1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili,...

35
1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo ...! Macroscopicamente c’è solo una direzione temporale... vale a dire i processi sono irreversibili. La chiave per la comprensione è costituita dall’entropia (S). In ogni processo irreversibile che avviene in un sistema isolato l’entropia aumenta. (X) Processi irreversibili

Transcript of 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili,...

Page 1: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

1

Entropia e la direzione del tempo

Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo ...!Macroscopicamente c’è solo una direzione temporale... vale a dire i processi sono irreversibili. La chiave per la comprensione è costituita dall’entropia (S). In ogni processo irreversibile che avviene in un sistema isolato l’entropia aumenta.

(X) Processi irreversibili

Page 2: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

2

STATI e PROCESSI TERMODINAMICI

Energia

Materia

Sistema Ambiente Universo

Per descrivere un sistema termodinamico è necessario specificare lo STATO in cui esso si trova.

Il sistema cambia nel tempo il proprio stato in seguito alla interazione con l’ambiente .

Il passaggio attraverso differenti stati termodinamici è un PROCESSO o trasformazione del sistema.

(X) Processi irreversibili

Page 3: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

3

Regione I Regione II

Qd Ie

md Ie

Qd IIe

md IIe

IIed

Qd IIi

Qd Ii

md IIi

md Ii

Ied

flusso di energia (calore e massa) per la fase II dovuto all'interazione con l'esterno

Sistema termodinamico

0 mdmdmd IIe

IeeSe il sistema si dice CHIUSO e

Qdd Ie

Ie Qdd II

eIIe

md IIi

contributo alla variazione di massa del componente -esimo nella fase II, interna al sistema per reazioni chimiche (se presenti) interne alla fase e/o trasferimenti di fase (se le fasi sono aperte).

Iid

flusso di energia verso la fase I dovuto al calore e alla materia proveniente dalla fase II

(eventuali) reazioni chimiche interne alla regione

Ii

Ie

I dddflusso di energia verso la fase I proveniente dall'esterno e dalla fase II

mdmd ee

principio della conservazione della massamdmdmddm eie

0dMmdmd ii

è il coeff. stechiometrico del -esimocomponente della -esima reazione interna al sistema; d è il grado di avanzamento della -esima reazione.

(X) Processi irreversibili

Page 4: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

4

)( VdpddHpdVddE

I e II Legge della Termodinamica

principio della conservazione della energiala variazione di energia è uguale al flusso di energia che il sistema riceve dall'esterno (diE=0)

EdEdEddE eie

SdSddS ie 0Sdi

principio della produzione di entropiala variazione di entropia dovuta a cambiamenti interni al sistema non può essere negativa

Sd IIeRegione I Regione II

Sd Ie

Sd IIiSd I

i

00

0

SdeSd

SdSdSdIII

IIIi

ii

ii

Ogni regione macroscopica produce entropia (processo irreversibile)L'interferenza tra processi irreversibili è possibile solo quando questi avvengono nella stessa regione del sistema

(X) Processi irreversibili

First Law: First Law: “You cannot build a perpetual motion machine “You cannot build a perpetual motion machine of the first kind. (You cannot get more energy out than of the first kind. (You cannot get more energy out than you put in).” In other words, you put in).” In other words, “YOU CAN’T WIN!”“YOU CAN’T WIN!”

Second LawSecond Law:: “You cannot build a perpetual motion machine “You cannot build a perpetual motion machine of the second kind. ( You cannot build a machine that is 100% of the second kind. ( You cannot build a machine that is 100% efficient).” In other words, efficient).” In other words, “YOU LOSE!”“YOU LOSE!”

Page 5: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

5

CHE COSA SUCCEDE AL SISTEMA DURANTE UN PROCESSO TERMODINAMICO?

Abbiamo a disposizione due modi distinti ma strettamente correlati per scoprirlo:

Termodinamica dell’equilibrio (fin dal 1700)

Termodinamica del non-equilibrio (1940-1960 fino a oggi)

(X) Processi irreversibili

Page 6: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

6

Processo Reversibile

I parametri di stato sono definiti durante la trasformazione.

Assenza di forze dissipative Non c’è frizione Non ci sono forze non bilanciate.

Distinguere il processo quasi-statico da quello reversibile.

I processi reversibili realizzano il lavoro massimo

Può essere “invertito” con un cambiamento infinitesimo di una variabile.

