2013 03 01 Maurizio Di Noia Presentation

download 2013 03 01 Maurizio Di Noia Presentation

of 80

Transcript of 2013 03 01 Maurizio Di Noia Presentation

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    1/80

    Entanglement Concentration and

    Distillation in Continuous Variable Systems

    Maurizio Di Noia

    University of Physics of Milan

    01 March 2013

    http://find/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    2/80

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

    1 Introduction

    EntanglementDefinitionExample

    Gaussian Systems

    2 Entanglement Concentration

    System definitionSeparabilityEntanglement Measure

    3 Entanglement DistillationInitial System

    IPSQuantum TeleportationRelative Improvement of Quantum Teleportation Fidelity

    4 Conclusions

    http://find/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    3/80

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

    1 Introduction

    EntanglementDefinitionExample

    Gaussian Systems

    2 Entanglement Concentration

    System definitionSeparabilityEntanglement Measure

    3 Entanglement DistillationInitial System

    IPSQuantum TeleportationRelative Improvement of Quantum Teleportation Fidelity

    4 Conclusions

    http://find/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    4/80

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    5/80

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

    Introduction

    Entanglement

    Mathematical Definition

    Let a bipartite system consists of two subsystems A and B, describedby the density operator

    HA HB,with density operators j HA and j HB then pj 0,

    j pj = 1,

    entangled =

    j pjj j separable =j pjj j

    Since Entanglement permits to implement operations not achievableonly with LOCC it represents a resource to manipulate information in

    an effective way.

    I t d ti E t l t C t ti E t l t Di till ti C l i A di

    http://find/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    6/80

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

    Introduction

    Entanglement

    Mathematical Definition

    Let a bipartite system consists of two subsystems A and B, describedby the density operator

    HA HB,with density operators j HA and j HB then pj 0,

    j pj = 1,

    entangled =

    j pjj j separable =j pjj j

    Since Entanglement permits to implement operations not achievableonly with LOCC it represents a resource to manipulate information in

    an effective way.

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

    http://find/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    7/80

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

    Introduction

    Entanglement

    Mathematical Definition

    Let a bipartite system consists of two subsystems A and B, describedby the density operator

    HA HB,

    with density operators j HA and j HB then pj 0,

    j pj = 1,

    entangled =

    j pjj j separable =j pjj j

    Since Entanglement permits to implement operations not achievableonly with LOCC it represents a resource to manipulate information inan effective way.

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

    http://find/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    8/80

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

    Introduction

    Entanglement

    Mathematical Definition

    Let a bipartite system consists of two subsystems A and B, describedby the density operator

    HA HB,

    with density operators j HA and j HB then pj 0,

    j pj = 1,

    entangled =

    j pjj j separable =j pjj j

    Since Entanglement permits to implement operations not achievableonly with LOCC it represents a resource to manipulate information inan effective way.

    http://find/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    9/80

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    10/80

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

    Introduction

    Entanglement

    Example

    Is entangled the state :

    | =

    n=0cn|n |n = ||

    while is separable the state :

    =

    n=0cn|

    n

    n

    | |n

    n

    |Both and show correlations in photon numbers, but it does existan observable for which those of disappear while those of do not.

    also pure quantum correlations

    only classical correlation achievable through LOCC

    http://find/http://goback/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    11/80

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    12/80

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    13/80

    Introduction

    Gaussian Systems

    The systems studied in quantum information can be classified indiscrete Variable Systems(DV) and Continuous Variable Systems(CV).

    Definition of Gaussian System

    A CV System G

    with n free parameters is Gaussian if its Wignerfunction W[ G](X) is Gaussian:

    W[ G](X) =e

    12(XX)T1(XX)

    (2)n

    Det[].

    The Gaussian state G is completely defined by its first two moments:

    the mean square vector X

    the covariance matrix which contains the second moments

    http://find/http://goback/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    14/80

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    15/80

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    16/80

    Introduction

    Gaussian Systems - Separability Criterion

    For two mode bipartite Gaussian Systems exists a necessaryand sufficient criterion to distinguish separable states from theentangled one.Let be a separable bipartite state, we define the partialtranspose state (over the second subsystems) :

    =

    i

    pii iT.

    The Peres-Horodecki Condition1, or PPT Condition, establishes

    that the state is separable if and only if2

    0.

