1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada [email protected]...

39
1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada [email protected] Università degli Studi di Foggia – Facoltà di Economia Via R. Caggese, 1 - 71100 Foggia

Transcript of 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada [email protected]...

Page 1: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

1

Idrogeno quale vettore per un sistema

energetico sostenibile

Valeria Spada

[email protected]

Università degli Studi di Foggia – Facoltà di Economia

Via R. Caggese, 1 - 71100 Foggia

Page 2: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

2

INTRODUZIONE

PANORAMA ENERGETICO

LA MERCE IDROGENO

MATERIE PRIME E TECNOLOGIE PER LA PRODUZIONE DELL’IDROGENO

CONFINAMENTO DELL’ANIDRIDE CARBONICA

IMMAGAZZINAMENTO E TRASPORTO DELL’IDROGENO

UTILIZZO DELL’IDROGENO

PRINCIPALI PROGRAMMI DI RICERCA E SVILUPPO

CONCLUSIONI

INDICE

Page 3: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

3

L’obiettivo di questa lezione è di esaminare le prospettive di una economia

che possa far uso dell’idrogeno per produrre energia elettrica e calore da

impiegare nei diversi settori di applicazione in sostituzione dei combustibili

fossili.

La necessità nasce dai sia dalle prospettive di esaurimento dei combustibili

fossili sia dal fenomeno dell’effetto serra, dovuto principalmente

all’aumento della concentrazione di anidride carbonica connesso al loro

impiego.

Page 4: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

4

PANORAMA ENERGETICO

A partire dalla metà del XIX secolo il mondo ha cominciato gradualmente a spostarsi

dall’impiego di una fonte di energia all’altra.

Nel corso del tempo si è realizzato un processo di “decarbonizzazione”, cioè la sostituzione

delle risorse ad elevato contenuto in carbonio con gli idrocarburi (dalla legna ai carboni fossili,

poi ai prodotti petroliferi e più di recente al metano).

Le ragioni di questa esigenza sono varie, da quelle economiche, alla maggiore facilità di

trasporto e distribuzione e recentemente di natura ambientale, a causa degli effetti negativi

prodotti dalla combustione dei materiali a maggiore contenuto in carbonio.

La domanda energetica mondiale è in costante crescita, sia a causa della pressione esercitata

dai Paesi industrializzati, sia per il crescente fabbisogno connesso all’aumento della

popolazione mondiale, soprattutto nei PVS, dai quali proverrà oltre il 60% dell’incremento

della domanda di energia primaria nei prossimi 30 anni.

Page 5: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

5

Le previsioni sulla domanda mondiale di

energia stimano nel periodo 2000-2030 una

crescita media annua del 1,7%, passando da

9.179 MTep dell’anno 2000 a 15.267 del 2030.

I combustibili fossili soddisferanno il 90%

della domanda globale di energia.

La domanda di metano aumenterà più rapidamente

e la sua incidenza sulla domanda mondiale di

energia passerà dal 23 al 28%, con un incremento

medio annuo di circa il 2,4%, rispetto al petrolio

(1,6%) e al carbone (1,4%).

Fonti di energia

1971

2000

2010

2030

Aumento medio annuo 2000-2030 %

Carbone 1.449 2.355 2.702 3.606 1,4 Petrolio 2.450 3.604 4.272 5.769 1,6 Metano 895 2.085 2.794 4.203 2,4 Nucleare 29 674 753 703 0,1 Idro 104 228 274 366 1,6 Altre fonti rinnovabili 73 233 336 618 3,3

Totale 4.999 9.179 11.132 15.267 1,7 (Fonte: IEA, 2002).

0

1.000

2.000

3.000

4.000

5.000

6.000

1971 2000 2010 2030Anni

Mte

p

Carbone Petrolio Metano Nucleare Idro Altre fonti innovabili

Trend della domanda mondiale di energia primaria per fonte (Mtep)

Page 6: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

6

Il Medio Oriente è il maggior detentore delle riserve petrolifere accertate e detiene circa il 60%

del totale mondiale, seguito dall’Europa e Eurasia con il 11,3%, e dall’Africa con il 10%.

La durata prevista per queste supera i 40 anni.

RISERVE MONDIALI DI PETROLIO (GT)

Riserve accertate 1983 1993 2003 2008rapporto

R/P*

%

Nord America 13 12,5 8,8 9,7 5,6 14,8

America centrale e meridionale 4,6 10,8 14,6 17,6 9,8 50,3

Europa e Eurasia 13,6 11 14,5 19,2 11,3 22,1

Medio Oriente 54,3 90,4 99 102 59,9 78,6

Africa 8 8,3 13,5 16,6 10,0 33,4

Asia e Pacifico 5,3 7,1 6,4 5,6 3,3 14,5

Mondo 99 140,2 156,7 170,8 100% 42,0

*R/P (Riserve/Produzione) è il rapporto tra riserve al termine dell’anno 2005 e la produzione dell’anno stesso. Esso fornisce la durata in anni di tali riserve, se il livello di produzione rimanesse invariato. (Fonte: BP, 2009).

Page 7: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

7

RISERVE MONDIALI DI CARBONE (GT)

(Fonte: BP, 2009)

Le riserve di carbone risultano distribuite in maniera molto più omogenea in tutte le aree

geografiche rispetto al petrolio e al gas naturale e maggiormente concentrate nei paesi della

Europa e Eurasia, in Asia e Pacifico e negli Stati Uniti d’America, con una durata stimata di

122 anni.