Il sistema è, istante per istante, in equilibrio con l’ambiente e la trasformazione richiede un tempo infinito.

Rappresenta un concetto astratto da introdurre nella Termodinamica Classica dell’Equilibrio che non utilizza la variabile tempo.

(X) Processi irreversibili

Page 7: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

7

Termodinamica dell’EQUILIBRIO

Il sistema si trova in uno stato di equilibrio termodinamico se e solo se in tutte le sue parti sono costanti e uniformi la temperatura e la pressione e se si trova in equilibrio chimico.

STATO DI EQUILIBRIO

Prima Dopo Grandezza Esempio

T1 T1=T2

p2p1

T2Temperatura

Pressione

Affinità

p1=p2

A=0

Ghiaccio nell’acqua

Bottiglia in montagna

Reazioni chimiche

1 2Potenziale chimico1=2

Secondo la IUPAC, l’affinità chimica è definita come l’opposta della derivata parziale dell'energia libera di Gibbs rispetto al grado di avanzamento della reazione, a pressione e temperatura costanti.

A≠0

(X) Processi irreversibili

Page 8: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

8

Processo Irreversibile I parametri di stato non sono ben definiti.

Durante la trasformazione gli stati termodinamici non sono definiti.

E' impossibile ripercorrere la trasformazione “all’indietro”.

Richiede un tempo finito.

Successione di stati di non-equilibrio in presenza di forze termodinamiche (o generalizzate) non nulle.

Differenza di temperatura

Differenza di potenziale chimico

Affinità chimica

FORZA FLUSSO

Calore

Materia

Velocità di reazione

FenomenoPropagazione del calore

Diffusione della materia

Reazione chimica

(X) Processi irreversibili

Page 9: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

9

Produzione di entropia in un sistema chiuso dovuta a flusso di calore

Regione I Regione II

Qd IIi

Qd Ii

Qd IIe

Qd Ie IT

IIT011

IIIIiII

IIi

I

Ii

i TTQd

T

Qd

T

QdSd

QdQd Ii

IIi dato che il sistema è, per ipotesi, globalmente chiuso.

Per questa trasformazione irreversibile risulta quindi che il verso del

calore è dettato dal verso della forza termodinamica

011

III

Iii

TTdt

Qd

dt

SdLa produzione di entropia nell'unità di tempo sarà:

corrispondente al prodotto della velocità del processo irreversibile per la forza termodinamica.

(X) Processi irreversibili

III TT

11

011

0

IIIIi TTQd 0

110

IIIIi TTQdoppure

La produzione di entropia si arresta quando la forza si annulla (TI =TII ). dt

Sdi

Ipotesi: le due regioni (I e II) sono reciprocamente chiuse.

II

IIiII

iI

IiI

i T

QdSde

T

QdSd

Page 10: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

10

Entropia di sistemi in presenza di reazioni chimiche

dnn

SdV

T

p

T

dEdS

nVE ',,

A

affinità chimica

Nel caso di più reazioni simultanee

(X) Processi irreversibili

'''' ,,,,,,,,

npTnVTnpSnVE

n

G

n

F

n

H

n

ST

dnT

dVT

p

T

dEdS ddn

dT

AdV

T

p

T

dEd

TdV

T

p

T

dEdS

dT

AdV

T

p

T

dEdS

d

T

AdV

T

p

T

dEdS

A affinità chimica della -esima reazione

Page 11: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

11

Produzione di entropia in un sistema chiuso dovuta a reazioni chimiche

...... RPCB rpba dQ

dnTT

dQSdSddS ie

A affinità chimica

0dt

d

T

A

dt

Sdi

la velocità di reazione è concorde con l'affinità chimica.

dt

d

Anche in questo caso la produzione di entropia nell'unità di tempo dipende dal prodotto di una forza termodinamica (A/T) per la velocità della reazione.

Se avvengono più reazioni simultaneamente la produzione di entropia deve essere globalmente non negativa

01

dt

dA

Tdt

Sdi

In questo caso potrebbe accadere, ad esempio, che due reazioni siano accoppiate in modo da avere:

però dovrà risultare comunque

00 2211 vAevA

02211 vAvA (X) Processi irreversibili

Page 12: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

1212

Produzione di entropia in un sistema chiusocon regioni aperte

dS deS diS

Anche in questo caso la produzione di entropia nell'unità di tempo è una forma bilineare delle velocità di processi reversibili e funzioni di stato (affinità o ‘forze generalizzate’).

