Tecniche diagnostiche in infrarosso Riflettografia R/IR e Termovisione T/IR Riflettografia R/IR:...

24
Tecniche diagnostiche in infrarosso Riflettografia R/IR e Termovisione T/IR tografia R/IR: sfrutta le proprietà di trasparenza di alcuni pigmenti e leganti pittorici nel vicino infrarosso (0.7-2.5 m). Presentazione dei risultati sotto forma di immagini della grandezza osservata : Riflettanza nel primo caso, radianza nel secondo caso. La tecnica risulta possibile grazie alla trasparenza atmosferica e la disponibilità di dispositivi in grado di rivelare la radiazione infrarossa con una buona risoluzione spaziale. L’immagine infrarossa è in scala di grigi, in alcuni casi per una migliore lettura vengono presentare con una scala di colori, ma è puramente indicativo. Diagnostica per immagini con relativi programmi di analisi. ermovisione T/IR: sfrutta le proprietà di emissione di corpo nero dei materiali nel medio-lontano infrarosso. link1

Transcript of Tecniche diagnostiche in infrarosso Riflettografia R/IR e Termovisione T/IR Riflettografia R/IR:...

Page 1: Tecniche diagnostiche in infrarosso Riflettografia R/IR e Termovisione T/IR Riflettografia R/IR: sfrutta le proprietà di trasparenza di alcuni pigmenti.

Tecniche diagnostiche in infrarosso

Riflettografia R/IR e Termovisione T/IR

Riflettografia R/IR: sfrutta le proprietà di trasparenza di alcuni pigmenti e leganti pittorici nel vicino infrarosso (0.7-2.5 m).

Presentazione dei risultati sotto forma di immagini della grandezza osservata :

Riflettanza nel primo caso,

radianza nel secondo caso.

La tecnica risulta possibile grazie alla trasparenza atmosferica e la disponibilità di dispositivi in grado di rivelare la radiazione infrarossa con una buona risoluzione spaziale.

L’immagine infrarossa è in scala di grigi, in alcuni casi per una migliore lettura vengono presentare con una scala di colori, ma è puramente indicativo.

Diagnostica per immagini con relativi programmi di analisi.

Termovisione T/IR: sfrutta le proprietà di emissione di corpo nero dei materiali nel medio-lontano infrarosso.

link

1

Page 2: Tecniche diagnostiche in infrarosso Riflettografia R/IR e Termovisione T/IR Riflettografia R/IR: sfrutta le proprietà di trasparenza di alcuni pigmenti.

Km10898.2

costante3

max

T

tTAQ 4

Quantità di energia trasmessa

emissivitào

emittanza0 ÷ 1

costante di Boltzmann

Superficie del corpo

Temperatura del corpo

tempo42

81067.5Kms

J

il fenomeno descritto dalla legge di Boltzmann

E lo spettro della radiazione emessa (legge di Planck).

La Termovisione si basa su

Page 3: Tecniche diagnostiche in infrarosso Riflettografia R/IR e Termovisione T/IR Riflettografia R/IR: sfrutta le proprietà di trasparenza di alcuni pigmenti.

4TtA

Q

La legge di Boltzmanndescrive tutta la

radiazione emessa

a 650 K si ha la radianza in

rosso.

a 450 K si ha minore radianza

Page 4: Tecniche diagnostiche in infrarosso Riflettografia R/IR e Termovisione T/IR Riflettografia R/IR: sfrutta le proprietà di trasparenza di alcuni pigmenti.

Spettri normalizzati

1

Il massimo del blulo si porta allo stesso livello

del rosso, per vedere il confronto con le .

Page 5: Tecniche diagnostiche in infrarosso Riflettografia R/IR e Termovisione T/IR Riflettografia R/IR: sfrutta le proprietà di trasparenza di alcuni pigmenti.

Con l’occhio noi vediamo una finestra di tutta la radiazione emessa dal sole. {

I rivelatori nell’infrarosso possiamo considerarli come

“occhi” sensibili in una finestra di radiazione IR.

Page 6: Tecniche diagnostiche in infrarosso Riflettografia R/IR e Termovisione T/IR Riflettografia R/IR: sfrutta le proprietà di trasparenza di alcuni pigmenti.

