

Page 36: Bursi - Gusci e Piastre

36

Come nei casi trattati precedentemente, tale equazione fornisce φN direttamente in funzione del carico distribuito verticale(applicato). Per di più φN è espresso in termini finiti e non differenziali. Si osservi che sostituendo θN nella seconda equazione si determina xNφ :

( )∫ +⋅⎟⎟⎠

⎞⎜⎜⎝

⎛∂⋅

∂+−= φ

φφ

φ 1fdxR

NYN x ( sforzo tangenziale al bordo )

Poiché xNφ = φxN , come dimostreremo sotto. Sostituendo la xNφ nella prima equazione si ottiene

( )∫ +⋅⎟⎟⎠

⎞⎜⎜⎝

⎛⋅

∂+−= φ

φφ

2fdxdR

NXN x

x

Poiché il problema è isostatico, impiegando soltanto le equazioni di equilibrio, riusciamo a determinarci tutto il campo tensionale interno.

1f e 2f sono funzioni arbitrarie di φ , da determinarsi a valori costanti di x, dalle condizioni al contorno, lungo tali bordi. Occorre conoscere xN e/o φN ad uno o due punti del guscio N.B.: Consideriamo i momenti attorno la normale al baricentro

( ) ( ) ( ) ( ) φφφφ φφφφ dRdxNdRdxNdxdRNdxdRN xxXx ⋅⋅⋅⋅′+⋅⋅⋅⋅=⋅⋅⋅⋅′+⋅⋅⋅⋅21

21

21

21

Dividendo per dxdR ⋅⋅⋅ φ21 si ottiene

⎟⎟⎠

⎞⎜⎜⎝

⎛⋅

∂++=⎟⎟

⎞⎜⎜⎝

⎛⋅

∂++ φ

φφ

φφφ

φφ dN

NNdxx

NNN x

xxx

xx

Al limite, le quantità x

N x

∂ φ e φ

φ

∂ xN restano finite mentre dx e φd 0→ , perciò φxN = xNφ

Page 37: Bursi - Gusci e Piastre

37

6.3 Esempio1 Consideriamo un guscio cilindrico chiuso soggetto a pressione uniforme. Questo è il modello classico per tubi e contenitori in pressione.

Figura 6.3.1 serbatoio soggetto a pressione uniforme assumiamo ϑφ =

⎩⎨⎧

−===

pZYX 0

pRRZN +=−=θ La forza di cerchiatura, “hoop” è chiaramente di trazione

θN = cost, implica che 0=∂⋅

∂θ

θ

RN

, quindi la forza di scorrimento diventerà

( ) ( )θθθ

θθ 11 ffdx

RN

YN X =+⋅⎟⎠⎞

⎜⎝⎛

∂⋅∂

+−= ∫

Imponiamo ora le condizioni al contorno per calcolarci ( )θ1f

- Se ai bordi non ci sono forze tangenziali allora

0=θXN e quindi ( )θ1f = 0

( )∫ +⋅⋅

∂−= θ

θθ

2fdxdR

NN X

X , ( )θ2fN X =

Quindi:

XN dipende dalla distribuzione al bordo delle sollecitazioni esterne

θN , XN sono qui indipendenti tra loro XN non dipende da x, quindi la distribuzione è la stessa ai due bordi

Page 38: Bursi - Gusci e Piastre

38

6.4 Esempio2

H

X

2R figura 6.4.1

Esaminiamo ora il caso di un serbatoio riempito con un fluido, quindi con le pareti sottoposte a pressione idraulica.

( )⎩⎨⎧

−⋅−===

xHZYXγ

0

la pressione idrostatica è presa con segno negativo in quanto agisce con verso opposto alla normale della superficie. Dalla terza equazione ( ) RxHRZN ⋅−⋅=−= γθ

Anche in questo caso 0=∂⋅

∂θ

θ

RN

, quindi ( ) ( )θθθ

θθ 11 ffdx

RN

YN X =+⋅⎟⎠⎞

⎜⎝⎛

∂⋅∂

+−= ∫

Se i carichi sono simmetrici non esistono sforzi tangenziali ai bordi, per cui ( ) 01 == θθ fN X . Se si tiene conto del peso proprio del serbatoio allora la forza X è diversa da zero (m = [Kg/m2])

0X mgY

= −⎧⎨ =⎩

( ) ( )∫∫ +⋅−=+⋅⎟⎠⎞

⎜⎝⎛

⋅∂

+−= θθθθ

22 fdxXfdxdR

NXN X

X

Se la superficie superiore è libera

( ) 02 =θf ( )XN X dx mgx mgH mg H x= − ⋅ = − = − −∫

Page 39: Bursi - Gusci e Piastre

39

6.5 Esempio3 Consideriamo ora un tubo pieno d’acqua. A differenza dell’esempio uno la pressione non è costante, ma varierà lungo la verticale al variare della pressione idrostatica dovuta al peso dell’acqua.

X

2ddθ

Diaframma

Risultante

figura 6.5.1

Se assumiamo che i diaframmi siano elementi molto deformabili, allora si possono schematizzare come dei vincoli carrello, che consentono spostamenti in direzione x, quindi XN = 0. Pressione in ogni direzione