(X) Processi irreversibili

I II

Qd Ie

Qd IIe

Qd IIi

Qd Ii

md IIi

md Ii

deS de

IQ

T

deIIQ

T

diS diII

1

T I 1

T II

I

T I

II

T II

den

I

AI d I

T

AII d II

T0

IIe

Ii

Ie

I dndndnddn νvariazione di moli del -esimo componente dovuta a diffusione dalla regione II (den

I) e per una eventuale reazione che avviene nella regione I (din

I)

diS

dt

diIIdt

1

T I

1

T II

I

T I

II

T II

denI

dt

AI

Tv I

A II

Tv II 0

Page 13: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

13

Vicino all'equilibrio(regione lineare):

Lontano dall'equilibrio(regione non lineare):

- Legge di Fourier - Legge di Fick

- Effetti incrociati: diffusione termica, effetto termoionico...

- Relazioni di reciprocità - Principio di simmetria - STATI STAZIONARI DI NON-EQUILIBRIO

NUOVE STRUTTURE: MONDO “ORDINATO”?

Processo irreversibile

(X) Processi irreversibili

0k

kki JX

dt

SdIn generale la produzione di entropia sarà data dalla somma di prodotti di forze termodinamiche o affinità (Xk) per i corrispondenti flussi o velocità (Jk).

Page 14: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

14

All'equilibrio la produzione di entropia si arresta per cui si annullano sia le forze termodinamiche (Xk) sia i flussi (Jk).In vicinanza dell'equilibrio si può ragionevolmente assumere (ipotesi extra-termodinamica) che esistano delle relazioni fenomelogiche LINEARI tra le velocità (o flussi) e le forze (o affinità).I coefficienti costanti Lik sono detti coefficienti fenomenologici. Quelli con i≠k sono detti reciproci e descrivono l'interferenza tra i due processi, gli altri sono detti coefficienti propri del processo. Lii è sempre >0, mentre Lik (i≠k ) può anche essere negativo.

Quando Lik =0 (con i≠k ) i due processi irreversibili sono indipendenti.

nnnnn

n

n

n X

X

X

LLL

LLL

LLL

J

J

J

...

...

............

...

...

...2

1

21

22221

11211

2

1

i

iikk XLJ

Teorema di Onsager ),...,2,1,( njkkjjk LL

(X) Processi irreversibili

Processo irreversibile vicino all'equilibrio

XJ

L

nnnnn

n

n

n J

J

J

RRR

RRR

RRR

X

X

X

...

...

............

...

...

...2

1

21

22221

11211

2

1

k

kjkj JRX

Teorema di Onsager inverso ),...,2,1,( njkkjjk RR

XJ

LLL -1-1

JJX

RL-1

Page 15: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

15(X) Processi irreversibili

0 k m

kmmkk

kki XXLJX

dt

Sd

2221212

2121111

XLXLJ

XLXLJ

Nel caso di due processi irreversibili simultanei si ha:

02 22222112

2112211 1

XLXXLXLJXJXdt

dSi

XX

X

X

X

LLL

LLL

LLL

XXXdt

Sd T

nnnnn

n

n

ni

L

...

...

............

...

...

... 2

1

21

22221

11211

21

221112

22

11

0

0

LLL

L

L

Page 16: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

1616(X) Processi irreversibili

Campo di validità delle leggi fenomenologiche

Esempio 1 -Processo di trasporto- Se in un sistema avviene un semplice processo di trasporto di calore allora la produzione di entropia nell’unità di tempo, trascurando i processi diffusivi e le reazioni chimiche, sarà

Wx

T 2

T

x 0

Wx L

T 2

T

x T

x

La relazione fenomenologica coincide con la Legge di Fourier per la conduttività termica che si può applicare quando la variazione relativa di temperatura è piccola entro una distanza uguale al cammino libero medio (), cioè se vale:

T

T

x1

Questa condizione è soddisfatta nella maggior parte dei casi ed in generale le leggi fenomenologiche dànno una buona approssimazione per i processi di trasporto.

Page 17: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

1717(X) Processi irreversibili

Esempio 2 -Caso delle reazioni chimiche-

Caso di un sistema in cui avvenga una reazione chimica semplice.