Riserve accertate a fine anno 2008

antracite e bituminoso

sub-bituminoso e lignite Totale % R/P

Nord America 113 133 246 29,8 216

America centrale e meridionale 7 8 15 1,8 172

Europa e Eurasia 102 170 272 33,0 218

Africa e Medio Oriente 33 0 33 4,0 131

Asia e Pacifico 156 103 259 31,4 64

Mondo 411 415 826 100 122

Page 8: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

8

* Superiori a 100 anni. (Fonte: BP, 2009)

RISERVE MONDIALI DI GAS NATURALE (1012 m3)

Nel periodo 1983-2008 le riserve di gas naturale hanno registrato un incremento medio annuo del 3,7%.

Il Medio Oriente e l’Europa orientale sono i detentori di quasi i 3/4 e la durata stimata è di 60 anni.

Una promettente riserva di metano è rappresentata dagli idrati naturali di metano (strutture a gabbia,

in cui molecole d’acqua intrappolano molecole di metano, a basse temperature e ad alte pressioni). Si

stimano valori da 2∙1016 a 4∙1016 m3 di gas metano ottenibile da tutti gli idrati di gas naturale presenti

sia nelle aree continentali polari sia in quelle marine.

Riserve accertate 1983 1993 2003 2008Rapporto

R/P

  %

Nord America 10,4 8,75 7,31 8,87 4,8 10,9

America centrale e meridionale 3,18 5,54 7,19 7,31 4,0 46,0

Europa e Eurasia 40,48 63,62 62,3 62,89 34,0 57,8

Medio Oriente 26,38 44,43 71,72 75,91 41,0 *

Africa 6,9 10,01 13,78 14,65 7,9 68,2

Asia e Pacifico 5,95 8,73 13,47 15,39 8,3 37,4

 

Mondo 92,68 141,08 175,78 185,02 100% 60,4

Page 9: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

9

Consumi di energia in fonti primarie in Italia (Mtep)

(Fonte: Energia, 2008).

Il fabbisogno energetico italiano ha subito nel corso degli ultimi trenta anni un incremento medio

annuo di circa l’1,1% e, tra i combustibili fossili, il gas naturale ha registrato un tasso di crescita

maggiore, pari all’ 11,1%.

Nell’anno 2008 i consumi sono stati coperti per il 41,4% dal petrolio e suoi derivati, per il 36,4%

dal gas naturale, per l’8,9% dal carbone e per l’ 8,8% da energia elettrica di origine rinnovabile.

  1973 2005 2006 2007 2008 2008-1973/anno

        % %

Carbone 10,2 17 17,2 17,1 17,0 8,9 1,9

Petrolio 105,3 85,2 85,3 82,5 79,4 41,4 -0,7

Gas naturale 14,3 71,2 69,7 70,0 70,0 36,4 11,1

Energia elettrica 10,1 24,4 24,0 24,6 25,6 13,3 4,3

di cui: idro-geo- rinnovabili 9,2 13,5 14,2 14,3 16,9 8,8 2,4

nucleare 0,7 - - - - - -

importazioni nette 0,2 10,9 9,8 10,3 8,7 4,5 121,4

Totale 139,8 197,8 196,2 194,2 192,0 100,0 1,1

Page 10: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

10

ENERGIA E AMBIENTE

Emissioni mondiali di CO2 - settore energetico (Mt/anno)Emissioni di CO2 per settore (Mt)

L’impiego dei combustibili convenzionali nell’ambito del settore energetico ha causato, tra l’altro,

nel corso degli anni, il fenomeno dell’aumento della concentrazione di CO2 nell’atmosfera, che è

passato da 270 ppm di inizio secolo, agli attuali 380 ppm.

Si prevede che 2/3 dell’incremento delle emissioni si verificherà nei PVS.

Quasi la metà dell’aumento delle emissioni mondiali di CO2 fra il 2000 ed il 2030 sarà causato

dalla produzione di energia elettrica; il settore dei trasporti contribuirà per oltre un quarto,

mentre il comparto residenziale, commerciale ed industriale per la quantità rimanente.

OCSE Economie in Transizione

Paesi in via di sviluppo Mondo

1990-2010

2000-2030

1990-2010

2000-2030

1990-2010

2000-2030

1990-2010

2000-2030

Produzione elettricità 1.373 1.800 44 341 2.870 5.360 4.287 7.500

Industria 11 211 -309 341 739 1.298 440 1.850

Trasporti 1.175 1.655 -52 242 1.040 2.313 2.163 4.210

Altri usi* 244 363 -428 234 620 1.365 436 1.962

Aumento totale 2.803 4.028 -746 1.158 5.268 10.336 7.325 15.552

*Usi di energia nell’agricoltura, nel commercio, nei servizi pubblici, nelle abitazioni ed altri non specificati.

Page 11: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

11

IL VETTORE IDROGENO

La completa sostituzione dei combustibili fossili con le fonti rinnovabili non è stata finora presa in

considerazione per ragioni economiche.

Essendo queste ultime contraddistinte dalla stagionalità e dalla intermittenza, la problematica

centrale di una eventuale transizione energetica risiede proprio nello sviluppo di adeguate

tecnologie di accumulo: quelle relative alla produzione e all’uso dell’idrogeno sono la via più

promettente per affrontare il problema.

L’idrogeno è un vettore di energia (ossia un mezzo di accumulo e di trasporto dell’energia) che può

contribuire allo sviluppo di un sistema energetico sostenibile, in quanto:

• può essere prodotto a partire sia da fonti fossili sia da fonti rinnovabili;

• non genera CO2 e altre sostanze inquinanti durante il suo utilizzo, quindi è un “combustibile

pulito”, con il più elevato potere calorifico (120 MJ/kg).

Page 12: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

12

Petrolio Reforming Generazione potenza distribuita

CO2

Gas naturale Reforming

I drogenodotti ResidenzialeCarbone Gassifi cazione

CO2

Nucleare Proc. termochimici I drogeno I ndustria

Eolico-fotovoltaico Elettrolisi

Richiede TrasportoSolare Proc. termochimici accumulo e distribuzione

Biomasse Gassifi cazione Altro

Confi namento CO2

L’idrogeno può essere ottenuto sia da fonti fossili (con possibilità di immagazzinare la CO2

generata come sottoprodotto dei processi di conversione dei combustibili fossili), sia da fonti

rinnovabili (ed essere impiegato come mezzo di accumulo di queste), o anche da energia nucleare.