    1Asher Peres, Phys. Rev. Lett. 77 1413 (1996), Horodecki, P.Horodecki, and

    R.Horodecki Phys. Lett. A 223 18 (1996)2R.Simon, Phys. Rev. Lett. 84 2726, (2000)

    http://find/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    17/80

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    18/80

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    19/80

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    20/80

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    21/80

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    22/80

    1 IntroductionEntanglement

    DefinitionExample

    Gaussian Systems

    2 Entanglement ConcentrationSystem definitionSeparabilityEntanglement Measure

    3 Entanglement DistillationInitial System

    IPSQuantum TeleportationRelative Improvement of Quantum Teleportation Fidelity

    4 Conclusions

    http://find/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    23/80

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    24/80

    Entanglement Concentration

    System definition

    S() is the squeezing operator given by

    S() = e12

    (a)2(a)2

    C

    i, i = 1,2 the thermal state (noise)

    i =ea

    iai

    Tr[ea

    iai]

    =1

    1 + ni

    s=0

    ni

    1 + ni

    s|si is|

    with average number of photons ni, where = 1kBT .The state 0 interacts with a two mode mixer, a linear devicedescribed by the unitary operator U(),

    U() = e(abab) = ei

    C

    http://find/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    25/80

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    26/80

    Entanglement Concentration

    System definition

    S() is the squeezing operator given by

    S() = e12

    (a)2(a)2

    C

    i, i = 1,2 the thermal state (noise)

    i =ea

    iai

    Tr[ea

    iai]

    =1

    1 + ni

    s=0

    ni

    1 + ni

    s|si is|

    with average number of photons ni, where =1

    kBT .The state 0 interacts with a two mode mixer, a linear devicedescribed by the unitary operator U(),

    U() = e(abab) = ei

    C

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

    http://find/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    27/80

    Entanglement Concentration

    System definition

    The operator U() describes a complex rotations of the two modes.

    The action of U() can be decomposed as in the picture

    where U1 2 = ei2 aa are unitary operations which cannot modifythe entanglement of the system.= in order to study the entanglement behaviour we can reduce to atwo mode mixer with real parameter U(), R (BS).

    http://find/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    28/80

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    29/80

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    30/80

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    31/80

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    32/80

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

    Entanglement Concentration

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    33/80

    Entanglement Concentration

    Separability

    The PPT Condition for the state after the interaction with the BScan be written as

    f(r1, r2, n1,n2,T, ) = K(n1,n2)+4T(1T)W(r1, r2,n1,n2, ) 0

    Lets call f PPT functionIf we set the squeezing parameters r1 = r2 = r the minimumvalue rmin of r for which the state after the interaction with the BSwith T = 1

    2is entangled

    rmin = rminDet[] = 14 Arcosh 1 + 16 Det[]8Det[]=

    1

    4Arcosh

    1 + 16

    n1 +12

    2 n2 +

    12

    28

    n1 +12

    n2 +

    12

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

    Entanglement Concentration

    http://find/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    34/80

    g

    Separability

    In case of same thermal noise in both branches n1 = n2 = n,

    rmin =1

    4Arcosh

    1 + 16(n+ 12

    )4

    8(n+ 12

    )2.

    http://find/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    35/80

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    36/80

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    37/80

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

    Entanglement Concentration

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    38/80

    Entanglement Measure

    In general the PPT f function can be used only to determine thethreshold between separable and entangled states through thecondition f 0, while it does not give a measure of the quantumcorrelation of the system

    In the specific case of the variables from which the determinantof the covariant matrix Det[] is not dependent on, the function fhas a monotone behaviour with respect of the symplectic

    eigenvalue d and hence with respect of the entanglement of thesystem

    the PPT function f is easier to compute than the symplecticeigenvalue dSince Det[] = Det[](n1,n2) the f provides an entanglementmeasure as function of the phase and the BS transmissivity T

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

    Entanglement Concentration

    http://find/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    39/80

    Entanglement Measure

    Once we set the thermal noise n1 and n2, the squeezing parametersr1 and r2, the output state has always the maximum entanglement for

    relative phase between the two squeezing =

    BS transmissivity T = 12

    (balanced BS)

    Lets then set = and T =1

    2 .