2

T

ALv

T

A

T

ALv

Allo scopo di confrontare la legge fenomenologica con quella cinetica consideriamo la reazione

2

T

ALv

T

A

T

ALv

H2 I2 2HI

A H2I 2

2HI

0(T) RT lnC

RT lnK(T)

0

A RT lnK(T)

CH2

1 CI 2

1CHI2

v v

Fv k1CH2

CI 2 k 1CHI

2 k1CH2CI 2

1k 1

k1

CHI2

CH2CI 2

k1CH2

CI 21 K(T)

CHI2

CH2CI 2

Relazione generale tra la velocità di reazione e l’affinità.

v v 1 e

A

RT

Per reazioni vicine all’equilibrio e la formula si riduce a

A

RT1

v v eq

A

RT

L v eq

RSignificato fisico del coefficiente fenomenologico per una reazione chimica

Nell’altro caso limite (stadio iniziale della reazione) si ha:

A

RT CHI 0

v v

indipendente da A (effetto di saturazione). In questo caso l’entropia è prodotta con legge lineare rispetto ad A.

eqvT

A

Page 18: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

1818(X) Processi irreversibili

Quando l'affinità è grande, la reazione può spesso essere scissa in step elementari con affinità piccola.

T A1v1 A2v2 ...Arvr

A A

M FSe i prodotti intermedi sono instabili, dopo un breve intervallo, si stabilisce uno stato stazionario (v1 = v2 =...= vr = v)

M N (1)

N O (2)

.....

P F (r)

T Av

A

RT1Se (per ogni singolo stadio) siamo ancora nel campo di validità delle leggi fenomenologiche

lineari anche se (per il processo complessivo).

A

RT1

E' interessante osservare che spesso i processi biologici sono multistadi, ciascuno dei quali è quasi-reversibile, per cui si può applicare ad essi la trattazione fenomenologica lineare come riportato in precedenza.

Page 19: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

1919(X) Processi irreversibili

Dalla legge fenomenologica sviluppando in serie l'affinità (in prossimità dell'equilibrio) T

AL

dt

dv

eq

eq

AA

t

teqteq e

0

tempo di rilassamento >0

002

1

1

2)(

)()(0

eqeq

eq

Aii

AA

T

Td

T

ASdS

e

edee e

e

eq

A

T

L

1

Le eq. cinetiche formali diventano molto semplici vicino all'equilibrio e questo porta ad applicazioni interessanti.

'

'',

t

eq ea

Nel caso di r reazioni simultanee, ogni grado di avanzamento può essere rappresentato come una semplice sovrapposizione di r funzioni esponenziali nel tempo, della forma

Si può dimostrare che, qualunque siano le condizioni iniziali, può incrociare il suo valore all'equilibrio soltanto (al massimo) un numero (r-1) di volte; questo implica che è impossibile un comportamento periodico nel tempo con un numero finito di reazioni.

Page 20: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

2020(X) Processi irreversibili

Quali processi irreversibili sono capaci di mutua interferenza?

Esempio. Consideriamo un sistema continuo senza diffusione soggetto ad un flusso termico in una certa direzione (x) e nello stesso tempo ad una reazione chimica.

vT

A

x

T

T

Wx

2

T

AL

x

T

TLv

T

AL

x

T

TLW

ch

Tx

221

122

1

1Relazioni fenomelogiche

Se allora si ha

cosicchè se L12≠0 la causa scalare produrrebbe un effetto vettoriale violando il Principio di Simmetria di Curie, secondo cui le cause macroscopiche hanno sempre meno elementi di simmetria degli effetti che producono. L'affinità chimica, quindi, non può produrre un flusso termico ed il coefficiente d'interferenza deve essere nullo.In casi come questi i due processi dànno contributi positivi separati alla produzione di entropia.