E’ poi distribuito in rete e destinato ai vari settori di utilizzo (generazione di potenza, residenziale,

industriale, trasporti, ecc).

Fonti e tecnologie di produzione dell’idrogeno

Page 13: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

13

A livello mondiale il 48% dell’idrogeno è ottenuto da gas naturale, il 30% da

frazioni petrolifere leggere, il 18% da carbone ed il rimanente 4% per via

elettrolitica.

FonteProduzione di idrogeno in miliardi di Nm3/anno

Percentuale

Gas naturale 240 48

Petrolio 150 30

Carbone 90 18

elettrolisi 20 4

Totale 500 100

PRODUZIONE MONDIALE PER FONTE

(Fonte: Giaconia et al., 2006)

Page 14: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

14

L’individuazione della fonte da cui ricavare idrogeno non sarà una scelta omogenea a livello mondiale

ma, sulla base di valutazioni tecnico-economiche, si farà ricorso a materie prime diverse, ed ogni area

geografica potrà scegliere la metodologia produttiva più adeguata alle proprie esigenze e disponibilità.

La situazione attuale evidenzia un consumo di idrogeno ottenuto quasi totalmente a partire da fonti

fossili che, nel breve periodo, rappresentano la soluzione economicamente più conveniente. Esse

consentiranno di “gestire” la fase di transizione che porterà ad una “economia dell’idrogeno ”, basata

sull’uso di fonti energetiche alternative.

Il metano rappresenta, nel breve-medio periodo, la fonte predominante nella produzione dell’idrogeno,

in quanto materia prima più facilmente trattabile a livello industriale e con un contenuto di idrogeno

maggiore rispetto al petrolio greggio e al carbone. Oltre ad essere un combustibile fossile “pulito” può

essere distribuito attraverso una rete di gasdotti molto più flessibile ed estesa di quella degli oleodotti.

Nonostante l’impiego del carbone determini un notevole impatto ambientale esso può contribuire,

attraverso il processo di gassificazione, a questa transizione verso un’economia dell’idrogeno, tenuto

conto che le riserve accertate sono circa cinque volte maggiori di quelle del petrolio, con il vantaggio di

rendere utilizzabile una fonte di energia attualmente meno interessante.

Fonti di idrogeno

Page 15: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

15

La generazione dell’idrogeno da fonti energetiche rinnovabili può realizzarsi:

• in prossimità di impianti produttivi ubicati in zone ove è presente una fonte rinnovabile a basso costo;

• in impianti “isolati” nei quali viene prodotto H2 nei periodi di surplus energetico, con funzione di mezzo di

accumulo;

• in impianti “connessi alla rete elettrica”, dove l’elettrolisi genera H2 nei momenti di scarsa richiesta elettrica,

mentre la rete consente di trasferire l’energia in eccesso ottenuta dalla fonte rinnovabile.

I costi di produzione dell’H2 da fonte idroelettrica variano dai 10 ai 30 €/GJ, per un costo dell’energia

elettrica compreso tra 0,02-0,04 €/kWh, tipico per impianti idroelettrici ubicati in zone favorevoli e di una

certa dimensione, mentre quelli da fonte eolica sono valutati da 22 a 50 €/GJ, per impianti di potenza

variabile tra 100 kW – 1 MW e velocità medie del vento da 8 a 10 m/s.

Per quanto riguarda la produzione da fonte solare le zone desertiche caratterizzate da forte insolazione

sono

favorite per questo tipo di utilizzo energetico. Sono stimati costi di produzione dell’ordine di 40 €/GJ, con

l’impiego di impianti da 0,2 milioni di Nm3/giorno.

Page 16: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

16

TECNOLOGIE DI PRODUZIONE DA COMBUSTIBILI FOSSILI

Il processo di reforming rappresenta uno dei modi più efficaci e meno costosi di generazione dell’H2 su larga

scala e consente di ottenere circa il 95% della produzione mondiale.

Il processo prevede la trasformazione con vapore del metano, oppure di frazioni petrolifere leggere, in presenza di catalizzatore al nichel, alla temperatura di circa 820-870°C ed ad una pressione di 2,5 Mpa.

Nella prima fase del processo si ottiene un gas di sintesi: CH4 + H2O → CO + 3H2 (reazione endotermica)

Nella seconda fase (shift reaction): CO + H2O → CO2 + H2 (reazione esotermica)

Il gas in uscita dal reattore contiene prevalentemente H2 (75-78%), CO2 (10-12%) e piccole quantità di CO (8-10%),

mentre la parte restante è costituita da tracce di metano e vapore acqueo.

Schema energetico semplificato del “reforming di metano” mediante vapore

Steam Reformer

Shift reactor CO+H2O CO2+H2

Purificazione dell’idrogeno

Compressore

Immagazzinamento dell’idrogeno

utenti

vapore acqueo e calore

Gas naturale o idrocarburi leggeri

Gas di sintesi

Gas di scarto

vapore acqueo

Idrogeno puro

Page 17: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

17

L’efficienza di conversione energetica delle tecnologie di reforming del metano si aggira intorno

al 75-80%, ma attraverso il recupero e l’utilizzo del calore di rifiuto si può raggiungere anche

l’85%.

Il costo del gas naturale incide fortemente sul prezzo finale dell’H2 e, secondo alcune stime,

costituisce il 52-68% del costo totale, per impianti di grosse dimensioni, e circa il 40%, per quelli

di dimensioni inferiori.