    Once we set the total squeezing photons ns, and hence thesqueezing energy,

    sinh2

    r1 + sinh2

    r2 = ns

    the best squeezing photon distribution of the initial state to maximizethe entanglement of the output state from the BS is always

    r1 = r2

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

    Entanglement Concentration

    http://find/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    40/80

    Entanglement Measure

    Once we set the thermal noise n1 and n2, the squeezing parametersr1 and r2, the output state has always the maximum entanglement for

    relative phase between the two squeezing =

    BS transmissivity T = 12

    (balanced BS)

    Lets then set = and T =1

    2 .

    Once we set the total squeezing photons ns, and hence thesqueezing energy,

    sinh2

    r1 + sinh2

    r2 = ns

    the best squeezing photon distribution of the initial state to maximizethe entanglement of the output state from the BS is always

    r1 = r2

    http://find/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    41/80

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    42/80

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    43/80

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    44/80

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    45/80

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    46/80

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    47/80

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    48/80

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    49/80

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

    Entanglement Distillation

    IPS

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    50/80

    IPS

    The outcome of the IPS are 4 conditional states ij, with i,j = 0,1,each given by

    ij =Trcd

    Uac(T) Ubd(T)0 |0cd dc0|Uac(T) Ubd(T)Ia Ib ij()

    pij(r1, r2,n1,n2,T, )

    where the pij are the relative probability.

    State parameters after IPS process:

    average number of thermal photons n1 and n2

    squeezing parameters r1 and r2

    BS transmissivity T and APD efficiency

    http://find/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    51/80

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    52/80

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    53/80

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    54/80

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

    Entanglement Distillation

    Quantum Teleportation

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    55/80

    Quantum Teleportation

    Lets define the average fidelity F between the pure state = ||to be teleported and the state out after the Teleportation.

    F

    Tr[out] =

    |out

    |

    ,

    as Wigner functions

    F C

    d2 W[]() W[out]().

    The average fidelity measure the overlap between the two states.Shared state not entangled Classical Limit= max[Fcl] = 12

    http://find/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    56/80

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    57/80

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

    Entanglement Distillation

    Relative Improvement of Quantum Teleportation

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    58/80

    p p

    Fidelity

    For non Gaussian states lets consider only average fidelity valuesgreater than 1

    2.

    We studied the following average fidelities:

    F0(r1, r2, n1,n2) obtained using as shared state between Alice

    and Bob the Gaussian state 0 not processed by IPSFij(r1, r2,n1, n2, ,T), i,j = 0,1 obtained using as shared statesbetween Alice and Bob the states ij processed through IPS

    Lets define the relative improvement Rij(r1, r1,n1,n2, ,T) of averagefidelity obtained with the states ij over the one obtained with the

    state 0 as

    Rij(r1, r2,n1,n2, ,T) = Fij(r1, r2,n1,n2, ,T) F0(r1, r2,n1,n2)F0(r1, r2,n1,n2)

    http://find/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    59/80

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

    Entanglement Distillation

    Relative Improvement of Quantum Teleportation

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    60/80

    p p

    Fidelity

    Selecting on an high number of input copies only thosecorresponding to a joint click by APD

    Increase of Entanglement of the original Gaussian Systemthrough the non Gaussian IPS map

    http://find/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    61/80

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    62/80

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

    Conclusions

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    63/80

    Entanglement Concentration

    Optimal conditions for Entanglement Concentration through theinteraction with a linear passive device

    Threshold separability on r as function of the noises n1 and n2 of

    the state evolved through a balanced BS

    Entanglement Distillation

    Conditions for entanglement increase for a two mode bipartiteGaussian state through the de-Gaussification IPS process

    http://find/http://goback/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    64/80

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

    Entanglement

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    65/80

    Examples of applications

    Quantum Information

    dense coding

    quantum teleportation

    Quantum ComputingImplementation of algorithms more effective than the classical one

    Groover searching algorithm

    Shor factorization algorithm

    Quantum Cryptography

    BB84 protocol

    E91 protocol

    Back

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

    Entanglement

    http://find/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    66/80

    Examples of applications

    Quantum Information

    dense coding

    quantum teleportation

    Quantum ComputingImplementation of algorithms more effective than the classical one

    Groover searching algorithm

    Shor factorization algorithm

    Quantum Cryptography

    BB84 protocol

    E91 protocol

    Back

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

    DV and CV Systems

    http://find/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    67/80

    DV Systems

    The DV Systems are those systems whose degrees of freedom aredescribed in Hilbert spaces of finite dimensions.ExampleThe two levels system (qubit)

    |+

    = 1

    2(

    |0

    +

    |1

    ) described in the

    Hilbert space C2 physically implemented by the two polarizations of aphoton or from the base and excited states of an electron in an atom.