( )θγ cos0 ⋅⋅−−= apZ a Trascurando il peso proprio del tubo, X = Y = 0

θγθ cos20 ⋅−⋅=−= ddpRZN a

( ) θγθγθ

θ sinsin1 2 ⋅⋅=⋅⋅⋅=∂⋅

∂dd

dRN

aa

( ) ( ) ( )θθγθθγθθ

θθ 111 sinsin fxdfdxdfdx

RN

YN aaX +⋅⋅⋅−=+⋅⋅⋅−=+⋅⎟⎠⎞

⎜⎝⎛

∂⋅∂

+−= ∫∫

Per simmetria gli sforzi tangenziale in mezzeria del tubo dovranno annullarsi

2Lx = 0=θxN ( ) 0

2sin 1 =+⋅⋅⋅− θθγ fLda

( ) θγθ sin21 ⋅⋅⋅=Ldf a ⇒ θγθ sin

2⋅⎟

⎠⎞

⎜⎝⎛ −⋅⋅= xLdN aX

( ) ( )θθγθθγ 2

2

2 cos22

cos2

fxxLfdxxLN aaX +⋅⎟⎟⎠

⎞⎜⎜⎝

⎛−⋅⋅−=+⋅⋅⎟

⎠⎞

⎜⎝⎛ −⋅−= ∫

Imponendo ad x = 0 la condizione XN = 0, otteniamo ( ) 02 =θf

( ) θγ cos2

⋅−⋅⋅−= xLxN aX

Diagramma delle azioni interne lungo x

XN (costante) 20 cosap d dγ θ⋅ − ⋅

0=θxN (costante) sin2aLd xγ θ⎛ ⎞⋅ ⋅ − ⋅⎜ ⎟

⎝ ⎠

Nθ (parabola) ( ) cos2ax L xγ θ− ⋅ ⋅ − ⋅

figura 6.5.2

Page 40: Bursi - Gusci e Piastre

40

Tali sollecitazioni sono analoghe a quelle N, M, T di una trave caricata secondo lo schema sottostante

figura 6.5.3

Facendo invece una sezione, la distribuzione di θN , XN , XNθ risulta

θ θ

compressione

trazione

Νθ

γ2

Νxθ Νx

x(L-x)

2 x(L-x)

figura 6.5.4

Se avessimo considerato dei supporti rigidi, cioè lo spostamento 0=u in 0=x e Lx = , il problema sarebbe stato iperstatico esternamente, ovvero avremmo dovuto impiegare il legame costitutivo e la congruenza come nelle travi iperstatiche.

Page 41: Bursi - Gusci e Piastre

41

6.6 Deformazioni nell’ambito della teoria membranale

uv

R*dθ

dx

xv+ dx

u+xv

xv

xu dx

u+ θu dθθ

u1r

R

θ dθ

v

w

v+ θv dθ

w+ θwdθ

figura 6.6.1 deformazione tagliante figura 6.6.2 deformazione tangenziale Si consideri un elementino di lunghezza dx e larghezza θdR ⋅ , vogliamo calcolarci le sue componenti di deformazioni Deformazione longitudinale (lungo x )

( )1x x

u N Nx E t θε ν∂

= = − ⋅∂ ⋅

dove: t è lo spessore

E è il modulo di elasticità ν è il rapporto di Poisson Deformazione tangenziale (lungo θdR ⋅ )

( )444 3444 21

⋅−−⋅+⋅∂∂ θθθθ

dwRdRdv

componente dovuta allo spostamento radiale

θθθ

dwdv⋅−⋅

∂∂ e dividendo per la lunghezza θdR ⋅ ,

( )xNNtER

wvR

⋅−⋅⋅

=−∂∂

⋅= νθ

ε θθ11

Deformazione tagliante ( θθ xx NN = se 0→θd )

θ

θθ dR

uduudx

vdxxvv

⋅⋅⎟

⎠⎞

⎜⎝⎛ −⋅

∂∂

++⋅⎟⎠⎞

⎜⎝⎛ −⋅

∂∂

+11

( )νθ

γ θθθ

+⋅⋅

=⋅

=∂∂

⋅+∂∂

=

12

1Et

NtG

NuRx

v xxx

A questo punto, per ottenere gli spostamenti u, v, w, per le diverse condizioni di carico basta introdurre nelle relazioni precedenti, le corrispondenti espressioni di θN , XN e XNθ . Si esegue infine l’integrazione tenendo conto delle condizioni di vincolo.

Page 42: Bursi - Gusci e Piastre

42

zy

PcosθPPsinθ

θ

1cosθ

sinθ

6.7 Esempio4 Pannello cilindrico circolare sorretto da due diaframmi agli estremi e con carico da neve p. Esempio una pensilina sorretta da due diaframmi (vedi fig. 6.7.1)

θa

z

y

x

proiezione verticale in pianta di P

pannello cilindrico o voltina

θ: aperturala superficie è cilindrica, ma incompleta

Figura 6.7.1

⎪⎪⎩

⎪⎪⎨

⋅⋅=

⋅⋅=⋅⋅=

=

θθ

θθθ

coscos

2sin21cossin

0

pZ

ppY

X

figura 6.7.2 θθ

2cos⋅⋅−=⋅−= pdZRN

( )∫ +⋅⎟⎠⎞

⎜⎝⎛ ⋅⋅+⋅⋅−= θθθθ 12sin2sin

21 fdx

ddppN X

( )θθθ 12sin23 fxpN X +⋅⋅⋅−=

Per simmetria imponiamo che in 2

Lx = 0=θxN

( ) θθ 2sin43

1 ⋅⋅⋅= Lpf

θθ 2sin22

3⋅⎟

⎠⎞

⎜⎝⎛ −⋅⋅= xLpN X

Che rappresenta una variazione lineare degli sforzi di taglio

Quindi

Page 43: Bursi - Gusci e Piastre

43

( ) ( )∫∫ +⋅⎥⎦

⎤⎢⎣

⎡⋅⎟

⎠⎞

⎜⎝⎛ −⋅+−=+⋅⎟

⎠⎞

⎜⎝⎛

⋅∂

+−= θθθθθ

22 2cos2

30 fdxxLdpfdx

dRN

XN XX

( )θθ 22cos22

3 fxLxdpN X +⋅⎟

⎠⎞

⎜⎝⎛ −⋅⋅⋅−=

Imponiamo le condizioni al contorno ( ipotesi sui diaframmi analoghe a quelle dell’esempio tre), per 0=x 0=xN , quindi ( ) 02 =θf