Il metano può essere sottoposto anche al Cracking termocatalitico, che comporta la scissione di

questo combustibile in carbonio e idrogeno, in presenza di un catalizzatore e ad elevata

temperatura (850-1200°C), secondo la seguente reazione endotermica : CH4 ↔ C + 2H2.

Il metano, o un idrocarburo liquido, può essere sottoposto anche ad un processo di Reforming

autotermico, che combina le caratteristiche tecniche dei sistemi di steam reforming e di

ossidazione parziale. Si realizzano quindi entrambe le seguenti reazioni :

CH4 + ½ O2 → CO + 2H2 + calore (ossidazione parziale)

CH4 + H2O ↔ CO + 3H2 (steam reforming)

La reazione di ossidazione parziale fornisce il calore necessario alla reazione catalitica di steam

reforming, quindi tutto il calore generato dalla prima è utilizzato per la seconda.

Page 18: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

18

L’ossidazione parziale non catalitica è un metodo di produzione termica dell’H2 che può essere

applicato ad un’ampia gamma di idrocarburi, compresi quelli leggeri e gli oli pesanti, e prevede la

reazione con ossigeno gassoso, ad una temperatura variabile tra 1300-1500°C, per produrre gas di

sintesi, poi purificato.

Prima fase del processo: CH4 + ½ O2 → CO + 2H2 (reazione esotermica)

Seconda fase (shift reaction): CO + H2 + H2O → CO2 + 2H2

Ossidazione parziale

Ossidazione parziale

Shift reactor CO+H2O CO2+H2

Purificazione dell’idrogeno

Compressore

Immagazzinamento dell’idrogeno

utenti

Ossigeno o aria

Gas naturale idrocarburi liquidi

Gas di sintesi

Gas di scarto

vapore acqueo

Idrogeno puro

Il catalizzatore non è richiesto, a causa dell’elevata temperatura a cui si opera.

L’efficienza dell’unità di ossidazione parziale è relativamente alta (70-80 %); in ogni caso inferiore rispetto a

quella dello steam reforming.

Page 19: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

19

La gassificazione del carbone consiste nella reazione ad elevata temperatura del carbone

polverizzato con ossigeno puro e vapore acqueo, in modo da produrre un gas formato

principalmente da idrogeno e monossido di carbonio.

Prima fase del processo: C + H2O → CO + H2

Il gas in uscita subisce un processo di desolforazione prima della reazione di shift;

Seconda fase (shift reaction): CO + H2 + H2O → CO2 + 2H2

Processo di gassificazione del carbone

(Fonte: Kirk-Othmer, 1995).

gassificazione desolforazione Shift conversion

Rimozione CO2 o PSA

Separazione dell’aria

Recupero zolfo vapore acqueo

N2

O2

Gas grezzo Gas di

sintesi

CO2

Produzione di H2 aria

cenere

carbone

L’H2 deve poi essere separato dai gas inerti e dalla CO2 secondo vari procedimenti.

É un processo esotermico e pertanto sono previsti dei sistemi di recupero del calore.

Il costo dell’H2 ottenuto è di circa 10-12 €/GJ, di cui quello della materia prima impiegata incide per quasi il

25%.

Page 20: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

20

TECNOLOGIE DI PRODUZIONE DA FONTI ENERGETICHE RINNOVABILI

Obiettivi di breve periodo:• Perfezionamento dei processi di elettrolisi dell’acqua e la loro integrazione in sistemi che utilizzino risorse

rinnovabili;

• Sviluppo di processi di gassificazione e pirolisi per la generazione dell’ H2 da biomasse.

L’acqua può essere utilizzata attraverso il processo elettrolitico per la produzione di H 2 se si dispone di energia

elettrica a costi accessibili in grado di alimentare il processo.

La limitata penetrazione dell’H2 elettrolitico nell’attuale mercato dipende dai costi elevati: l’energia elettrica

prodotta da fonti rinnovabili è da 3 a 5 volte più costosa della stessa quantità di energia ricavata direttamente dai

combustibili fossili.

L’H2 elettrolitico è attualmente competitivo per le utenze che richiedono la produzione di limitati quantitativi o per

applicazioni dove è necessaria un’elevata purezza del gas (nel settore alimentare).

L’ELETTROLISI DELL’ACQUA

Obiettivi di lungo periodo:• Incrementare la ricerca sulla possibilità di ricavarlo mediante processi biologici di fotoconversione, oppure attraverso

la dissociazione dell’acqua ad alta temperatura, per mezzo di processi termochimici.

Page 21: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

21

LA DECOMPOSIZIONE TERMOCHIMICA DELL’ACQUA

I cicli termochimici rappresentano un altro metodo di produzione dell’H2, che insieme

all’ossigeno, è ottenuto mediante decomposizione dell’acqua attraverso una serie di trasformazioni

chimiche, che danno come somma la seguente reazione: H2O H2 + ½ O2.

Schema del processo di decomposizione termochimica dell’acqua.

(Fonte: Robotti, 1986).

Calore ad elevata temperatura

Ciclo termochimico

Calore a bassa temperatura

H2O

H2 ½ O2

Per realizzare questi cicli, basati sulla decomposizione dell’acido solforico, occorre una sorgente di calore ad alta

temperatura (800-1000° C) (un concentratore solare). L’unico reagente consumato è l’acqua, che viene scissa in

tre stadi ad opera del calore.

Le reazioni chimiche sono:

H2SO4 H2O + SO2 + 0,5 O2 (800° C)

2H2O + SO2 + I2 2HI + H2SO4 (in acqua a 25° C)

2HI I2 + H2 (200-300° C)

Il rendimento teorico dei cicli termochimici, in corso d’indagine, è del 50%.