    CV Systems

    The CV Systems are those systems whose degrees of freedom aredescribed in Hilbert spaces of infinite dimensions..ExampleA radiation mode described in the Hilbert space H = L2(R)

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

    DV and CV Systems

    http://find/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    68/80

    DV Systems

    The DV Systems are those systems whose degrees of freedom aredescribed in Hilbert spaces of finite dimensions.ExampleThe two levels system (qubit)

    |+

    = 1

    2(

    |0

    +

    |1

    ) described in the

    Hilbert space C2 physically implemented by the two polarizations of aphoton or from the base and excited states of an electron in an atom.

    CV Systems

    The CV Systems are those systems whose degrees of freedom aredescribed in Hilbert spaces of infinite dimensions..ExampleA radiation mode described in the Hilbert space H = L2(R)

    http://find/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    69/80

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

    DC and CV Systems

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    70/80

    DV Systems

    unitarian operations are difficult to

    implementstates are easily destroyed

    they are probabilistic (e.g.:success rate of the teleportationprotocol of 1

    4)

    CV Systems

    they can leverage experimentalapparatuses of quantum optics

    they are states with low race ofdecoherence, i.e. resistant tonoise

    they are deterministic

    thanks to the size of the Hilbertspace they potentially provide agreater bandwidth (e.g. arbitrary

    systems of d-levels can be storedin one CV mode)

    they can be implemented inoptical cables

    Back

    http://find/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    71/80

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

    Wigner Function

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    72/80

    Let O be a generic Hilbert-Schmidt operator, D() the displacement

    operator, we define the characteristic function [O]() as

    [O]() = Tr[OD()], = (1,...,n)T.

    We define the Wigner function W[O]() as the complex Fouriertransformation of the characteristic function:

    W[O]() =

    Cn

    d2n

    2ne(

    )[O](), = (1,...,n).

    Back

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

    Quantum Teleportation Fidelity

    Quantum Teleportation Fidelity

    http://find/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    73/80

    Minimum value of average fidelity Fmin(n1,n2) for two mode bipartiteGaussian States with shared state entangled

    Fmin(n1,n2) =1

    2n1+12n2+1

    +

    2n2+12n1+1

    + 2

    Fmin = 12

    n1 = n2.

    http://find/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    74/80

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

    Probability of IPS States

    Probability of IPS States

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    75/80

    Due to the symmetry of IPS process the probabilities p01 and p10 arethe same. Probability behaviour shown for r1 = r2 = r and for thermalphoton number n1 = n2 = n= 0.5, quantum efficiency = 0.9, BSstransmissivity T = 0.9.

    Back

    http://find/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    76/80

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

    Probability of IPS States

    Fidelity of the state 11

  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    77/80

    The Fidelity F11 of the state 11 is shown as function of tanh r.

    thermal noise fixed n1 = n2 = n from

    the top to the bottom values n= 0,n = 0.25, n = 0.75, n= 1.25, n= 2,quantum efficiency = 0.9,transmissivity T = 0.99. Dashed linefidelity obtained with TWB.

    Back

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

    Relative Improvement and Probability as a function of T

    Relative Improvement and Probability as a

    function of T

    http://find/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    78/80

    function of T

    The relative improvement R11 of the average fidelity obtained as theIPS state 11 proportionally increases with the transmissivity T.

    squeezing parameters fixedr1 = r2 = 0.3 thermal noises fixedn1 = n2 = 0.001.

    Back

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

    Relative Improvement and Probability as a function of T

    Relative Improvement and Probability as a

    function of T

    http://find/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    79/80

    function of T

    The probability p11 decreases as the transmissivity T increases.

    thermal noises fixed n1 = n2 = 0.1.

    Introduction Entanglement Concentration Entanglement Distillation Conclusions Appendix

    Experimental Values

    Experimental Values

    http://find/
  • 7/30/2019 2013 03 01 Maurizio Di Noia Presentation

    80/80

    Best Experimental Values achievable with the current technology:

    maximum squeezing parameter: r

    2

    thermal noise: order of decimal of thermal photon

    BS transmissivity: T 0.99usual nominal quantum photodetector efficiency: 0.9

    http://find/