( ) θ2cos23

⋅−⋅⋅⋅−= xLxdpN X

Distribuzione delle forze per unità di lunghezza

45Nθ

compressionetrazione

Nx

compressioneMax

figura 6.7.3 Il guscio nel suo insieme si presenta come

NxNθ

figura 6.7.4 Le XNθ al bordo devono bilanciare la differenza delle forze lungo x ( xN dθ⋅∫ ) tra due sezioni. Molto spesso le condizioni di vincolo ai bordi longitudinali non sono consistenti con le soluzioni della teoria membranale ed allora è necessario apportare delle correzioni. Per far ciò è però indispensabile conoscere la teoria flessionale dei gusci, che sarà l’argomento del prossimo paragrafo. Si vedano le tabelle per un riassunto di alcuni casi notevoli. Relativi alla teoria membranale.

Page 44: Bursi - Gusci e Piastre

44

6.8 Teoria flessionale dei gusci cilindrici A differenza della teoria membranale, consideriamo la struttura in grado di sopportare momenti.

figura 6.8.1

Area dell’elementino a distanza z dal piano medio: dzdza ⋅⋅− φ)(

Per arco di lunghezza unitaria, Area = dzaz

⋅− )1(

Con d indico lo spessore della lastra Le risultanti di sforzo sono legate agli sforzi dalle seguenti relazioni:

∫−⋅⎟

⎠⎞

⎜⎝⎛ −⋅= 2

2

1d

d xx dzazN σ ∫−

⋅= 2

2

d

d dzN φφ σ

∫−⋅⎟

⎠⎞

⎜⎝⎛ −⋅== 2

2

1d

d xxx dzazNQ φφ τ ∫−

⋅== 2

2

d

d xx dzNQ φφφ τ

∫−⋅⋅⎟

⎠⎞

⎜⎝⎛ −⋅= 2

2

1d

d xx dzzazM σ ∫−

⋅⋅= 2

2

d

d dzzM φφ σ

∫−⋅⋅⎟

⎠⎞

⎜⎝⎛ −⋅= 2

2

1d

d xx dzzazM φφ τ ∫−

⋅⋅= 2

2

d

d xx dzzM φφ τ

Forze e momenti sono definiti per ampiezza unitaria della superficie media.

Per gusci sottili 1<<≤ad

az ed è quindi trascurabile il suo contributo

Equazioni di equilibrio - Equilibrio delle forze in direzione x

Xa

Nx

N xx −=∂⋅

∂+

∂∂

φφ ( 1° equazione )

- Equilibrio delle forze in direzione y

Ya

Qx

Na

N x −=−∂

∂+

∂⋅

∂ φφφ

φ ( 2° equazione )

- Equilibrio delle forze in direzione z

Za

Nx

Qa

Q x −=+∂

∂+

∂⋅

∂ φφ

φ ( 3° equazione )

Page 45: Bursi - Gusci e Piastre

45

- Equilibrio momenti intorno ad y

0=−∂⋅

∂+

∂∂

xxx Q

aM

xM

φφ ( 4° equazione )

- Equilibrio momenti intorno x

0=−∂

∂+

∂⋅

∂φ

φφ

φQ

xM

aM x ( 5° equazione )

- Equilibrio momenti intorno a z

0=+−a

MNN x

xxφ

φφ ( 6° equazione )

A titolo di esempio, si sono riportati i calcoli per le prime due equazioni.

1° equazione

0=⋅⋅⋅+⋅−⋅⎟⎟⎠

⎞⎜⎜⎝

⎛⋅⋅

∂⋅

∂++⋅⋅−⋅⋅⎟

⎠⎞

⎜⎝⎛ ⋅

∂∂

+ φφφ

φφ φφ

φ dRdxXdxNdxdRR

NNdRNdRdx

xN

N xx

xXX

X

Dividendo per l’area φdRdx ⋅⋅ ottengo XR

Nx

N XX −=∂⋅

∂+

∂∂

φφ

2° equazione

+⋅⋅−⋅⋅⎟⎟⎠

⎞⎜⎜⎝

⎛⋅

∂+−⋅⋅−⋅⋅⎟⎟

⎞⎜⎜⎝

⎛⋅

∂+

2sin

2sin

2cos

2cos φφφ

φφφφ

φ φφ

φφφ

φddxQddxd

QQddxNddxd

NN

0=⋅⋅⋅+⋅⋅⎟⎟⎠

⎞⎜⎜⎝

⎛⋅

∂+ dxdaYdadx

xN x φφφ

2sin

290cos φφ dd

=⎟⎠⎞

⎜⎝⎛ −°

Abbiamo quindi un totale di sei equazioni di equilibrio, tre per le forze e tre per i momenti, e Dieci incognite, il sistema risulta quindi altamente iperstatico. Dobbiamo quindi impiegare la congruenza tra spostamenti e deformazioni, e il legame costitutivo tra queste e gli sforzi, in modo da esprimere le forze e i momenti in termini di spostamento. Ad esempio:

⎥⎦

⎤⎢⎣

∂∂

⋅⋅

+⎟⎟⎠

⎞⎜⎜⎝

⎛−

∂⋅∂

⋅+∂∂

⋅−

⋅= 2

23

2 121 xw

ad

aw

av

xudEN x φ

νν

( l’ultimo termine tra parentesi rappresenta l’effetto della curvatura sulle forze complanari) Cioè, 1) relazioni deformazione – spostamento 2) relazioni sforzo – deformazione relazioni sforzo – spostamento (vedi esempio)

relazioni forza – spostamento 3) sostituendo le relazioni forza – spostamento nelle relazioni di equilibrio, ottengo infine tre

equazioni nelle tre incognite u, v, w

Page 46: Bursi - Gusci e Piastre

46

Per semplicità considereremo solo la teoria flessionale assialsimmetrica. Essa è impiegata per determinare i valori delle sollecitazioni e degli spostamenti ai bordi, in tal modo potremo ristabilire la congruenza con le condizioni di vincolo. Allontanandosi dal bordo, ritorna ad essere valida la teoria membranale, poiché gli effetti di bordo si smorzano.