Page 22: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

22

TECNOLOGIE DI PRODUZIONE DI IDROGENO DA BIOMASSE : processi termochimici e

biotecnologici

La produzione per via termochimica può realizzarsi tramite:• Gassificazione diretta della biomassa, con reforming catalitico del gas generato; • Pirolisi, seguito da reforming della frazione liquida ottenuta.

La gassificazione è un processo ad alta temperatura nel quale una sostanza solida è decomposta

termicamente con una quantità limitata di aria oppure con ossigeno (ed eventualmente vapore acqueo)

per ottenere un combustibile gassoso.

Si opera a temperature intorno agli 800-1000°C (con aria) o ai 1000-1400°C (con l’ossigeno).

Nel primo caso il gas combustibile ottenuto ha un potere calorifico di 4-6 MJ/Nm3, contenente fino al 60% di

azoto, rispetto a 10-15 MJ/Nm3 del secondo.

Il risultato è un gas di sintesi costituito da componenti combustibili (monossido di carbonio, idrogeno e piccole

quantità di idrocarburi) e non combustibili (azoto, ossidi di azoto, anidride carbonica e vapor acqueo).

Sono attesi dei miglioramenti di efficienza del processo, che si suppone porteranno il rendimento complessivo a

valori superiori al 40%.

PROCESSI TERMOCHIMICI

Page 23: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

23

Nel processo di pirolisi le biomasse sono decomposte termicamente ad elevate temperature

(400-800°C), in assenza di aria, per formare un “bio-olio”.

Valutazioni economiche effettuate per impianti con produttività intorno ai 250.000 Nm3 di H2,

utilizzando biomasse a costi variabili tra i 16 e 46 € per tonnellata di sostanza secca, stimano costi

di produzione compresi fra 10 e 15 €/GJ (rispetto a costi compresi fra gli 11 e 15 €/GJ nel caso di

produzione da metano con impianti della stessa dimensione).

La pirolisi realizza la trasformazione di un combustibile a bassa densità energetica (12,5-16,5

MJ/kg) in un altro a più elevato contenuto energetico (21-25 MJ/kg) e più facilmente gestibile.

L’efficienza energetica del processo varia dal 58 a 80%.

Il prodotto risultante comprende quindi una frazione gassosa (ossido di carbonio, anidride

carbonica, idrocarburi e idrogeno) e una frazione liquida oleosa (acqua e composti organici) ed

infine un prodotto solido.

Page 24: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

24

PRODUZIONE BIOTECNOLOGICA

La fermentazione delle biomasse può produrre l’alcole etilico dal quale è possibile ottenere H2,

attraverso il reforming con vapore, secondo la seguente reazione: C2H5OH + H2O → 2CO + 4H2

La fermentazione è attuata attraverso l’impiego di microrganismi che, a temperature intorno a

30°C ed impiegando tempi piuttosto lunghi (24-72 ore), producono una soluzione acquosa di

alcole etilico all’ 8-10 %. Tale soluzione va sottoposta a distillazione per recuperarne l’alcole

etilico contenuto.

I pigmenti delle alghe assorbono l’energia solare e gli enzimi nella cellula agiscono da

catalizzatori per scindere l’acqua nei suoi elementi, idrogeno e ossigeno.

La produzione fotobiologica di H2 può essere ottenuta utilizzando organismi fotosintetici quali

le alghe verdi, blu-verdi e i batteri fotosintetici.

I batteri fotosintetici, invece, sono in grado di impiegare forme di energia solare per produrre H2

utilizzando come substrato molecole organiche solubili, ottenibili dal trattamento dei reflui.

Per quanto riguarda i costi di produzione si sono ottenuti dei valori compresi tra 15 e 45 €/GJ,

con rendimenti variabili tra il 3 ed il 10%.

Page 25: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

25

(Fonte: Cumo et al., 2003).

Impianto termoelettrico con cattura della CO2

Oceano

Giacimenti esauriti di petrolio e gas naturale

Acquiferi profondi

Gasdotto

Giacimenti di carbone non estraibile

OPZIONI PER IL SEQUESTRO DELL’ANIDRIDE CARBONICA

La transizione all’economia dell’idrogeno richiede la “gestione” della CO2 che si genera dai processi di conversione

dei combustibili fossili, in attesa di poter impiegare su vasta scala le fonti rinnovabili.

Nel breve-medio periodo si valuteranno le soluzioni per il confinamento della CO2: geologico (giacimenti di petrolio,

gas naturale, di carbone non estraibile, acquiferi salini profondi) oppure oceanico.

Non sono certi i possibili impatti ambientali che ne deriverebbero e le condizioni di sicurezza degli stoccaggi .

Potenziale mondiale di immagazzinamento in: giacimenti petroliferi attivi: 130 miliardi di tonnellate

metaniferi esauriti: 900 miliardi di tonnellate

giacimenti carboniferi: 15 miliardi di tonnellate

acquiferi salini: 10.000 miliardi di tonnellate

Page 26: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

26

Per diventare un importante vettore di energia l’idrogeno deve anche poter essere

immagazzinato e trasportato in modo economicamente efficiente.

L’idrogeno è attualmente distribuito in forma liquida o come gas compresso.

IMMAGAZZINAMENTO E TRASPORTO DELL’IDROGENO

Le diverse tecnologie di accumulo dell’idrogeno: compressione, liquefazione, idruri metallici

(idrogenazione di alcune leghe metalliche porose) e i sistemi basati sul carbonio (forme di

aggregazione del carbonio capaci di assorbire H2), sono oggetto di studio sia per impieghi

statici sia per il trasporto a bordo dei veicoli.

Tuttavia nessuna di queste soluzioni ha al momento le caratteristiche, sia in termini di densità

energetica sia di costo, necessarie per un’applicazione diffusa.

