Apporti dei sistemi passivi ok

116
Arch. Ferrari Marino Arch. Marini Francesca SISTEMI ENERGETICI INTEGRATIVI ALL’INVOLUCRO EDILIZIO: L’APPORTO DELLE SERRE ENERGETICHE E DEGLI ALTRI SISTEMI SOLARI PASSIVI

description

ff

Transcript of Apporti dei sistemi passivi ok

Page 1: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

SISTEMI ENERGETICI INTEGRATIVI

ALL’INVOLUCRO EDILIZIO:

L’APPORTO DELLE SERRE ENERGETICHE

E DEGLI ALTRI SISTEMI SOLARI PASSIVI

Page 2: Apporti dei sistemi passivi  ok

«Le costruzioni saranno disposte nel modo giusto se si terrà conto innanzitutto delle regioni e delle latitudini nelle quali si troveranno. (…) a settentrione è necessario che gli edifici siano coperti a volta e siano ben chiusi e senza aperture, ma rivolti verso le zone calde. Al contrario, nelle regioni esposte al Sole del mezzogiorno, poiché sono colpiti dal calore, debbono essere più aperti e rivolti a settentrione e ad aquilone. Così dove la natura è più avversa, si rimedia con l’arte. In altre regioni si faranno delle correzioni secondo la disposizione del cielo rispetto all’inclinazione dell’universo (…)» De Architettura, Vitruvio

Arch. Ferrari Marino Arch. Marini Francesca

Page 3: Apporti dei sistemi passivi  ok

• INVOLUCRO EDILIZIO

Ovvero il contenitore delle funzioni (umane) Indipendentemente dalla tipologia costruttiva

• INVOLUCRO ENERGETICO

Ovvero lo spazio entro il quale avvengono processi energetici regolati e disciplinati in grado di soddisfare il comfort ambientale

• INVOLUCRO A VALENZA ARCHITETTONICA

L’edificio nella sua complessità formale, storica, semantica etc. Un “prodotto culturale” indispensabile alla crescita dell’uomo ma mai disgiunto

dal contesto controllato dall’uomo.

Arch. Ferrari Marino Arch. Marini Francesca

Page 4: Apporti dei sistemi passivi  ok

I PROCESSI NATURALI La radiazione solare

Le fusioni termonucleari che avvengono all’interno del sole liberano energia sotto forma di radiazione elettromagnetica ad alta frequenza. L’energia raiante è prodotto al centro del sole a temperature stimate tra i 10.000.000 e i 14.000.000 gradi Celsius, per arrivare ad una temperatura media sulla superficie del sole di 5.500°C. L’energia che viaggia attraverso lo spazio è costituita da radiazione a diverse lunghezze d’onda. Sebbene il sole irradi energia in molte lunghezze d’onda, esso irradia proporzionalmente più energia in determinate lunghezze d’onda. A una temperatura media di 5.500°C, il sole irradia la maggior parte della sua energia a frequenze molto elevate (onde corte).

Arch. Ferrari Marino Arch. Marini Francesca

Page 5: Apporti dei sistemi passivi  ok

I PROCESSI NATURALI

La radiazione solare

La luce visibile costituisce il 46% dell’energia complessiva emessa dal sole. La luce visibile, cioè la lunghezza d’onda alla quale è sensibile l’occhio umano, si estende da 0,35 a 0,75 micron ed è formata da tutti i colori a noi familiari, dalle onde corte del violetto all’azzurro, verde, giallo, aranciato, fino alle onde più lunghe del rosso. Il 49% della radiazione emessa dal sole è nella banda dell’infrarosso (al di sotto del rosso). La radiazione infrarossa, che sperimentiamo come calore, è radiazione a lunghezza d’onda maggiore dell’estremo rosso dello spettro visibile. Il resto della radiazione solare emessa dal sole si trova nella banda dell’ultravioletto. La costante solare che definisce la quantità di radiazione o energia termica che raggiunge l’esterno dell’atmosfera terrestre, è di 1.350Watt/mq

Arch. Ferrari Marino Arch. Marini Francesca

Page 6: Apporti dei sistemi passivi  ok

I PROCESSI NATURALI La radiazione e l’atmosfera terrestre

Di tutta la radiazione solare intercettata dalla terra, compresa l’atmosfera, fino al 35% viene riflessa nuovamente nello spazio. L’energia radiante riflessa da un oggetto è chiamato Albedo. L’albedo della terra preso nel suo insieme varia dal 35 al 40%. Una parte della radiazione solare restante, attraversando l’atmosfera terrestre viene diffusa o dispersa in tutte le direzioni, interagendo con le molecole d’aria e le particelle di polvere (azzurro). Mentre le nubi e il pulviscolo atmosferico diffondono e riflettono approssimativamente un terzo dell’energia incidente, il vapore acqueo, l’anidride carbonica e l’ozono presenti nell’atmosfera ne assorbono un altro 10-15%.