6.9 Teoria flessionale assialsimmetrica di gusci cilindrici a sezione circolare - Consideriamo le tre equazioni di equilibrio alla traslazione,

Xa

Nx

N xx −=∂⋅

∂+

∂∂

φφ ( 1 )

Ya

Qx

Na

N x −=−∂

∂+

∂⋅

∂ φφφ

φ ( 2 )

Za

Na

Mxa

MxM

aN

xQ

aQ xxx −=+

∂⋅

∂+

∂⋅∂⋅

∂⋅+

∂∂

=+∂

∂+

∂⋅

∂ φφφφφ

φφφ 22

22

2

2

2 ( 3 )

Nella terza equazione ho espresso i tagli φQ e xQ in termini di momento (4° e 5° equazione).

- e la terza equazione espressa in termini di spostamento.

DZ

xu

aw

av

ahaw

xaw

xw

=⎥⎦

⎤⎢⎣

⎡∂∂

⋅+−∂⋅

∂⋅

⋅−

∂⋅∂

+∂⋅∂⋅

∂⋅+

∂∂ ν

φφφ 244

4

222

4

4

4 122 ( 4 )

dove h è lo spessore e ( )2

3

112 ν−⋅⋅

=hED

Assumiamo ora un carico assialsimmetrico In questo caso tutte le variazioni in direzione circonferenziale sono nulle. Ovvero:

0=∂∂φ

; 0=v ; 0== φφ xx MN ; 0=Y ; 0=φQ

Quindi, dalle tre equazioni di rotazione la ( 6° ) diventa un’uguaglianza, la ( 4 ) e la ( 5 ) danno la relazione tra momento e taglio corrispondente, utilizzata qui nell’espressione di ( 3 ), mentre delle tre equazioni di equilibrio, la ( 2 ) diventa anch’essa un’identità, invece la ( 1 ) e la ( 3 ) si riducono a

Xdx

dN x −= ( 1-a )

Za

Ndx

Md x −=+ φ2

2

( 3-a )

e l’equazione ( 4 ) diventa

DZ

dxdu

aw

ahdxwd

=⎥⎦⎤

⎢⎣⎡ ⋅−⋅

⋅+ ν24

4 12 ( 4-a )

La forza longitudinale xN si può quindi determinare dalla ( 1-a ). Possiamo quindi:

Page 47: Bursi - Gusci e Piastre

47

1) ipotizzare 0=xN 2) risolvere la ( 4-a ) per w 3) sovrapporre la soluzione per 0≠xN

Consideriamo per ora i primi due punti, 1) se 0=xN , la relazione tra u e w è

: 01 2 =⎥⎦

⎤⎢⎣⎡ ⋅−⋅

−⋅

=aw

dxduhEN x ν

ν

sostituendo nella ( 4-a ), aw

dxdu

⋅= ν

DZw

DahE

dxwd

=⋅⋅⋅

+ 24

4

cioè DZw

DahE

dxwd

=⋅⋅⋅

+ 24

4

simile all’equazione di trave elastica su suolo elastico. consideriamo un anello di lunghezza unitaria, ricordo che:

aph ⋅=⋅σ aphE ⋅=⋅⋅ε

hEap

⋅⋅

=ε ma aw

figura 6.9.2

quindi hE

apw⋅

⋅=

2

2ahE

wP ⋅

= questa è la rigidezza circonferenziale

possiamo quindi fare la seguente analogia:

rigidezza flessionale: ( )2

3

112 ν−⋅⋅

=hED

figura 6.9.3 rigidezza della fondazione: 2ahE ⋅

la rigidezza circonferenziale >> rigidezza Flessionale della striscia unitaria, ciò implica che qualsiasi “disturbo” applicato al bordo si smorza spostandosi sull’asse x.

wR

a

Page 48: Bursi - Gusci e Piastre

48

• La soluzione dell’equazione differenziale di quarto ordine, che si trova per travi su suolo elastico nei testi, include quattro costanti arbitrarie, da valutarsi tramite condizioni ai bordi per

forze e spostamenti ( xM , xQ , w ,dxdw )

• Per xN , si ottiene poi l’espressione: ∫ +⋅−= CdxXN x

Con C da valutarsi ponendo condizioni al contorno su xN o u . • Come per tutte le equazioni differenziali la soluzione generale dell’equazione consta di

- soluzione dell’omogenea - e un integrale particolare

Se ( )ha ⋅

−⋅=4 213 νβ , la soluzione dell’omogenea sarà:

( ) ( )[ ] ( ) ( )[ ]xCxCexCxCew xx ⋅⋅+⋅⋅⋅+⋅⋅+⋅⋅⋅= ⋅−⋅ ββββ ββ sincossincos 4321

Se la pressione è costante, l’integrale particolare è: D

Lpwpart ⋅⋅⋅

= 4

4

4 β

Page 49: Bursi - Gusci e Piastre

49

6.10 Esempio5

figura 6.10.1

Serbatoio circolare incastrato alla base, sottoposto a pressione idrostatica

( ) ( ) LxLZ ⋅−⋅−=−⋅−= ξγγ 1 con Lx

l’equazione per lo spostamento si scrive dunque: ( )

DL

DLZw

dwd 54

44

4 14 ⋅−⋅−=

⋅=⋅⋅+

ξγβξ

la cui soluzione particolare: ( )