Trasparenza dell’aria all’IR

Link 2Ci permette di osservare la radiazione emessa dai corpi.

Page 7: Tecniche diagnostiche in infrarosso Riflettografia R/IR e Termovisione T/IR Riflettografia R/IR: sfrutta le proprietà di trasparenza di alcuni pigmenti.

Termografia (specchietto riassuntivo)

La radiazione rilevata dalle termocamere viene “tradotta” in un valore di T.

4

superficie

PotenzaT

At

Q

Pot

enza

per

un

ità

di s

up

erfi

cie

(W/m

2 )

Per piccole variazioni di T si hanno grandi variazioni

di Energia

Elevata sensibilità del metodo

Energia (radiazione- calore) che giunge da un corpo è proporzionale a T4

Gli oggetti reali non emettono come corpi neri per i quali =1.

Fonti esterne di radiazione possono influenzare la lettura di T.

Corpi reali: emittanza (link3)

Page 8: Tecniche diagnostiche in infrarosso Riflettografia R/IR e Termovisione T/IR Riflettografia R/IR: sfrutta le proprietà di trasparenza di alcuni pigmenti.
Page 9: Tecniche diagnostiche in infrarosso Riflettografia R/IR e Termovisione T/IR Riflettografia R/IR: sfrutta le proprietà di trasparenza di alcuni pigmenti.

Sistemi video termografici

Sistemi in grado di fornire un’immagine istantanea della radianza di oggetti opachi nell’infrarosso.

Nota l’emittanza spettrale dei materiali è possibile fornire una mappa di distribuzione di temperatura.

Sistema di diagnostica non invasiva e possibilità di monitoraggio esteso e continuo.

Rivelatore IR: convertitore di energia IR assorbita in segnale elettrico. Fotorivelatori e termorivelatori

Fotorivelatori: materiali a semiconduttore in grado di convertire direttamente l’assorbimento di fotoni IR in segnale elettrico. Per esempio semiconduttori, elettroni possono andare in banda di conduzionemediante fotoni di energia IR, e sono poi rilevati come segnale elettrico.

Termorivelatori: assorbimento di energia e misura di T dalla variazione di proprietà elettriche degli elementi sensibili: termocoppie, bolometri, pirometri.

Tali sistemi richiedono spesso il raffreddamento della parte sensibile.

Page 10: Tecniche diagnostiche in infrarosso Riflettografia R/IR e Termovisione T/IR Riflettografia R/IR: sfrutta le proprietà di trasparenza di alcuni pigmenti.

{ {Termocamere short wave, banda spettrale (3-5 m) quantità di radiazione minima e

si ha una sovrapposizione con l’irraggiamento solare nella medesima banda.

Termocamere long wave, banda spettrale (8-12 m) sebbene meno sensibili lavorano in una banda spettrale dove la quantità di energia è maggiore e non c’è disturbo dalla radiazione solare.

Page 11: Tecniche diagnostiche in infrarosso Riflettografia R/IR e Termovisione T/IR Riflettografia R/IR: sfrutta le proprietà di trasparenza di alcuni pigmenti.

{{

Sia con un rivelatore

short wave, che con un rivelatorelong waveun corpo più caldo emette più radiazione.

Il rivelatore “lo vedrà”

più“luminoso”.

Page 12: Tecniche diagnostiche in infrarosso Riflettografia R/IR e Termovisione T/IR Riflettografia R/IR: sfrutta le proprietà di trasparenza di alcuni pigmenti.

Tecniche di indagine termovisiva

Si basano sull’analisi del flusso radiante di un oggetto.

• La calibrazione deve tener conto dell’emittanza, della distanza sorgente-rivelatore, della Temperatura dell’ambiente.

• La distribuzione spaziale e temporale della Temperatura fornisce informazioni superficiali e dell’interno.

Si possono avere due tipi di tecniche:

Passive: indagine sulla Temperatura raggiunta dai corpi considerati isolati dall’ambiente.

Attive: Indagine sulla Temperatura raggiunta dai corpi per effetto del riscaldamento superficiale.

Le tecniche attive a loro volta si distinguono a seconda del tipo di sollecitazione termica applicata ed il regime termico instaurato.

Page 13: Tecniche diagnostiche in infrarosso Riflettografia R/IR e Termovisione T/IR Riflettografia R/IR: sfrutta le proprietà di trasparenza di alcuni pigmenti.