Arch. Ferrari Marino Arch. Marini Francesca

Page 7: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 8: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 9: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 10: Apporti dei sistemi passivi  ok

I PROCESSI NATURALI La radiazione e l’atmosfera terrestre

Oltre alla composizione dell’atmosfera, il più importante fattore nel determinare la quantità di radiazione solare che raggiunge la superficie terrestre è la lunghezza dell’atmosfera che la radiazione solare deve attraversare (differenza tra il mezzogiorno ed il tramonto). A causa dell’inclinazione e della rotazione della terra, la lunghezza dell’atmosfera attraversata dalla radiazione solare varierà con l’ora del giorno e il mese dell’anno.

Arch. Ferrari Marino Arch. Marini Francesca

Page 11: Apporti dei sistemi passivi  ok

I PROCESSI NATURALI La radiazione e l’atmosfera terrestre

Immagine stagioni

Arch. Ferrari Marino Arch. Marini Francesca

Page 12: Apporti dei sistemi passivi  ok

I PROCESSI NATURALI Radiazione e materia

L’angolo formato dai raggi del sole con una superficie determina quanta energia riceve quella superficie. Il miglior modo di rappresentare questo fatto è immaginare i raggi paralleli del sole come una manciata di matite tenute in modo che le loro punte tocchino il piano di una tavola. I punti fatti dalla punta delle matite rappresentano unità di energia. Quando le matite sono tenute perpendicolari alla tavola, i punti sono disposti nel modo più compatto possibile: la densità di energia per unità di superficie è massima. Se le matite vengono inclinate, i punti cominciano a coprire una superficie sempre maggiore: la densità di energia per unità di superficie diminuisce.

Arch. Ferrari Marino Arch. Marini Francesca

Page 13: Apporti dei sistemi passivi  ok

I PROCESSI NATURALI Radiazione e materia

Arch. Ferrari Marino Arch. Marini Francesca

Page 14: Apporti dei sistemi passivi  ok

I PROCESSI NATURALI Radiazione e materia

Una superficie può tuttavia scostarsi fino a 25° dalla perpendicolare al sole e intercettare ancora il 90% della radiazione diretta. La quantità totale di energia intercettata da una superficie è costituita non solo dalla radiazione diretta, ma anche dalla radiazione diffusa e da quella riflessa. E’ importante rendersi conto che la captazione di radiazione solare dipende dall’area delle superfici captanti.

Arch. Ferrari Marino Arch. Marini Francesca

Page 15: Apporti dei sistemi passivi  ok

I PROCESSI NATURALI Caratteristiche del calore

Quando viene riscaldata dalla radiazione solare, una sostanza cerca di raggiungere un equilibrio con l’ambiente circostante mediante tre processi fondamentali di scambio termico: la conduzione, la convezione e l’irraggiamento. PRIMO: quando la radiazione solare viene assorbita da una sostanza, l’energia assorbita si ridistribuisce all’interno della sostanza venendo trasmessa per conduzione tra le molecole. SECONDO: una sostanza trasmette energia termica della sua superficie alle molecole di un fluido adiacente per convezione (convezione naturale e forzata). TERZO: tutte le sostanze irradiano sempre energia. Via via che il fuoco si spegne, la fiamma e i carboni diventano più rossi e danno meno luce e leggermente meno calore… dopo un po’ la fiamma scompare, i carboni diventano d’un rosso più debole, poi rosso scuro, e infine non ardono più. I carboni caldi non emettono più luce, ma continuano a emettere calore. Il calore dei carboni viene avvertito per ore come calore radiante o irradiazione infrarossa, ma non viene più visto come luce.

Arch. Ferrari Marino Arch. Marini Francesca

Page 16: Apporti dei sistemi passivi  ok

Zero Energy Building: edificio residenziale o terziario con una richiesta di energia globale annuale molto esigua (edifici passivi) e tale da potere essere soddisfatta dalla produzione di energia da fonti rinnovabili in situ. NZEB: edifici a “quasi” zero energia, o vicina allo zero, ovvero, edifici in cui nell’arco di un anno solare vi sia una somma algebrica dei flussi in entrata e in uscita pari a zero. Quindi non occorre che nell’istante vi sia equilibrio tra flussi energetici, ma mediamente nell’arco di un anno. Nell’edificio NZEB un ruolo importante è attribuito ai sistemi di accumulo e alla loro interazione con l’edificio.

Arch. Ferrari Marino Arch. Marini Francesca

Page 17: Apporti dei sistemi passivi  ok

Dunque, entro il 31 dic. 2020 tutti gli edifici nuovi NEZB, per cui delle direttive ci interessa:

caratteristiche termiche effettive dell’edificio capacità termica isolamento riscaldamento passivo elementi di raffrescamento ponti termici ventilazione naturale – meccanica orientamento dell’edificio sistemi solari passivi e protezione solare carichi interni

Arch. Ferrari Marino Arch. Marini Francesca

Page 18: Apporti dei sistemi passivi  ok

Siccome occorre parlare e tenere in debito conto il bilancio energetico sia per la questione attinente l’APE sia per il “buon costruire finalizzato al comfort ambientale ed al contenimento energetico” il Bilancio Energetico:

Arch. Ferrari Marino Arch. Marini Francesca

Page 19: Apporti dei sistemi passivi  ok

I PRINCIPALI ELEMENTI DEL BILANCIO ENERGETICO

Arch. Ferrari Marino Arch. Marini Francesca

Page 20: Apporti dei sistemi passivi  ok

grandezza entrante -grandezza uscente + grandezza sorgente interna = grandezza accumulata. Per considerare ciò dobbiamo fare riferimento alla energia solare Nel sistema termodinamico l’accumulo è fondamentale e sottende gli scambi energetici. Massa entrante -potenza uscente + potenza sorgente interna = massa accumulata

Arch. Ferrari Marino Arch. Marini Francesca

Page 21: Apporti dei sistemi passivi  ok

Energia solare Al primo posto tra le fonti di calore si pone senz’altro il sole. L’energia solare ha delle proprietà uniche in virtù delle quali vale il principio – Qualsiasi impianto solare è costituito da almeno due parti: 1. La captazione di energia. 2. L’accumulo di energia. Da queste proprietà discende un altro principio – Gli impianti solari con una temperatura di esercizio più bassa hanno un rendimento maggiore. Questo effetto è amplificato anche dal fatto che a temperature di esercizio più basse le perdite sono più contenute

Arch. Ferrari Marino Arch. Marini Francesca

Page 22: Apporti dei sistemi passivi  ok

Vantaggi e svantaggi dell’energia solare Vantaggi: – L’energia solare è disponibile ovunque. – E’ completamente gratuita. – Non produce emissioni nocive. – E’ una fonte energetica inesauribile. Svantaggi: – L’energia solare non è sempre disponibile. Anzi, in genere non è disponibile proprio nel momento in cui sarebbe più necessaria. – La radiazione solare diminuisce contemporaneamente al calo delle temperature esterne, in particolare in luoghi altopiani e simili.

Arch. Ferrari Marino Arch. Marini Francesca

Page 23: Apporti dei sistemi passivi  ok

La massa delle pareti interne di un edificio è importante per l’inerzia termica dell’edificio; i flussi che entrano in gioco sono radiativi, a bassa lunghezza d’onda, dovuti alla radiazione solare penetrante attraverso le superfici trasparenti e flussi radiativi ad alta lunghezza d’onda dovuti alla radiazione mutua tra le pareti. Le superfici vetrate modificano la temperatura radiante media dell’ambiente.

Arch. Ferrari Marino Arch. Marini Francesca

Page 24: Apporti dei sistemi passivi  ok

SISTEMI ATTIVI Captazione, accumulo e trasporto dell'energia solare, tramite: * collettori * accumulatori * sistemi di distribuzione e/o utilizzatori separati

SISTEMI PASSIVI Captazione, accumulo e trasporto dell'energia solare, tramite: * conduzione * convezione * irraggiamento dell'edificio stesso

Arch. Ferrari Marino Arch. Marini Francesca

Page 25: Apporti dei sistemi passivi  ok

requisiti di un edificio passivo

Isolamento termico “forte” ed a cappotto

Sfruttamento dell’energia solare verso un riscaldamento indipendente

Raffrescamento estivo ridotto

Schermi solari e vetrate antisolari

Riduzione dei consumi interni

Arch. Ferrari Marino Arch. Marini Francesca

Page 26: Apporti dei sistemi passivi  ok

Per ottimizzare i guadagni solari

Arch. Ferrari Marino Arch. Marini Francesca

Page 27: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 28: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 29: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 30: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 31: Apporti dei sistemi passivi  ok
Page 32: Apporti dei sistemi passivi  ok
Page 33: Apporti dei sistemi passivi  ok
Page 34: Apporti dei sistemi passivi  ok
Page 35: Apporti dei sistemi passivi  ok

VENTILAZIONE E RAFFRESCAMENTO PASSIVO

Per raffrescamento passivo di un edificio si intende la capacità che esso ha nel garantire adeguati livelli di comfort termoigrometrico estivo senza ricorrere ad energie esterne. Il raffrescamento radiativo, il raffrescamento evaporativo e quello per scambio termico con il terreno devono essere sempre associati ad una adeguata ventilazione dell'edificio, che attraverso scambi di calore per convezione, generi sensazioni di raffrescamento adeguato negli occupanti.

Arch. Ferrari Marino Arch. Marini Francesca

Page 36: Apporti dei sistemi passivi  ok

LA VENTILAZIONE NATURALE Consente di ottenere una buona qualità dell'aria interna attraverso una consapevole progettazione delle chiusure esterne. Le soluzione più efficaci dal punto di vista energetico sono: - lo sfruttamento dei venti e delle brezze dominanti - la collocazione adeguata delle chiusure esterne e delle tramezzature - l'adozione di serramenti che garantiscano adeguati ricambi d'aria di infiltrazione per evitare problemi di condensa superficiale - l'adozione di bocchette o griglie di ventilazione regolabili inseriti nel serramento. Dal punto di vista progettuale bisogna sempre considerare i seguenti elementi: - posizione delle chiusure - area delle aperture - tipo e geometria delle chiusure - distribuzione degli spazi