DLwpart ⋅⋅

⋅−⋅−=

βξγ

41 5

, oppure esprimendo con x ( )hE

xLawpart ⋅−⋅⋅

−=2γ ,

Con la soluzione membranale,

( ) axLN ⋅−⋅= γφ

{ ⎟⎟⎠

⎞⎜⎜⎝

⎛⋅+⋅

⋅=−=

0

1xNN

hEaw νε φφ

( )hE

xLawmembr ⋅−⋅⋅

−=2γ è l’integrale particolare

La soluzione completa diventa:

( ) ( )( ) ( )D

LCCew⋅⋅

⋅−⋅−⋅⋅+⋅⋅⋅= ⋅−

4

5

43 41sincosβ

ξγξβξβξβ

Per determinare 3C e 4C imponiamo le condizioni al contorno ( x = 0 ), 0=ξ , 0=′= ww

( ) ( ) ( )( ) ( )[ ]D

LCCCCew⋅⋅

⋅+⋅⋅+−+⋅⋅−⋅⋅=′ ⋅−

4

5

4334 4sincos

βγξβξββ ξβ

ne risulta:

DLC

⋅⋅⋅

= 4

5

3 4 βγ , ⎟⎟

⎞⎜⎜⎝

⎛−⋅

⋅⋅⋅

=ββ

γ 114 4

5

4 DLC

valutando il taglio al bordo, si otterrebbe

⎟⎟⎠

⎞⎜⎜⎝

⎛−⋅

⋅⋅

=ββ

γ 112 2

3LM ⎟⎟⎠

⎞⎜⎜⎝

⎛−⋅

⋅−=

βγ 12

2

2Lq

x

2a

L

Page 50: Bursi - Gusci e Piastre

50

dalla equazione ( 3-a ) vista inizialmente si può ottenere la forza φN

Za

Ndx

Md x −=+ φ2

2

Ne risultano i seguenti diagrammi

xM φN w

figura 6.10.2 E’ importante notare che: le sollecitazioni provocate ai bordi si smorzano molto rapidamente

• Consideriamo un cilindro abbastanza lungo

• Applichiamo forze radiali H distribuite lungo i bordi, o dei momenti flettenti M. Ciò genera deformazioni con spostamenti w e rotazioni

( )w′=φ . E il relativo campo tensionale.

• Gli effetti possono essere intesi al bordo sollecitato ma si smorzano rapidamente, in modo oscillatorio, al crescere

della distanza dal bordo stesso.

figura 6.10.3

Lo smorzamento è dovuto al fattore xe ⋅−β , nelle espressioni di w , w′ , w ′′ (∝ momenti), w ′′′ (∝ tagli). Per 0=x , 1=⋅− xe β .

Poiché w varia con legge sinusoidale smorzata, di lunghezza d’onda βπλ ⋅

=2 ,

allora per 043.02

=→= ⋅− xex βλ

019.0=→= ⋅− xex βλ Alla distanza λ gli effetti di bordo sono trascurabili. Ovvero della soluzione diventa trascurabile il termine corrispondente all’omogenea associata e resta l’integrale particolare!

m em b ran a

H

H

M

M

Page 51: Bursi - Gusci e Piastre

51

Nell’esempio visto, se il tubo è abbastanza lungo, pww = . Quindi ad una certa distanza la soluzione coincide con la soluzione membranale. Influenza dei bordi Avevamo visto che per un guscio cilindrico genericamente caricato, il regime membranale prevede ad una determinata apertura φ , un certo campo di forze sui bordi.

figura 6.10.5

Questo rappresenta la soluzione solo se il vincolo gliele fornisce esattamente, altrimenti si instaura un regime diverso, che può essere locale ma gravoso. • Cosa succede se il bordo è lasciato libero? • O se la trve di bordo fornisce solo una di queste reazioni? • E cosa sollecità la trave stessa? Per una trattazione estesa di tutti questi problemi, e delle voltine in genere, si può consultare ad esempio il “ Belluzzi, 3° vol., Scienza delle costruzioni, Zanichelli. Comunque:

Le travi di bordo sono sollecitate in genere così

Quindi sottoposte a, momento flettente, azione assiale e torsione

figura 6.10.6 Se un bordo è lasciato libero, posso annullare le forze sovrapponendo gli effetti di un azione che genera forze di bordo uguali e contrari. Bibliografia : • D.Belluzzi “scienza delle costruzioni ; vol. 3°”, Bologna: Zanichelli, 1980-1985 • AA.VV. (Wilby) “Handbook of Structural concrete”, London: Pitman publishing inc.,1983

Page 52: Bursi - Gusci e Piastre

52

a

7 METODO DEI COEFFICIENTI ELASTICI 7.1 Esercizio 1 Diagrammare la distribuzione longitudinale di ed per il cilindro semi-infinito soggetto a pressione interna P, in figura, chiuso ad un estremo da una piastra circolare

h = spessore E = modulo di elasticità ν = 0.15

Figura 7.1.1 Si trascuri la deformabilità della piastra nel suo piano Si ricorda che:

)()()( 34 uaQuMxM x ψβ

ψ ⋅⋅−⋅= con a

xu ⋅=

β (Soluzione piastra)

e pa

Ndx

Md x =+ θ2

2

da cui 12

2

22 ψβψβθ ⋅⋅⋅−⋅⋅

⋅+⋅= QM

aaPN (Soluzione guscio cilindrico)

( )