0

x

T

T

ALWx 12

Altro esempio. Anche nel caso del sistema chiuso con due regioni aperte visto precedentemente si avranno tre contributi irreversibili (senza interferenza ovvero non possono essere accoppiati).

diIIdt

1

T I 1

T II

I

T I

II

T II

denI

dt 0

AII

Tv II 0

AI

Tv I 0

dovuto a fenomeno di ‘trasporto’ dalla fase I alla fase II

reazioni chimiche nelle differenti fasi

Page 21: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

21(X) Processi irreversibili

Force

Flow

Fluid

Heat

Current

Ion

p TlectricField

Darcy's Lawhydraulic conductivity

termosmosis electrosmosis normalosmosis

isothermalheattransfer

Fourier'sLaw heatconductivity Peltier effect Dufour effect

thermo-electricity

Ohm'sLaw electricconductivity

Diffusion andmembranepotentials

streamingcurrent

Soret effectthermaldiffusion

electro-phoresis

Fick's Law diffusivity

Interferenza di processi irreversibili

Page 22: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

2222(X) Processi irreversibili

Esempio: Connessione tra gli effetti elettrocinetici

dAT

dndnT

Sd IIIIIIi

~1)~~(

1

capillare o parete porosa

FzFzA IIIIII )()(~

affinità elettrochimica

v

pnpT

,,

v = volume molare della specie

TI

T

pJ

dt

dnFz

Tp

dt

dnv

T

II

11

I è la corrente elettrica per il trasferimento di carica da un recipiente all'altro. J è il flusso di materia o flusso risultante di volume.

Fz~potenziale elettrochimico

La produzione di entropia per il passaggio dei costituenti dal recipiente I al recipiente II a T e concentrazioni costanti si ricava dalla seguente relazione:

I II

I II

pI pII

Page 23: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

23(X) Processi irreversibili

Eq. fenomenologiche

T

pL

TLJ

T

pL

TLI

2221

1211

Abbiamo due processi irreversibili, trasporto di materia (per il p) e di carica (per il ), inoltre, c'è anche un effetto incrociato (L12=L21≠0) dovuto all'interferenza dei due processi.

Potenziale di flussod.d.p. per unità di d.d.pressionea corrente elettrica nulla

Elettro-osmosiflusso di materia per unità di corrente a pressione costante

11

12

0L

L

pI

11

21

0 L

L

I

J

p

22

21

0L

Lp

J

Pressione elettro-osmoticad.d.pressione per unità di d.d.p.a flusso di materia nullo.

22

12

0 L

L

J

I

Corrente di flussoflusso di corrente per unità di flusso di materia a d.d.p. nulla

I quattro effetti irreversibili, possono essere studiati sperimentalmente in modo indipendente. La relazione di Onsager dà due collegamenti che mettono in relazione un effetto osmotico con un effetto di flusso.

00

J

Ip

J

La relazione di Saxen era stata stabilita applicando considerazioni cinetiche possibili solo se si adottano modelli semplificati per il diaframma di separazione (ad es. capillare a sezione costante). In realtà la derivazione termodinamica dimostra che tale relazione ha una validità del tutto generale.La termodinamica dei processi irreversibili rende possibile stabilire una correlazione tra effetti che apparentemente sembrano essere indipendenti.

00

pII

J

p

Relazione di Saxen

Page 24: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

24

Sistemi termodinamicamente equivalenti.

1) A→B e B→C

0;;; 22

11

22112

21

1 vT

Av

T

A

dt

SdvJvJ

T

AX

T

AX i

2) A→C e B→C

(comb. lineari delle precedenti) 0;;; '2

'2'

1

'1'

22'1

''2'

2

'1'

1 1 v

T

Av

T

A

dt

SdvJvJ

T

AX

T

AX i

Generalizzando.Ottenuta una certa relazione per la produzione di entropia (Xk e Jk) è possibile introdurre una nuova serie di affinità (X'k), che siano combinazioni lineari delle vecchie e scegliere una nuova serie di flussi (J'k) in modo tale che resti invariante la produzione complessiva di entropia.

La descrizione in termini di (Xk,Jk) è macroscopicamente equivalente a quella in termini di (X'k,J'k). Spesso una particolare scelta può essere più conveniente di altre. Bisogna comunque sottolineare che l'invarianza della produzione di entropia è necessaria ma può non essere sufficiente e, in casi particolari, date combinazioni possono portare a risultati senza senso fisico (paradossi).

0'' kk

kki

kkXJXJ

dt

Sd

(X) Processi irreversibili

221121 ;;;; vdt

dnvv

dt

dnv

dt

dnAA CBA

CBBA

'2

'1

'2

'12

'221

'1 ;;;; vv

dt

dnv

dt

dnv

dt

dnAAAAA CBA

CBCA

)()()( '

2'12

'11

'2

'1

2'1

1'2

2'1

21'2

'2'

1

'1 vvvevvvv

T

Av

T

Av

T

Av

T

AAv

T

Av

T

A

dt

Sdi

La legge di trasformazione delle velocità è complementare a quella delle affinità in modo da mantenere invariante la produzione di entropia.