Arch. Ferrari Marino Arch. Marini Francesca

Page 37: Apporti dei sistemi passivi  ok

Posizione delle chiusure

Principi per il posizionamento orizzontale delle aperture in funzione della ventilazione passante

- per garantire una sufficiente ventilazione naturale, le chiusure devono essere poste sia sul lato sopravento sia su quello sottovento; - la ventilazione risulta efficace anche se le chiusure sono disposte su pareti contigue purché siano adeguatamente distanti; - due chiusure collocate su due pareti opposte tra loro ed ortogonali alla direzione del vento, non garantiscono una buona ventilazione passante; - se la direzione del vento è obliqua rispetto alle pareti dell'edificio, la ventilazione passante è sempre garantita.

Arch. Ferrari Marino Arch. Marini Francesca

Page 38: Apporti dei sistemi passivi  ok

Posizione delle chiusure

Principi per il posizionamento verticale delle aperture in funzione della ventilazione passante

Arch. Ferrari Marino Arch. Marini Francesca

- Chiusure esterne permeabili collocate ad altezza d’uomo garantiscono un buon raffrescamento corporeo;

- Chiusure esterne permeabili collocate in

prossimità del soffitto o del pavimento, garantiscono un buon raffrescamento dei relativi elementi strutturali;

- Collocare la chiusura esterna più alta in

posizione sottovento evita che i flussi d’aria per ventilazione da effetto camino e quelli generati dal vento entrino in conflitto;

Page 39: Apporti dei sistemi passivi  ok

Area delle aperture

Effetto del rapporto tra le aree di apertura per l'ingresso e l'uscita dell'aria in un locale con ventilazione passante

Arch. Ferrari Marino Arch. Marini Francesca

- Se l’obiettivo è il ricambio d’aria, la superficie della chiusura d’’ingresso deve essere superiore a quella della chiusura di uscita; - Se si vuole ottenere un flussa d’aria tale da garantire il raffrescamento dell’ambiente, la superficie della chiusura d’ingresso deve essere inferiore a quella della chiusura di uscita; - Se le superfici di ingresso o di uscita dell’aria hanno la stessa dimensione, l’aria interna ha la stessa velocità del vento.

Page 40: Apporti dei sistemi passivi  ok

Tipologia e geometria delle chiusure esterne permeabili

Influenza del tipo di apertura sul flusso d'aria.

Arch. Ferrari Marino Arch. Marini Francesca

Page 41: Apporti dei sistemi passivi  ok

Tipologia e geometria delle chiusure esterne permeabili

Flussi d'aria attraverso diversi tipi di schermi: • SCHERMI ESTERNI: consentono di controllare sia la portata sia la direzione del flusso; • SCHERMI INTERNI: consentono di controllare la direzione del flusso e di ridurre la

velocità media nell’ambiente interno; • SCHERMI AD ANTA A ROTAZIONE: se sono fissati al muro esterno in modo variabile,

garantiscono molta flessibilità; • SCHERMI AD ANTA SCORREVOLI: consentono di regolare solo l’area di apertura; • SCHERMI A DOGHE VERTICALI (orizzontali): consentono di regolare la direzione del

flusso d’aria in senso orizzontale (o verticale); • SCHEMI AVVOLGBILI: consentono di regolare la portata del flusso d’aria regolando

l’area d’apertura.

Arch. Ferrari Marino Arch. Marini Francesca

Page 42: Apporti dei sistemi passivi  ok

Distribuzione degli spazi

Flussi d'aria per ventilazione passante in un appartamento In particolare bisogna evitare la presenza di elementi (arredi e tramezzature) che ostacolino il flusso d’aria. Inoltre per garantire la qualità dell’aria, sarebbe opportuno disporre le cucine e i servizi igienici sul lato sottovento e le zone giorno su quello sopravento. In sezione, invece, si consiglia di evitare che ambienti aventi apporti interni maggiori trasferiscano il calore agli ambienti vicini: la cucina ad esempio, sarà collocata al piano superiore.

Arch. Ferrari Marino Arch. Marini Francesca

Page 43: Apporti dei sistemi passivi  ok

IL RAFFRESCAMENTO RADIATIVO Il raffrescamento radiativo è basato sullo scambio termico per irraggiamento che avviene tra un corpo e la volta celeste che, a temperatura più bassa, viene considerata un pozzo termico. Il sistema di raffrescamento radiativo si distingue in: - DIRETTO (ad es. Roof Pond) - INDIRETTO (ad es. lastra metallica su copertura edificio) Sistemi che esamineremo tra poco

Arch. Ferrari Marino Arch. Marini Francesca

Page 44: Apporti dei sistemi passivi  ok

IL RAFFRESCAMENTO RADIATIVO

Raffrescamento radiativo diretto con sistema Roof Pond.