( ))sin()cos()(

)sin()()sin()cos()(

)cos()(

4

3

2

1

uueu

ueuuueu

ueu

u

u

u

u

+⋅=

⋅=

−⋅=

⋅=

ψ

ψ

ψ

ψ

Soluzione con metodo dei coefficienti elastici

Hp Hc

Qp Qc

Mp Mc cilindro

pias

tra

P

P

Figura 7.1.2

2

2 2c PP a PaH H

aππ

⋅ ⋅= = =

⋅ ⋅

Per la congruenza , , , ,c P c M c Q p P p Mθ θ θ θ θ θ= ⇒ + = +

, , ,0 0c P c M c Q c Pw w w w w= = ⇒ + + =

Page 53: Bursi - Gusci e Piastre

53

Coefficiente elastico della piastra circolare per effetto della pressione:

( )

( )

2 22 2

3

564 1

8 1p

P a rw a r

DP awD

νν

ν

− +⎛ ⎞= ⋅ −⎜ ⎟+⎝ ⎠⋅

= −⋅ +

Coefficiente elastico della piastra circolare per effetto del momento uniforme al bordo:

( )

2 2

2

1 12 1

1p

M a rwD a

M awD

ν

ν

⎛ ⎞⋅= ⋅ ⋅ −⎜ ⎟+ ⎝ ⎠

⋅= −

+

Coefficiente elastico del cilindro: (posto aβα = )

, , 2

, ,2 3

1 12

1 12 2

c M c M

c Q c Q

wD D

wD D

θα α

θα α

= = −⋅ ⋅ ⋅

= − =⋅ ⋅ ⋅ ⋅

Siccome ,

2c P

x

wP aN N Eh P a E haθ θν ε ν ⋅

− ⋅ = − ⇒ ⋅ − = − ⋅

2

, 12c P

P awE h

ν⋅ ⎛ ⎞= − −⎜ ⎟⋅ ⎝ ⎠

Le equazioni di congruenza alla rotazione e alla traslazione del bordo comune forniscono:

( ) ( )3

3

2

2 3

2 8 1 1

1 02 2 2

M Q P a M aQ D D D

M Q p aD D E h

α α ν ν

να α

⎧ ⋅ ⋅− = −⎪ ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ +⎪

⎨⋅ ⎛ ⎞⎪− + − ⋅ − =⎜ ⎟⎪ ⋅ ⋅ ⋅ ⋅ ⋅ ⎝ ⎠⎩

Assunti

5 2

2

15063 10 /0.151 /

a cmh cmE Kg cm

P kg cmν

==

= ⋅=

= ⋅

Calcolo ( )

( )24 3

12

3 10.04362 5524296.7

12 1E hcm D kg cm

a h

να

ν−

⋅ − ⋅= = = = ⋅

−⋅

trovo così le incognite

Page 54: Bursi - Gusci e Piastre

54

2604.94 /124.23 /

M Kgcm cmQ Kg cm

==

Sostituendo tali valori ottengo le funzioni

2

( ) (sin cos ) sin

( ) 2 (cos sin ) 2 cos

x xx

x x

QM x M e x x e x

N x P a M e x x aQe x

α α

α αθ

α α αα

α α α α α α

− −

− −

= ⋅ ⋅ + − ⋅

= ⋅ + ⋅ ⋅ ⋅ ⋅ − −

Graficamente:

Page 55: Bursi - Gusci e Piastre

55

7.2 Esercizio 2 Il serbatoio in figura, cilindro a sezione circolare, è diviso internamente in due parti da un setto. La parte sinistra contiene gas alla pressione P. Scrivere le equazioni che permettono di valutare forze e momenti di continuità alla giunzione, ipotizzando che il serbatoio sia sufficientemente lungo per ottenere una soluzione accurata.

4ha

h

P

Figura 7.2.1 E = modulo di elasticità ν = 0.15 a = raggio Soluzione con metodo dei coefficienti elastici

Hp,d

Hc,d

Qp,d

Qc,d

Mp,d

Mc,d

Hc,d

Qc,d

Mc,dHp,d

Qp,dMp,d

Hp,s

Hc,s

Qp,s

Qc,s

Mp,s

Mc,s

Hp,s

Hc,s

Qp,s

Qc,s

Mp,s

Mc,s

Figura 7.2.2 L’equilibrio impone Mc,s=Mp,s Mc,d=Mp,d Qc,s=Qp,s Qc,d=-Qp,s Hc,s=Hp,s essendo la parte destra priva di pressioni Hp,d=Hc,d=0

Page 56: Bursi - Gusci e Piastre

56

La congruenza fornisce

dpdcspsc

dpdcspsc

uwuw ,,,,

,,,,

==

== θθθθ

sviluppando il tutto con i coefficienti elastici

)1()1(8)1(2

3

2 ννναα +⋅⋅

++⋅⋅

⋅+

+⋅⋅

=⋅

−⋅ p

d

Pp

s

cc

s

cc

s

DaM

DaP

DaM

DQ

DM

)1()1(8)1(2

3

2 ννναα +⋅⋅

++⋅⋅

⋅+

+⋅⋅

=⋅

−⋅ p

s

Pp

d

cc

d

cc

d

DaM

DaP

DaM

DQ

DM

scc

s

cc

s QhEa

hEaP

DQ

DM

⋅⋅⋅⋅−

−=−⋅

⋅−

⋅+

⋅−

4)1()