Ad es., la reazione A→B→C può essere descritta, da un punto di vista macroscopico, con due leggi di trasformazione:

Page 25: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

25

In uno stato stazionario le variabili di stato non dipendono dal tempo. Se, ad esempio, k affinità indipendenti (X1, X2,..., Xk) sono mantenute costanti, allora i flussi delle altre n-k (Jk+1, Jk+2, ..., Jn ) devono necessariamente annullarsi.

Stati stazionari di non-equilibrio (regione lineare)

),...,1(022 nkjJXLdt

Sd

XXXL

dt

Sdj

mmjm

i

jj mmjjm

i

Condizione di minimo nella produzione di entropia. La produzione per le k affinità rimane costante e si annulla per le altre n-k.

(X) Processi irreversibili

min0222

2

jj

mmjm

i LXLXdt

Sd

Xjj

km

mmkm

mkm

nnnn

n

n

n

nnnnn

n

n

k

i

k

JXLXL

LLL

LLL

LLL

XXX

X

X

X

LLL

LLL

LLL

dt

Sd

X2

0

1

...

0

...

............

...

...

......

...

............

...

...

0...1...00

21

22221

11211

212

1

21

22221

11211

Dimostrazione

Lo stato stazionario rappresenta una condizione di stabilità quando il sistema è soggetto a forze esterne costanti: la produzione di entropia rimane costante nel tempo (d/dt=0). L'evoluzione verso lo stato stazionario può essere descritto, quindi, da

0dt

d Analoga a dS0 per l'evoluzione verso lo stato di equilibrio di un sistema isolato

L'indipendenza dal tempo negli stati stazionari vale, ovviamente, anche per l'entropia, per cui: 0dt

Sd

dt

Sd

dt

dS ie

Poiché (lo stato stazionario è comunque un processo irreversibile) dovrà essere:0dt

Sdi 0dt

Sde

Page 26: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

26(X) Processi irreversibili

Esempio di sistema chiuso con due regioni chiuse in stato stazionario.

0IIIamb T

dQ

T

dQdS

011

IIIsisti TTdQSd

I II

Qd IIi Qd II

eQd Ie

IT IIT

Il prelievo di calore a TI e la cessione dello stesso a TII (<TI) genera una diminuzione di entropia che compensa esattamente l'aumento dovuto a diSsist.

QdQdQddQ IIe

IIi

Ie

IT

IIT

Ambiente: Serbatoi a TI e TII ( TI > TII).

= costante (invariante nel tempo)

011

IIIsiste TTdQSd

E' comunque un processo irreversibile

00 ambsistambuniv dSdSdSdS

Lo stato stazionario è un processo irreversibile per cui l'entropia dell'universo (sistema isolato) deve aumentare. Tale aumento è interpretabile nel senso di una degradazione del calore da una T più elevata ('pregiato') ad una più bassa.

sist

II

IIi

II

IIe

IIIII

sist

S

T

Qd

T

Qd

T

dQ

T

dQdSdSdS

0

Page 27: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

27(X) Processi irreversibili

Se il sistema è aperto la diminuzione di entropia (esterna) si può avere cedendo all'ambiente materia 'degradata' ed è proprio tale degradazione che mantiene lo stato stazionario. L'energia necessaria per sostenere questi processi è minima.

Page 28: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

28

Produzione di entropia

Variazione temporale della produzione di entropia

0 k

kki XJ

dt

Sd

Il contributo della variazione temporale delle forze termodinamiche alla produzione dell'entropia è negativo o nullo (in alternativa, si può asserire che la funzione di dissipazione non può dimunuire.L'espressione ottenuta non rappresenta un potenziale classico che implica la possibilità di dimenticare le condizioni iniziali.

02

1

X

JX

d

dddIpotesi:a) leggi fenomenologiche lineari;b) validità delle relazioni di reciprocità;c) coeff. fenomenologici costanti.