Arch. Ferrari Marino Arch. Marini Francesca

Page 45: Apporti dei sistemi passivi  ok

IL RAFFRESCAMENTO RADIATIVO

Schema di raffrescamento radiativo indiretto ibrido

Arch. Ferrari Marino Arch. Marini Francesca

Un semplice sistema di raffrescamento radiativo indiretto è quello che prevede una lastra metallica radiante posta sulla copertura in modo da formare una intercapedine d’aria. La lastra, avendo una elevata emissività, durante le ore notturne si raffredda sottraendo calore all’aria che, di conseguenza, è immessa nell’ambiente.

Page 46: Apporti dei sistemi passivi  ok

IL RAFFRESCAMENTO EVAPORATIVO

Tale metodo si basa sul principio in base al quale l'acqua durante il cambio di fase liquido-vapore necessita di calore. Infatti, quando l'acqua evapora, oltre ad aumentare l'umidità dell'aria, sottrae calore ai corpi circostanti raffreddandoli.

La torre di raffreddamento è l'esempio più diffuso di tale metodo: si tratta di un camino di ventilazione all'interno del quale l'aria esterna è raffrescata grazie al contributo dell'acqua che viene inserita tramite opportuni spruzzatori.

Arch. Ferrari Marino Arch. Marini Francesca

Page 47: Apporti dei sistemi passivi  ok

IL RAFFRESCAMENTO PER SCAMBIO TERMICO CON IL TERRENO

Tale sistema sfrutta l'elevata inerzia termica del terreno dovuta al fatto che ad una certa profondità esso si trova ad una T più bassa e costante rispetto all'aria esterna. Nei climi temperati il terreno può essere utilizzato come pozzo termico ad una profondità di circa 2-3m. Nei climi molto caldi per favorire il raffrescamento attraverso lo scambio termico vengono create delle zone ombreggiate. Lo scambio termico, come si evince dalla figura può avvenire per contatto diretto (e quindi per conduzione) o per scambio termico indiretto (che deve però essere integrato con sistema di ventilazione opportunamente dotato di aperture di ingresso e di uscita dell'aria).

Scambio termico indiretto (A) e diretto(B) edificio-terreno

Arch. Ferrari Marino Arch. Marini Francesca

Page 48: Apporti dei sistemi passivi  ok

APPORTI INTERNI

Gli apporti interni sono dovuti: ●Alle sorgenti luminose ●Agli elettrodomestici ●Alle funzioni metaboliche degli occupanti ●Alle tubazioni degli impianti più o meno isolate ●Alle eventuali pompe di calore eventualmente presenti negli ambienti riscaldati Gli apporti interni entrano a far parte del bilancio energetico dell'edificio.

Arch. Ferrari Marino Arch. Marini Francesca

Page 49: Apporti dei sistemi passivi  ok

APPORTI SOLARI

Riprendiamo i I sistemi PASSIVI Che a basso contenuto tecnologico si distinguono in: - sistemi a guadagno diretto - sistemi a guadagno indiretto: Muro di Trombe, Roof Pond, serre addossate e sistemi a guadagno isolato

Arch. Ferrari Marino Arch. Marini Francesca

Page 50: Apporti dei sistemi passivi  ok

SISTEMI A GUADAGNO DIRETTO

Schema di funzionamento di un sistema solare diretto con accumulo termico in muratura (caso di accumulo a pavimento).

Arch. Ferrari Marino Arch. Marini Francesca

Page 51: Apporti dei sistemi passivi  ok

Arch. Marini Francesca

SISTEMI A GUADAGNO DIRETTO

Schema di funzionamento di un sistema solare diretto con accumulo termico su muro di acqua.

Page 52: Apporti dei sistemi passivi  ok

I SISTEMI SOLARI A GUADAGNO INDIRETTO

La parete solare o muro di Trombe: che cosa è e come funziona

Arch. Ferrari Marino Arch. Marini Francesca

Page 53: Apporti dei sistemi passivi  ok

È’ l’invenzione del prof. Trombe

Il cui principio di funzionamento è il seguente

E che vediamo meglio nel seguente schema grafico più generale sulla trasmissione di energia mediante irraggiamento. (non dimentichiamo la termodinamica)

Arch. Ferrari Marino Arch. Marini Francesca

Page 54: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 55: Apporti dei sistemi passivi  ok

Qui in dettaglio

Si possono notare in basso le fessure per lo scambio termico (la parete è in cls)

Arch. Ferrari Marino Arch. Marini Francesca

Page 56: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 57: Apporti dei sistemi passivi  ok

le applicazioni in loco di piccoli muri di trombe sempre secondo lo schema

Arch. Ferrari Marino Arch. Marini Francesca

Page 58: Apporti dei sistemi passivi  ok

I SISTEMI SOLARI A GUADAGNO INDIRETTO

Il Roof Pond: che cosa è e come funziona

Arch. Ferrari Marino Arch. Marini Francesca

Page 59: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 60: Apporti dei sistemi passivi  ok

I SISTEMI SOLARI MISTI

La Serra Captante: che cosa è e come funziona

Arch. Ferrari Marino Arch. Marini Francesca

Page 61: Apporti dei sistemi passivi  ok

QUESTE NELLA DEFINIZIONE CORRENTE, SONO SERRE, Spazi entro i quali si producono coltivazioni.