21(

22

2

32

νναα

dcc

d

cc

d QhEa

DQ

DM

⋅⋅⋅⋅−

−=⋅

+⋅

−4

)1(22 32

ναα

assumendo: a =1 50cm h = 6cm E = cmKg /103 5⋅ 3cm ν = 0.15 P = 1Kg/cm

calcolo:

cmKghE

D

cmKghE

D

cmha

pp

cc

⋅=−

⋅=

⋅=−⋅

=

=⋅

−= −

353554990)1(12

7.5524296)1(12

04362026.0)1(3

2

3

2

3

14 2

ν

ν

να

ottenendo:

cmKgQcmKgQ

cmcmKgMcmcmKgM

d

s

d

s

/34.14/88.34

/07.334/50.569

−==

⋅−=⋅=

Page 57: Bursi - Gusci e Piastre

57

8 DISPOSIZIONE DELLE ARMATURE NEI GUSCI 8.1 Armatura inclinata rispetto alla direzione di sollecitazione

Figura 8.1.1 Geometria e forze nell’elemento a lastra con rete rettangolare d’armatura È intuitivo come il comportamento dell’armatura sia ottimale quando le barre d’acciaio seguono le traiettorie delle tensioni principali di trazione (come si fa per le zone di taglio massimo). Per ragioni pratiche o operative non è sempre conveniente questa disposizione ideale dell’armature. Quindi sono state sviluppate delle regole di dimensionamento per le armature disposte inclinate rispetto alla direzione della sollecitazione per le strutture portanti a superfici resistenti (volte sottili e lastre). Seguiamo i risultati proposti da Baumann, per le piastre sottili (si veda il Leonhardt / Morning Vol.2 ). Si consideri una rete di armatura con angolo retto. Definiamo(vedi figura 8.1.1):

ϕ : angolo tra l’armatura in direzione y e la fessura α : angolo tra l’armatura in direzione x e la direzione principale (1)

md : distanza tra le fessure Forze principali per unita di lunghezza

11 ⋅⋅= Ι dN σ dove d è lo spessore (indicato anche con t) 12 ⋅⋅= ΙΙ dN σ

1⋅⋅= dD bb σ forza di compressione nel conglomerato tra le fessure Si trascura il comportamento a trazione del calcestruzzo. Se le fessurazioni ed una direzione dell’armatura non sono ad angolo retto rispetto alla direzione (1) relativa alla tensione principale Ισ , ovvero se α e ϕ non sono uguali a φ , nelle fessurazioni possono agire delle forze di taglio H. Fino a tanto che le larghezze di fessurazioni rimangono

Page 58: Bursi - Gusci e Piastre

58

piccole, queste forze di taglio possono essere trasmesse mediante la dentellatura creata dagli inerti presente sui lembi della fessurazione (ingranamento degli inerti), la cui entità sarà in funzione della Granulometria e dal tipo di inerti utilizzati e mediante l’effetto di incavigliatura delle barre d’armatura (o effetto spinotto vedi fig. 8.1.2).

Figura 8.1.2 Figura 8.1.3 elemento di lastra fessurato, con la forza di

compresione Db In direzione obliqua a causa dello spostamento ∆ e con la corrispondente forza di trazione trasversale Zb

Le forze di taglio implicano che le forze di compressione bD del calcestruzzo in due strisce adiacenti abbiano valore diverso, oppure che la direzione di bD sia leggermente inclinata rispetto a quella della fessurazione. L a forza di taglio H tuttavia tenderà a diminuire con l’ampliarsi della larghezza delle fessurazioni e a causa delle rotture localizzate che via via andranno a formarsi nelle zone di incavigliatura. Nelle equazioni seguenti si assumerà quindi, per una progettazione più sicura, che la forza di taglio lungo le fessurazioni e nulla H=0. Definiamo:

⎭⎬⎫

ey

ex

ff

sezioni trasversali d’armatura per unità di lunghezza

Le forze di trazione nelle barre per unità di lunghezza valgono quindi:

dfz xexexexx ⋅⋅=⋅= µσσ con d

f yexyx

,, =µ

dfz yeyeyeyy ⋅⋅=⋅= µσσ Se sono note le tensioni principali Ισ e ΙΙσ (e rispettivamente N1 ed N2 ), e le sezioni d’armatura

exf e eyf , rimangono in questo caso quattro grandezze incognite:

beyex σσσ ,, ( e rispettivamente Zx, Zy, e Db) e l’angolo ϕ che indica la direzione della fessurazione. Imponendo le condizioni di equilibrio nel piano, si possono ottenere solo tre grandezze. Si sceglie come valore in eccesso l’angolo ϕ , che va determinato con le condizioni di congruenza. Assumendo che ϕ sia noto, per l’equilibrio in una sezione parallela ad una fessurazione si può disegnare il poligono delle forze. Vedi figura 8.1.4

Page 59: Bursi - Gusci e Piastre

59

figura 8.1.4 Da questo poligono si derivano le equazioni

0sincos

0sincos

22

11

=⋅⋅+⋅⋅−⋅

=⋅⋅−⋅⋅−⋅

αα

αα

xxyy

yyxx

bZbZbN

bZbZbN

Inoltre

ϕϕαϕαϕ

sin1cos1)sin(1)cos(1 21

⋅=⋅=−⋅=−⋅=

yx bbbb

Page 60: Bursi - Gusci e Piastre

60

Dalle precedenti equazioni si ottengono le forze Zx e Zy

)cotcot1(sin)tantan1(cos 22

21 ϕααϕαα −⋅++⋅= NNzx

)cotcot1(sin)cottan1(cos 21

22 ϕααϕαα +⋅+−⋅= NNz y

Si consideri ora una sezione di lunghezza unitaria orientata perpendicolarmente rispetto alle fessurazioni. Si ottiene un poligono delle forze che contiene anche la forza di compressione del calcestruzzo Db. Essendo note Zx e Zy si può esprimere Db nel seguente modo:

ϕϕαϕαϕ cossin)cos()sin( 2211 ⋅⋅+⋅⋅+−⋅⋅−−⋅⋅= yyxxb bzbzbNbND Sostituendo nella precedente equazione Zx, Zy, b1, b2, bx e by si ottiene

ϕα

2sin2sin)( 21 ⋅−= NNDb

Sommando le forze interne derivate dalle equazioni di Zx, Zy e Db, si ottiene una ulteriore equazione che consente un facile controllo del calcolo:

21 NNDZZ byx +=−+ Bisogna comunque determinare l’inclinazione incognita della fessurazione, ovvero l’angolo ϕ .

Page 61: Bursi - Gusci e Piastre

61

8.2 Calcolo della direzione di fessurazione (mediante congruenza deformazioni) Consideriamo sulla fessurazione un segmento di lunghezza unitaria che con le direzioni delle armature vada a formare il triangolo chiuso rappresentato con linea continua in figura 8.1.2 .

figura 8.2.1 schema delle deformazioni

A seguito della forza di compressione bD agente nella diagonale in calcestruzzo, il segmento

unitario “1” subirà un accorciamento b

bb E

σε = , che causerà a sua volta un allungamento dei cateti

rappresentanti le armature die

eyy

e

exx EE

σε

σε == , .