Metodo Impiego generale

Sotterraneo (gasdotti) grandi quantità, lunghe distanze

liquido piccole quantità, lunghe distanze

gas compresso piccole quantità, brevi distanze

idruri metallici piccole quantità

nanotubi di carbonio piccole quantità

Page 27: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

27

UTILIZZO DELL’IDROGENO

Il principale impiego previsto in futuro per l’idrogeno riguarda l’utilizzo come vettore

energetico sia per la generazione/cogenerazione di energia elettrica (cicli termici, celle a

combustibile) sia per il trasporto (motori a combustione interna, celle a combustibile).

Le celle a combustibile rappresentano il mezzo più efficiente per convertire l’idrogeno in

energia.

Le più interessanti applicazioni riguardano i seguenti settori:

produzione di energia elettrica stazionaria in grandi impianti (ospedali, asili, scuole, terminali di

aeroporti, hotel, uffici e centri commerciali, ecc.);

produzione di energia stazionaria residenziale (produzione domestica di energia, calore, acqua calda);

trasporti (settore automobilistico, alimentazione di motociclette, treni, navi e aerei);

energia portatile con applicazione ad apparecchiature elettriche ed elettroniche in sostituzione di

batterie (cellulari, palmari, lettori cd, computer, ecc.).

Page 28: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

28

CELLE A COMBUSTIBILE

Questo dispositivo si comporta in modo analogo ad una batteria, in quanto produce energia elettrica

attraverso un processo elettrochimico ma, a differenza di quest’ultima, consuma materiali provenienti

dall’esterno, idrogeno ed aria (o ossigeno).

combustibile in eccesso

Anodo Elettrolita

Catodo

O2

H2O

H2

e-

H+

e-

H+ O2

H2O

e-

carico elettrico

H2

Una singola cella produce una tensione di circa 0,7 V e correnti tra 300 e 800 mA/cm2, quindi per ottenere la

potenza e il voltaggio desiderato più celle sono disposte in serie, formando il cosiddetto “stack”.

Possono rappresentare una utile fonte termica e sono prive di parti meccaniche in movimento.

Si caratterizza sia per gli elevati rendimenti, (40-48%, fino a raggiungere il 60%), indipendenti dalla potenza

installata, sia per il basso impatto ambientale, in quanto producono come gas di scarico solo aria e vapor

acqueo.

Page 29: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

29

Gli elevati rendimenti delle celle a combustibile si traducono in una riduzione delle

emissioni di CO2 e delle sostanze inquinanti nel punto di utilizzo, rispetto agli

impianti di generazione di potenza tradizionali.

Confronto delle emissioni di impianti a celle a combustibile con impianti di generazione di potenza tradizionali

0

200

400

600

800

1000

1200

1400

Impianti a carbone Impianti a petrolio Impianti a gas Impianti con celle acombustibile

CO2 (g/kWh) NOX (mg/kWh) SO2 (mg/kWh)

Polveri (mg/kWh) Idrocarburi (mg/kWh)

(Fonte: Iacobazzi et al., 2002)

Page 30: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

30

Nella prima avviene il trattamento del combustibile che è convertito in un gas di sintesi contenente idrogeno, purificato secondo le necessità imposte dal tipo di cella.

Benzina Gas Naturale Biomasse Carbone Idroelettrico Fotovoltaico

Eolico

Benzina riformulata GPL NGC Etanolo Metanolo Idrogeno

CELLA A COMBUSTIBILE

Combustibili impiegabili in impianti con celle a combustibile.

(Fonte: Iacobazzi et al., 2002).

Infine vi è un sistema di condizionamento della potenza elettrica, che trasforma l’energia prodotta come corrente elettrica continua in corrente alternata e un sistema di recupero del calore.

La seconda è quella elettrochimica, costituita dalle celle nelle quali si produce energia elettrica per via elettrochimica insieme a calore.

Gli impianti con celle a combustibile sono costituiti da tre sezioni principali:

Page 31: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

31

PRINCIPALI TIPI DI CELLE A COMBUSTIBILE

CELLE A BASSA TEMPERATURA:

Celle a elettrolita polimerico (PEFC, Polymer Electrolyte Fuel Cell) ed a metanolo diretto

(DMFC, Direct Methanol Fuel Cell):

Elettrolita: membrana polimerica; Temperatura: tra 70 e 100°C;

Applicazioni: trazione e generazione/cogenerazione di piccola potenza (1-250 kW).

Celle ad acido fosforico (PAFC, Phosphoric Acid Fuel Cell)

Elettrolita: soluzione concentrata di acido fosforico; Temperatura: 200°C;

Applicazioni: usi stazionari (potenza dell’ordine di 100-200 kW);

Combustibile impiegato: gas naturale.

CELLE AD ALTA TEMPERATURA:

Celle a carbonati fusi (MCFC, Molten Carbonate Fuel Cell):

Elettrolita: soluzione di carbonati alcalini fusa alla temperatura di funzionamento della cella (650°C);

Celle ad ossidi solidi (SOFC, Solid Oxide Fuel Cell):

Temperatura: 900-1000 °C per assicurare una conducibilità sufficiente all’elettrolita (materiale ceramico);

Applicazioni: produzione di energia elettrica per usi stazionari e la cogenerazione elettricità-calore, di potenza compresa

tra qualche centinaio di kW ad alcune decine di MW.

Queste tecnologie possono produrre H2 nella cella stessa, effettuando un reforming interno.

Page 32: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

32

"Captive" "Merchant" Totale USA 78,69 10,74 89,43 Produzione di ammoniaca 33,54 24,7 Raffinerie 32,95 21,79 Produzione di metanolo 8,57 4,6 Altri 3,62 8,5

EUROPA OCCIDENTALE 60,58 5,17 65,75 Produzione di ammoniaca 27,7 Raffinerie 21,79 Produzione di metanolo 4,6 Altri 8,5

GIAPPONE 16,8 0,24 17,04 RESTO DEL MONDO 276,95 / 276,95 416,22 15,91 449,17

IL MERCATO ATTUALE DELL’IDROGENO (miliardi di m3/anno)

(Fonte: Parkison, 2001).