Un semplice involucro di polietilene, o altro materiale, che forma un tunnel.

Arch. Ferrari Marino Arch. Marini Francesca

Page 62: Apporti dei sistemi passivi  ok

Il “ concetto di serra “ Il termine SERRA è ormai nel vocabolario contemporaneo: si parla di effetto serra nel nostro pianeta, ovvero raggi solari che attraversano l’atmosfera, colpiscono la superficie terrestre, in parte vengono riflessi ma sono trattenuti dagli strati inquinanti. La nostra auto in una giornata di nebbia lasciata in un parcheggio, ci fa trovare un tepore al nostro ritorno: d’estate un forno: conseguenza dell’effetto serra. Una attenta osservazione, però, ci porterebbe a distinguere tra auto e auto, per grandezza, colore, trasparenza, ,materiali come il vetro e selettivi. Quindi nella sua semplicità ,abbiamo un fenomeno complesso.

Arch. Ferrari Marino Arch. Marini Francesca

Page 63: Apporti dei sistemi passivi  ok

COME POSSIAMO DEFINIRE UNA SERRA ENERGETICA? Per La tipologia, la tecnica costruttiva i principi limitativi e di maggior sfruttamento dell’irraggiamento solare, in grado di integrare gli strumenti tecnologici e non, in grado di realizzare il comfort ambientale. Che significa, una relazione stretta con “ l’involucro abitativo “.

Arch. Ferrari Marino Arch. Marini Francesca

Page 64: Apporti dei sistemi passivi  ok

Nel caso della serra avremo invece una complessità diversa, come possiamo vedere negli esempi seguenti

Arch. Ferrari Marino Arch. Marini Francesca

Page 65: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 66: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 67: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 68: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 69: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 70: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 71: Apporti dei sistemi passivi  ok

Facciamo riferimento alla luce solare, che è un fenomeno elettromagnetico.

La radiazione solare ha due componenti: diretta (dal sole unidirezionale) ed indiretta (riflessa, diffusa, non isotropica)

• diretta

le superfici maggiormente favorite sono quelle perpendicolari all’irraggiamento (da cui forma)

l’inclinazione ottimale dipende dalla latitudine

• indiretta (dalla volta celeste)

dipende dal contesto e dal suo albedo dagli schermi naturali o artificiali esistenti nel contesto

conoscere, ad esempio, con la carta solare l’angolo di incidenza per ogni mese e l’energia incidente azimut a sud ( 0° )

il principio delle ombre riportate da uno gnomone è un buon approccio

Arch. Ferrari Marino Arch. Marini Francesca

Page 72: Apporti dei sistemi passivi  ok

L’effetto serra · Una parte viene esposta all’irraggiamento ( diretto e diffuso ) · Antistante è posto un vetro · Passano i raggi invisibili ed infrarossi ( lunghezza d’onda corta ) · La parete si riscalda · La parete emette raggi infrarossi “ lunghi “ verso il vetro. · Il vetro assorbe e rimanda in parte verso l’interno. · Il calore viene catturato nella serra. Da cui si evince la capacità della serra di determinare l’effetto serra che dipende da parete opaca assorbente ( ovvero la parte più interna ) selettività del materiale trasparente. ( ovvero la parte più esterna ) Il primo a capacitarsi di questa «complessità» in termini teorico-pratici fu il prof. Trombe

Arch. Ferrari Marino Arch. Marini Francesca

Page 73: Apporti dei sistemi passivi  ok

Gestione del calore serra energetica · La serra accoglie il calore ma è in contatto con l’esterno. · La forma della serra non può essere come quella tradizionale. · Le dispersioni sono dovute alla resistenza termica delle pareti e al contatto con l’esterno. · Le dispersioni sono proporzionali alla differenza tra interno ed esterno. · Il calore catturato ha destinazioni diverse nel tempo e nello spazio proprio per la complessità del fenomeno. · Lo stoccaggio degli apporti è fondamentale nella dinamica energetica della serra

Arch. Ferrari Marino Arch. Marini Francesca

Page 74: Apporti dei sistemi passivi  ok

· i raggi vengono assorbiti dalla parete · il calore si propaga sotto forma di radiazione termica verso la vetrata · assorbimento parziale e restituzione · diffusione progressiva attraverso la massa della parete · spessore e materiale influiscono sulla gestione del calore

Osserviamo lo schema che ci propone anche i riferimenti della fisica tecnica

Arch. Ferrari Marino Arch. Marini Francesca

Page 75: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 76: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 77: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 78: Apporti dei sistemi passivi  ok

Geometria della serra Orientamento Teoricamente sud reale e non magnetico Spostare la serra verso est o verso ovest privilegia la captazione dei raggi (lunghi o corti)

Arch. Ferrari Marino Arch. Marini Francesca

Page 79: Apporti dei sistemi passivi  ok

Inclinazione della vetrata · La regola dice, “inclinazione corrispondente al piano perpendicolare alla direzione dei raggi solari a mezzo giorno vero nel solstizio di inverno”. · Un vetrata di architettura articolata potrà fruire di una maggiore captazione durante la giornata e potrà beneficiare, ad esempio, dell’irraggiamento diffuso (ovvero dell’albedo) · La tipologia della serra si deve rapportare al clima · Vetrate ed inclinazione dipendono dalla latitudine, dalla qualità e quantità della radiazione solare e dalle escursioni termiche. · Nelle nostre zone si è in presenza di una radiazione diretta e di elevate temperature estive.