Si otterrà così la configurazione deformata rappresentata in figura con la linea tratteggiata. Notare che non ho considerato l’effetto delle forze di taglio, la riduzione degli allungamenti dell’acciaio dovuti alla collaborazione con il calcestruzzo, e la dilatazione trasversale del calcestruzzo. La congruenza viene imposta uguagliando l’equazione dell’altezza espressa in funzione di xε , con quella in funzione di yε ( )[ ] ( )[ ] ( )[ ] ( )[ ]222222 cos1cos1sin1sin1 ϕεϕεϕεϕε ⋅−−⋅+=⋅−−⋅+ bybx

Risolvendo questa equazione per x

y

εε

, si ottiene, dopo trasformazioni e trascurando i termini di

ordine superiore

( )⎥⎦

⎤⎢⎣

⎡−⋅+⋅= ϕ

εε

ϕεε 22 cot11tan

x

b

x

y .

Esprimendo il rapporto tra le deformazioni con le relative tensioni ottengo

( )⎥⎦

⎤⎢⎣

⎡−+= ϕνϕ

σσ 22 cot11tan

x

b

ex

ey

ZD

Page 62: Bursi - Gusci e Piastre

62

Da questa espressione è dunque possibile ricavare l’angolo ϕ che rappresenta l’inclinazione delle fessurazioni. In generale quindi ho che ϕα ≠ , in effetti anche se le prime fessurazioni avranno direzione perpendicolare alla direzione di massimo sforzo (1) , con l’aumentare delle sollecitazioni tenderanno ad assumere l’inclinazione ϕ . 8.3 Dimensionamento di una piastra con armature inclinate rispetto direzioni principali di sforzo Per il dimensionamento delle barre di armatura imponiamo che tali barre sotto sforzo raggiungano entrambe il medesimo valore di tensione , che per sfruttare al meglio il materiale poniamo essere uguale a quella ammissibile.

In formule 1,

, =admex

admey

σσ

Sostituendo questo valore nella formula per l’angolo di fessurazioni del paragrafo precedente, e

trascurando il limitato valore del termine relativo a x

b

ZDν , ottengo per ϕ la semplice espressione

ϕσσ 2tan1 ==

ex

ey ossia °= 45ϕ

Per questo valore dell’angolo di fessurazione abbiamo che le forze che nascono nelle armature valgono:

α

αα

αα

2sin)(

)tan1(2sin2

)tan1(2sin2

21

212

211

⋅−=

+⋅⋅−

+=

−⋅⋅−

+=

NND

NNNZ

NNNZ

b

y

x

Di conseguenza

adms

xex f

Zf

,

= adms

yey f

Zf

,

=

Per biella compressa

8.0, ⋅≤= admcb

b fb

0.8 perché le diagonali compresse sono perturbate dalle barre d’armatura Comunque deve essere soddisfatta la relazione:

21 NNDZZ byx +=−+ Se una serie di barre d’armatura si plasticizza, cioè ese E/βε > , produce un cambiamento dello stato deformativo, traducendosi nella formazione di ulteriori fessurazioni con diversa inclinazione rispetto a quella che si era prodotta per l’acciaio in fase elastica ovvero 12 ϕϕ ≠ . Quindi per il dimensionamento non si devono sfruttare gli stati ese E/βε > , conviene piuttosto assumere per entrambe le serie di barre una sollecitazione se βσ >

Page 63: Bursi - Gusci e Piastre

63

8.4 Lastre con momenti flettenti non trascurabili

figura 8.4. 1

Con riferimento alla figura 8.3.1, siano m1 e m2 momenti principali per unità di lunghezza (m1 > m2) . Trascuriamo anche in questo caso la resistenza a trazione del calcestruzzo. La zona lavorante a presso-trazione può essere trattata come nel caso della lastra quindi

mZmN 1

1 = mZ

mN 212 =

Dove

2

9.0 yxm

hhZ

+⋅=

Come risultati si possono adottare le soluzioni ottenute per il dimensionamento della lastra

α

αα

αα

2sin)(

)tan1(2sin2

)tan1(2sin2

21

212

211

⋅−=

+⋅⋅−

+=

−⋅⋅−

+=

NND

NNNZ

NNNZ

b

y

x

adms

xex f

Zf

,

= adms

yey f

Zf

,

=

8.0, ⋅≤= admcb

b fb

Questa ipotesi ci autorizza ad esprimere in analogia alle equazioni per la lastra

Page 64: Bursi - Gusci e Piastre

64

)tantan1(cos)cotcot1(sin

)cotcot1(sin)tantan1(cos2

22

1

22

21

ϕααϕαα

ϕααϕαα

−⋅⋅+⋅+⋅⋅=⋅=

−⋅⋅+⋅+⋅⋅=⋅=

mmZZm

mmZZm

yyy

xxx

ϕα

2sin2sin)( 21 ⋅−=⋅ mmZD mb

Bibliografia : • Fritz Lehonardt “Casi speciali di dimensionamento delle costruzioni in C.A. & C.A.P. Vol.2”,

Milano: Edizioni di Scienza e Tecnica, 1980