CAPTIVE : Produzione di H2 interna

al processo che lo utilizza (grandi

impianti inseriti nelle raffinerie e nella

produzione di ammoniaca).

MERCHANT : Produzione di H2

per utenti esterni.

Il suo impiego nel mondo annualmente ammonta a circa 500 miliardi di Nm3:

il 40% utilizzato nelle raffinerie (processi di desolforazione, di raffinazione di

prodotti petrolchimici, ecc.);

il 59% dall’industria chimica per la formazione di ammoniaca e metanolo;

l’1% per applicazioni dell’industria elettronica, metallurgica, alimentare e

spaziale.

Page 33: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

33

I Paesi che sviluppano i principali programmi nel campo dell’idrogeno e celle a combustibile sono

soprattutto Stati Uniti, Giappone e Corea del Sud dove è forte la presenza del contributo autonomo

dell’industria sia automobilistica, sia per le applicazioni stazionarie.

Il DOE (Department of Energy) negli USA ha investito 153 e 195 milioni di dollari rispettivamente per

il 2003 e 2007, mentre per il 2008 ne sono previsti 213. Tali finanziamenti riguardano

complessivamente l’idrogeno e le celle a bassa temperatura; mentre le celle a combustibile ad alta

temperatura che possono utilizzare anche combustibili con miscele di idrogeno (tipicamente H2 e CO)

sono finanziati nell’ambito di altri programmi energetici per gli usi stazionari in cogenerazione.

In Giappone, dove la struttura dei finanziamenti proviene da varie fonti pubbliche, essi sono di circa

250 milioni di euro/anno. In Corea per il periodo 2004-2008 sono circa 475 milioni di euro i fondi

pubblici resi disponibili per il programma idrogeno e celle a combustibile.

È opportuno anche segnalare che nel 2003 è stata avviata un’iniziativa a livello mondiale, promossa

dagli USA denominata “International Partnership on Hydrogen Economy” (IPHC), firmata da 16

paesi in lui l’Europa partecipa come Unione Europea, per lo sviluppo e il sostegno di una economia

dell’idrogeno come prospettiva mondiale per coniugare il crescente aumento dei consumi energetici e

la necessità di ridurre l’impatto ambientale.

La situazione internazionale

Page 34: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

34

PRINCIPALI PROGRAMMI DI RICERCA E SVILUPPO INTERNAZIONALI

Programma Idrogeno del DoE: avviato: 1970;obiettivo: sviluppo di metodi per la produzione e lo stoccaggio dell’H2, in coordinazione con progetti di realizzazione delle celle a combustibile e di gassificazione delle biomasse e del carbone .

STATI UNITI

Progetto Vision 21: obiettivo: realizzazione entro il 2015 di impianti che utilizzano combustibili fossili con sequestro della CO 2.

GIAPPONEProgramma We-Net (World Energy Network)avviato: anno 1992obiettivo: sviluppo di tecnologie di produzione di H2 da fonti rinnovabili (elettrolisi dell’acqua), di accumulo, di trasporto e di impiego nelle celle a combustibile.

Le ricerche delle società petrolifere (Esso, BP) in questo campo sono finalizzate alla produzione di H 2 da

combustibili fossili e alla separazione e confinamento della CO2.

Page 35: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

35

International Partnership for Hydrogen Economy del DoE

obiettivo: promozione di una maggiore collaborazione internazionale per l’introduzione delle tecnologie dell’H2 e delle FC.

European Hydrogen and Fuel cells Technology Platform della CE

avviato: anno 2004

obiettivo: Sviluppo di tecnologie per l’impiego dell’H2 e delle FC nelle applicazioni stazionarie, portatili e nel trasporto;

Realizzazione di una Agenda strategica che stabilisca gli obiettivi, il budget stanziato e una stretta collaborazione tra il settore pubblico

e privato.

Implementing Agreements su idrogeno, celle a combustibile e veicoli elettrici e ibridi dell’IEA

Forum internazionale sul sequestro della CO2

Programma Quick Start della CE:

obiettivo: creazione di cooperazioni nell’ambito dell’industria, della comunità dei ricercatori e della Banca europea degli investimenti.

Sono previsti due progetti principali:

Hycom: prevede la creazione di “comunità a idrogeno” autonome, che producono e utilizzano H2 per la generazione di energia elettrica,

calore e per l’alimentazione di veicoli.

Hypogen: prevede la realizzazione di un impianto dimostrativo alimentato da combustibili fossili, in grado di separare e confinare la CO 2.

Budget totale: 2,8 MLD€.

ALTRE COLLABORAZIONI INTERNAZIONALI

Page 36: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

36

La CE ha definito una piattaforma tecnologica con la partecipazione dell’industria e

delle maggiori strutture di ricerca attraverso un nuovo sistema operativo di gestione

denominato JTI (Joint Technological Initiatives) che unisce l’attività delle imprese

coinvolte con i finanziamenti europei, per sostenere e accelerare il percorso dello

sviluppo in questo settore e arrivare intorno al 2015 con prodotti competitivi sul

mercato.

Se l’Europa si è data degli obiettivi molto importanti nel VII P.Q. impiegando circa 500

milioni di euro per la ricerca nel periodo 2007-2013, l’Italia, dopo aver fatto molto agli

inizi degli anni 2000, con la promozione di programmi di ricerca e sviluppo nel campo

dell’idrogeno e delle celle a combustibile, ha rallentato successivamente la sua azione.