Arch. Ferrari Marino Arch. Marini Francesca

Page 80: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 81: Apporti dei sistemi passivi  ok

Ove noteremo immediatamente la disposizione della vetrazione, la profondità dello spazio retro posto e la inclinazione della superficie captante. Questo sistema è definito serra.

Arch. Ferrari Marino Arch. Marini Francesca

Page 82: Apporti dei sistemi passivi  ok

Trasparente ed opaco Consideriamo la serra come unità appartenente all’involucro edilizio principale, quindi inserita in modo tale da favorire al massimo il recupero del calore accumulato.

Arch. Ferrari Marino Arch. Marini Francesca

Page 83: Apporti dei sistemi passivi  ok

Distinguiamo in serra passiva Involucro che non ha bisogno di fonti diverse da quella solare Serra attiva (ma anche semi passiva) Che abbisogna di interventi tecnologici per la propagazione del calore La serra energetica per definizione non dovrebbe essere abitabile ma considerata esclusivamente come luogo di transito. Il suo surriscaldamento che porta la temperatura oltre i 25 – 30 °c condiziona molto il comfort ambientale.

Arch. Ferrari Marino Arch. Marini Francesca

Page 84: Apporti dei sistemi passivi  ok

Il principio dell’inerzia termica un corpo riceve un flusso di energia, lo accumula e lo restituisce in una fase di tempo. Ciò dipende dal materiale e dalle sue dimensioni. Non significa che una parete più è massiva e più accumula

Arch. Ferrari Marino Arch. Marini Francesca

Page 85: Apporti dei sistemi passivi  ok

le pareti divisorie · nella serra energetica vi sono pareti divisorie · se la parete divisoria è trasparente si comporta come doppio vetro (serramento) · se la parete divisoria è un accumulo, deve poter assorbire l’irraggiamento, quindi esposta all’irraggiamento · se la parete divisoria è isolante e senza o poca inerzia, viene accentuato l’effetto serra, pertanto occorre veicolare l’aria verso una forma di accumulo · anche il pavimento è un divisorio, quindi va considerato alla stregua della parete

Arch. Ferrari Marino Arch. Marini Francesca

Page 86: Apporti dei sistemi passivi  ok

l’isolamento · occorre isolare le pareti opache disperdenti · occorre isolare il pavimento · occorre isolare le vetrazioni qualora i climi rigidi generino una differenza di temperatura giorno – notte · una vetrazione doppia favorisce una lenta cessione della temperatura, isola ed evita formazione di condense

la ventilazione evita la formazione di condense e il surriscaldamento e (nel caso venisse abitata) il ricambio d’aria. Nota: nella realtà, là dove regolamenti edilizi e norme sovracomunali prevedono la realizzazioni di serre addossate agli edifici, il ricambio d’aria è richiesto.

Arch. Ferrari Marino Arch. Marini Francesca

Page 87: Apporti dei sistemi passivi  ok

Ventilazione per convezione naturale Creando una differenza di altezza ( circa 1,80cm ) tra la parte bassa e quella alta di entrata dell’aria. La bocchetta superiore deve indicativamente essere grande una volta e mezza quella inferiore.

Arch. Ferrari Marino Arch. Marini Francesca

Page 88: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 89: Apporti dei sistemi passivi  ok

distribuzione e gestione del calore · siamo in presenza di una serra energetica · la serra costituisce di fatto un doppio serramento · l’energia termica che viene accumulata si trasferisce innanzitutto e genericamente alla unità ambientale retrostante · noi vogliamo che la serra sia una componente del sistema che produce e gestisce il comfort · l’energia termica deve quindi venire gestita in modo articolato · l’energia termica deve venire espulsa nei periodi caldi · l’energia termica deve venire immessa nei periodi freddi

Arch. Ferrari Marino Arch. Marini Francesca

Page 90: Apporti dei sistemi passivi  ok

la serra come sistema geotermico accumulare il calore eccedente ed immetterlo nel sottosuolo

Arch. Ferrari Marino Arch. Marini Francesca

Page 91: Apporti dei sistemi passivi  ok

Gli apporti solari · conoscere l’irraggiamento · conoscere la trasparenza dei materiali · conoscere l’assorbimento dei telai e dei serramenti · conoscere la riflettanza sulla base della inclinazione delle trasparenze · valutare la radiazione diffusa ed i valori di albedo (carta ambientale) · tenere conto che il calcolo è sempre molto approssimato perché è un calcolo dinamico, vale a dire tiene conto dell’intera giornata e delle possibili variazioni atmosferiche.