0Xd Criterio generale di evoluzione

Funzione di dissipazione T JX

kkk

kkk dddJXdXJd

(X) Processi irreversibili

Jk

kkk l

kklk

k lkklk

l kkklk

l kkkkl

kkkX

ddJXXLdX

XLdXdXLXdXXLdXJd

)(

)()(

02

1

X

JX

d

dddo

0Xd

Page 29: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

29

Principio della produzione massima di entropia

La seconda legge della termodinamica asserisce che l'entropia di un sistema isolato non può diminuire (S0). Tuttavia non dice nulla riguardo alle possibili trasformazioni che portano dallo stato iniziale a quello finale. A questa domanda risponde il principio della massima produzione di entropia:Un sistema termodinamico che passa da uno stato iniziale ad un altro stato durante la trasformazione seleziona, tra tutti quelli possibili, il percorso (o insieme di percorsi) che permetta di raggiungere, il più rapidamente possibile, la Massima Produzione di Entropia (MEP).

Per la seconda legge , il MEP dice in più che tende ad un massimo il più rapidamente possibile.

0dt

dS

(X) Processi irreversibili

Page 30: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

30

Time reversed anti-trajectory

The second law of thermodynamics, which predicts that the entropy of an isolated system out of equilibrium should tend to increase rather than decrease or stay constant, stands in apparent contradiction with the time-reversible equations of motion for classical and quantum systems.

The time reversal symmetry of the equations of motion show that if one films a given time dependent physical process, then playing the movie of that process backwards does not violate the laws of mechanics.

It is often argued that for every forward trajectory in which entropy increases, there exists a time reversed anti-trajectory where entropy decreases, thus if one picks an initial state randomly from the system's phase space and evolves it forward according to the laws governing the system, decreasing entropy should be just as likely as increasing entropy.

It might seem that this is incompatible with the second law of thermodynamics which predicts that entropy tends to increase.

The problem of deriving irreversible thermodynamics from time-symmetric fundamental laws is referred to as Loschmidt's paradox.

(X) Processi irreversibili

Page 31: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

31

The FT is one of the few expressions in non-equilibrium statistical mechanics that is valid far from equilibrium. However, one could also use the same laws of mechanics to extrapolate backwards from a later state to an earlier state, and in this case the same reasoning used in the proof of the FT would lead us to predict the entropy was likely to have been greater at earlier times than at later times. So, it seems that the problem of deriving time-asymmetric thermodynamic laws from time-symmetric laws cannot be solved by appealing to statistical derivations which show entropy is likely to increase when you start from a non-equilibrium state and project it forwards. Many modern physicists believe the resolution to this puzzle lies in the low-entropy state of the universe shortly after the big bang (?).

tA

t

t e

AdtdS

AdtdS

Pr

PrThe Fluctuation Theorem (FT), and in particular the Second Law Inequality, state that the probability of seeing its entropy increase is greater than the probability of seeing its entropy decrease. This means that as the time or system size increases (since A is extensive), the probability of observing an entropy production opposite to that dictated by the second law of thermodynamics decreases exponentially.

Fluctuation Theorem and Second Law Inequality

This inequality can be proved for systems with time dependent fields of arbitrary magnitude and arbitrary time dependence.

A simple consequence of the FT the ensemble time average cannot be negative for any value of the averaging time t. This inequality is called the Second Law Inequality.

tdt

dS

t

0

(X) Processi irreversibili

Page 32: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

32

Entropia e Disorganizzazione procedono di pari passo?

La termodinamica è divenuta uno degli strumenti essenziali in biologia in seguito agli sviluppi della biochimica, che si è ampiamente servita della termodinamica chimica per la determinazione degli equilibri di reazione e di bilanci energetici. Le equazioni fenomenologiche lineari sono molto adatte per una descrizione in prima approssimazione del trasporto di materia associato alle reazioni metaboliche.

Le applicazioni più importanti appaiono però quelle della termodinamica non lineare. I numerosi fenomeni oscillatori (dai ritmi circadiani alle oscillazioni nella glicolisi a livello epatico) rientrano pienamente nella descrizione delle reazioni chimiche oscillanti. Il modello di Lotka-Volterra è stato poi il capostipite di una quantità di modelli utilizzati in ecologia. Fondamentale poi la scoperta della possibilità di autorganizzazione di un sistema senza violare il secondo principio della termodinamica, che fornisce utili indicazioni sul problema dell'origine della vita. Un tentativo interessante di utilizzare la teoria dei cicli e delle biforcazioni per spiegare i fenomeni evolutivi a livello molecolare. Nella teoria degli ipercicli nei quali, appunto, certe sostanze che entrano in un ciclo primario partecipano anche a cicli secondari. Tali ipercicli possono essere stabili, replicarsi con eventuali errori e, in seguito a perturbazioni, anche evolvere bruscamente formando altre strutture organizzate.