La situazione europea e nazionale

Page 37: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

37

L’Italia ha varato alcuni programmi importanti negli anni passati soprattutto promossi dal Ministero della Ricerca e cofinanziati dal Ministero dell’Ambiente per circa 100 milioni di Euro. Tali finanziamenti, nella misura di 51 milioni di euro, sono stati devoluti ai programmi di ricerca e sviluppo della produzione e accumulo dell’H2 e 39 per la ricerca e lo

sviluppo di celle a combustibile, con il coinvolgimento delle principali strutture di ricerca e industriali italiane tra cui ENEA, CNR, Centro Ricerche FIAT, molte università italiane e centri di ricerca regionali.

Tali progetti sono diventati operativi nella seconda metà del 2005, ma le idee progettuali che hanno generato questi finanziamenti risalgono agli inizi del 2001. Attualmente si registra un interesse crescente che coinvolge molte regioni italiane con la partecipazione di alcune province e comuni con il rischio che, pur nel rispetto della propria autonomia, ognuno vada per la sua strada, facendo mancare l’ottimizzazione dei programmi e il coordinamento necessario per dialogare meglio con l’Europa ed essere competitivi.Tuttavia manca una reale politica di indirizzo a livello nazionale che sia di guida, che omogeneizzi gli sforzi rendendoli razionali e coerenti.

Page 38: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

38

Azioni per la promozione dell’impiego dell’H2 e delle relative tecnologie sono state avviate

anche da diverse amministrazioni locali (Regioni, Province e Comuni). Tra le Regioni:

Piemente, la Lombardia, il Veneto, la Toscana e, più recentemente, Lazio e Abruzzo.

Figura – Principali attività italiane sull’idrogeno

•• ““Hydrogen Park”Hydrogen Park” – Porto Marghera

•• SotacarboSotacarbo ProjectProject – Hydrogen produced from coal

•• HYSYLABHYSYLAB – Laboratory for development H2 technologies

•• IRISBUS ProjectIRISBUS Project – Realization and testing FC bus and related infrastructures

•• ArezzoArezzo ProjectProject – H2 distribution network for goldsmith district and use in FC

•• HBUS ProjectHBUS Project - Development of a small hydrogen FC bus for historical centres

•• ValmontoneValmontone – Realization of a H2

refueling station at a amusement park / H2 produced from renewables

• “HighValley”- Installationsrenewable energy systems

R,D&D activities on hydrogen and fuel cell technologies are also carried out at research centres of ENEA, ENEL, ENEA, ENEL,

ENITecnologieENITecnologie, CNR and university institutes, CNR and university institutes

•• MilanoMilano BicoccaBicocca – Integrated H2 project•• “Zero “Zero RegioRegio” Project” Project – R,D&D infrastructures for alternative motor

fuels (hydrogen and bio-fuel) •• AreseArese Center for “Sustainable Mobility” Center for “Sustainable Mobility”

•• ““Hydrogen Park”Hydrogen Park” – Porto Marghera

•• SotacarboSotacarbo ProjectProject – Hydrogen produced from coal

•• HYSYLABHYSYLAB – Laboratory for development H2 technologies

•• IRISBUS ProjectIRISBUS Project – Realization and testing FC bus and related infrastructures

•• ArezzoArezzo ProjectProject – H2 distribution network for goldsmith district and use in FC

•• HBUS ProjectHBUS Project - Development of a small hydrogen FC bus for historical centres

•• ValmontoneValmontone – Realization of a H2

refueling station at a amusement park / H2 produced from renewables

• “HighValley”- Installationsrenewable energy systems

R,D&D activities on hydrogen and fuel cell technologies are also carried out at research centres of ENEA, ENEL, ENEA, ENEL,

ENITecnologieENITecnologie, CNR and university institutes, CNR and university institutes

•• MilanoMilano BicoccaBicocca – Integrated H2 project•• “Zero “Zero RegioRegio” Project” Project – R,D&D infrastructures for alternative motor

fuels (hydrogen and bio-fuel) •• AreseArese Center for “Sustainable Mobility” Center for “Sustainable Mobility”

(Fonte: Di Mario, 2004).

Hysylab: Laboratorio sviluppo delle tecnologie dell’idrogeno. Progetto Irisbus: realizzazione autobus a FC e sviluppo delle relative infrastrutture

Progetto Arezzo: rete di distribuzione per il distretto orafo ed utilizzo in FC Progetto Hbus: sviluppo di autobus ibridi a FC per centri storici.

Progetto Sotacarbo: H2

prodotto da carbone

Valmontone: realizzazione di stazione di rifornimento H2 da fonti rinnovabili.

HighValley: sviluppo di sistemi energetici basati su H2 da fonti rinnovabili.

Milano Bicocca: Progetto integrato H2 “Zero Regio” Project- R,S &D infrastrutture combustibili alternati (H2 e biocombustibili). Centro Arese per la “Mobilità sostenibile”.

Le attività di R,S&D sull’H2 e le FC sono inoltre condotte da altri centri di ricerca: Enea, Enel, Eni Tecnologie, CnR ed Università.

“Hydrogen park”: Porto Marghera

Page 39: 1 Idrogeno quale vettore per un sistema energetico sostenibile Valeria Spada v.spada@unifg.it Università degli Studi di Foggia – Facoltà di Economia Via.

39

CONCLUSIONI

Esistono tuttavia una serie di impedimenti che ostacolano una rapida penetrazione dell’idrogeno nel

mercato energetico e che devono essere rimossi:

TECNOLOGICI: gli attuali sistemi di produzione, distribuzione, accumulo ed utilizzo non

sono adeguati;

STRUTTURALI: mancanza di adeguate reti distributiva di rifornimento;

ECONOMICI: costi elevati dei sistemi di produzione e delle infrastrutture;

NORMATIVI: mancanza di codici e standard che regolino la sicurezza dell’uso dell’idrogeno;

SOCIALI: legate al comportamento del consumatore, che tende a privilegiare le tecnologie consolidate

e a percepire negativamente l’impiego dell’idrogeno su vasta scala.