Arch. Ferrari Marino Arch. Marini Francesca

Page 92: Apporti dei sistemi passivi  ok

Provvedimenti contro il surriscaldamento degli ambienti – Prevedere materiali costruttivi adeguati per i locali soleggiati al fine di assicurare l’accumulo del calore solare (particolarmente importante nel caso di strutture leggere). – Negli ambienti soleggiati impiegare solo rivestimenti permeabili al calore (escludere la moquette e altri strati di copertura su pareti e soffitto) al fine di consentire al calore di penetrare senza ostacoli nell’edificato. – Privilegiare le pavimentazioni chiare. I rivestimenti scuri si surriscaldano nei punti d’irraggiamento diretto e rilasciano pertanto troppo calore nell’aria ambiente. I rivestimenti chiari riflettono invece il calore e lo distribuiscono nell’ambiente senza che si verifichino picchi eccessivi di calore. Emissione di calore tramite i caloriferi o un riscaldamento a pavimento autoregolante impostato sul minimo.

Arch. Ferrari Marino Arch. Marini Francesca

Page 93: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 94: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 95: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 96: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 97: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 98: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 99: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 100: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 101: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 102: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 103: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 104: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 105: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 106: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 107: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 108: Apporti dei sistemi passivi  ok
Page 109: Apporti dei sistemi passivi  ok
Page 110: Apporti dei sistemi passivi  ok

L’approccio progettuale alla serra energetica 1. collocazione nell’ambito dell’edificio principale 2. definizione geometrica dell’involucro 3. quantificazione delle superfici captanti 4. definizione delle pareti di accumulo 5. definizione degli schermi solari (se attivi o passivi) 6. definizione dei sistemi di stoccaggio (si ricorda che lo stoccaggio ha una duplice funzione: accumulare l’eccesso di calore, restituirlo come volano termico; possiamo dimensionarlo sulla base della formuletta)

energia incidente sul muro Qi capacità calorifera del materiale C la temperatura Dt relativa allo stoccaggio si avrà quindi V= Qa (energia assorbita )/C x Dt lo spessore ovviamente dipende dal materiale, dalla sua capacità di restituire il calore

Arch. Ferrari Marino Arch. Marini Francesca

Page 111: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 112: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

Page 113: Apporti dei sistemi passivi  ok

Altezza: è la distanza angolare dall'orizzonte di un punto (T) sulla sfera celeste misurata lungo il cerchio verticale passante per quel punto. Azimut: è l'angolo formato dal piano del cerchio verticale passante per il punto con il piano del meridiano del luogo.

Arch. Ferrari Marino Arch. Marini Francesca

Page 114: Apporti dei sistemi passivi  ok

Pertanto è fondamentale sapere dove ci troviamo e come si comporta l’irraggiamento solare

Arch. Ferrari Marino Arch. Marini Francesca

Page 115: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

CONCLUSIONI Realizzare una serra energetica • Il contesto ambientale • Il percorso solare ovvero la variazione stagionale dell’altezza del sole e della radiazione ricevuta • L’importanza della volta celeste ovvero l’intensità globale al suolo • La forma della serra ovvero l’inclinazione della sua copertura • Orientazione della serra: serra posta a sud posta a 20° dal sud (est/ovest) perde circa il 5% di radiazione serra posta a 45° dal sud (est/ovest) perde circa il 20% di radiazione a seconda della inclinazione del tetto • Valutazioni delle ostruzioni del sito (ad esempio presenza di vegetazione) • La vetrazione delle pareti laterali (normalmente ad est e ad ovest) • La presenza di superfici esterne riflettenti • La scelta delle misure di conservazione dell’energia • la tipologia di posizionamento della serra negli edifici (esistenti o in progetto, è la prima forma di integrazione energetica) • La posizione della serra rispetto alla inclinazione dell’edificio (ovviamente se questo è esistente)

Page 116: Apporti dei sistemi passivi  ok

Arch. Ferrari Marino Arch. Marini Francesca

• L’altezza della serra rispetto alla inclinazione della copertura (l’esperienza dice da 2,70 a 3,60 m) • Stabilire le caratteristiche della “parete di fondo” della serra (vetrata, parete massiva, parete isolata, etc.) • Determinare di conseguenza la profondità della serra (l’esperienza dice che dipende dalla tipologia della copertura volta a sud) • Stabilire la tipologia di conservazione del calore e la sua trasmissione • Scelta della vetrazione, e di conseguenza.: vetratura semplice = massimizzazione della trasmissione dell’irraggiamento conservazione del calore = materiali che non trasmettono infrarossi minimizzare la trasmissione dell’energia attraverso l’aria (vetri stratificati ad es.) resistenza agli agenti atmosferici resistenza alla rottura facilità di manutenzione • Isolamento notturno (per il periodo invernale) • Limitare le dispersioni (ad esempio tra vetro e vetro, tra vetro e base, tra vetro ed edificio) • La scelta degli schermi solari (ridurre gli automatismi utilizzando la vegetazione)

Ricordiamoci che la serra energetica integra sostanzialmente il riscaldamento invernale