(X) Processi irreversibili

Page 33: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

33

Lontano dall'equilibrio non valgono le relazioni lineari ed i coefficienti fenomelogici L ij dipendono a loro volta dalle forze. Le espressioni che correlano flussi e forze sono dette equazioni fenomenologiche non lineari e hanno la forma di uno sviluppo in serie di Taylor riferito all'ipotetico stato stazionario.

Evoluzione del sistema nelle regioni non-lineari

...2

1

,

2

kj

kj

eqkj

i

kk

eqk

ii XX

XX

JX

X

JJ

(X) Processi irreversibili

L'evoluzione sotto l'azione di forze esterne costanti NON è più prevedibile e si possono presentare vari casi (relativi a sistemi in cui avvengono reazioni chimiche):

1) successione di OSCILLAZIONI smorzate;

2) il sistema muta ciclicamente nel tempo secondo un percorso detto CICLO LIMITE , disposto intorno allo stato stazionario;

3) la cinetica diventa CAOTICA;

4) l'interferenza tra cinetica chimica e processi diffusivi provoca la compartimentazione del sistema in strutture spaziali ordinate dette STRUTTURE DISSIPATIVE.

ijk

eqkj

iik

eqk

i LXX

JL

X

J

2

Page 34: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

34

Per la funzione di dissipazione vale un ragionamento analogo a quello delle energie libere F e G. Se il processo è descritto da equazioni fenomenologiche lineari questa è minima allo stato stazionario: una fluttuazione comporta un aumento della funzione che tende a tornare al minimo nel tempo. Il minimo di dissipazione corrisponde a uno stato che si comporta da punto attrattore per il sistema e lo stato stazionario è stabile. Questo però è sempre vero quando le equazioni fenomenologiche sono lineari, cioè le forze generalizzate che sostengono il processo sono piccole (poco lontano dall'equilibrio).

Quando ci si scosta notevolmente dalle condizioni di equilibrio le equazioni fenomenologiche non sono più lineari ed in conseguenza di una perturbazione può aversi un eccesso di produzione di entropia che rende instabile il sistema. La perturbazione iniziale, anziché smorzarsi, si amplifica. Ciò può condurre a una situazione interessante, nella quale lo stato del sistema oscilla con periodicità ben definita fra alcuni stati da cui viene periodicamente attratto. Si ha quindi un altro tipo di stabilità del sistema corrispondente a un attrattore periodico. La situazione è ben nota in chimica ed in idrodinamica. Il sistema si organizza producendo una struttura nello spazio o nel tempo che viene detta struttura dissipativa, essendo mantenuta con produzione di entropia.

(X) Processi irreversibili

Page 35: 1 Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo...! Macroscopicamente.

35(X) Processi irreversibili

Esempi noti sono le strutture termoconvettive di Bénard e la formazione di altre strutture periodiche nello spazio o nel tempo come i cirrocumuli, gli anelli di Liesegang e la reazione di Belousov-Zhabotinsky. Un'altra situazione importante è definita dal modello di Lotka-Volterra.

Rayleigh-Bénard and Bénard-Marangoni convectionIn the case of two plates between which a thin liquid layer is placed, only buoyancy is responsible for the appearance of convection cells.

Anelli di Liesegang

This type of convection is called Rayleigh-Bénard convection. The initial movement is the upwelling of warmer liquid from the heated bottom layer.In case of a free liquid surface in contact with air also surface tension effects will play a role, besides buoyancy. It is known that liquids flow from places of lower surface tension to places of higher surface tension. This is called the Marangoni effect. When applying heat from below, the temperature at the top layer will show temperature fluctuations. With increasing temperature, surface tension decreases. Thus a lateral flow of liquid at the surface will take place, from warmer areas to cooler areas. In order to preserve a horizontal (or nearly horizontal) liquid surface, liquid from the cooler places on the surface have to go down into the liquid. Thus the driving force of the convection cells is the downwelling of liquid.