Il principio di conservazione dell’energia vale sempreG=potenza su superficie=

Watt/m2

Per la radiazione avremmoG = G + G + G

Sorgenti di CaloreSorgente luminosa

Per una sorgente di calore Potenza = Watt

Q = Q + Q + Q

Tra

smis

sion

eT

rasm

issi

one La temperatura del materiale riscaldato

dipenderà da come si propaga ilcalore e come si disperde nell’ambiente.

Page 14: Tecniche diagnostiche in infrarosso Riflettografia R/IR e Termovisione T/IR Riflettografia R/IR: sfrutta le proprietà di trasparenza di alcuni pigmenti.

Termografia dinamica: sequenza di immagini sia in fase di riscaldamento (ad energia

costante), che in fase di raffreddamento.Si rielaborano le immagini come T rispetto ad una temperatura di un punto

ritenuto “sano”, ovvero come:Contrasto Termico

Tempogramma MaxigrammaRappresenta il tempo Rappresenta il valore

di massimo contrasto di massimo contrasto

Localizzazione e dimensione dei difetti.

Più profondi sono i difetti più tardi e meno intensi si manifestano in superficie

nell’influenza sulla temperatura superficiale.

Tomografia termica dinamica: sequenza come sopra. Oltre alle immagini si riporta la variazione temporale massima (derivata massima). Questo permette di ricostruire ed individuare i difetti in profongità su vari piani paralleli alla superficie.

Termografia modulata e impulsata: sono tecniche nelle quali si applicano sorgenti di calore modulate e si indagana sulla risposta a tali segnali. Questo permette di isolarsi dall’eventuale segnale IR di fondo.

Page 15: Tecniche diagnostiche in infrarosso Riflettografia R/IR e Termovisione T/IR Riflettografia R/IR: sfrutta le proprietà di trasparenza di alcuni pigmenti.

Studi storici e diagnostica• Studio del manufatto in quanto tale: identificazione e documentazione

grafica di elementi strutturali non accessibili nel visibile.

• Diagnostica e monitoraggio non distruttivo dello strato più superficiale delle murature, stato di conservazione di intonaci, affreschi e mosaici (presenza di umidità, distacchi degli intonaci, rifacimenti fessurazioni.

• Le variazioni di emissione non sono solo dipendenti dalle strutture interne delle murature ma anche dalle caratteristiche della superficie.

• Termocamere sensibile a 1/100 ºC.

• Individuazione di rifacimenti, sostituzioni ecc.

• Individuazione di tecniche costruttive e eventuali elementi estranei• Indagini sulla rivelazione di distacchi dei paramenti murari.

• Indagini su superfici complesse – mosaici, integrazione della termografia con misure di riflettanza superficiale.

Page 16: Tecniche diagnostiche in infrarosso Riflettografia R/IR e Termovisione T/IR Riflettografia R/IR: sfrutta le proprietà di trasparenza di alcuni pigmenti.

Applicazioni al costruito

Page 17: Tecniche diagnostiche in infrarosso Riflettografia R/IR e Termovisione T/IR Riflettografia R/IR: sfrutta le proprietà di trasparenza di alcuni pigmenti.
Page 18: Tecniche diagnostiche in infrarosso Riflettografia R/IR e Termovisione T/IR Riflettografia R/IR: sfrutta le proprietà di trasparenza di alcuni pigmenti.

Termografia e colore

Interpretazione problematica della termografia .

Per la ricostruzione effettiva della mappa termica dalla misura locale di radianza. Il rivelatore infrarosso fornisce solo la misura di radianza, si può risalire alla temperatura se sono noti il valore di emissività e il fattore di forma punto per punto.

Il comportamento termico può presentare differenze da punto a punto anche per materiali omogenei in caso di colore differente. La misura della temperatura può

variare da punto a punto in funzione della energia localmente assorbita.

Questo è un ostacolo nella diagnostica attiva di superfici affrescate. Pertanto è necessario includere la misura delle proprietà di assorbimento o

almeno una stima ragionevole dell’influenza sulla misura delle temperatura (le aree di colore più scuro appariranno più calde).

Page 19: Tecniche diagnostiche in infrarosso Riflettografia R/IR e Termovisione T/IR Riflettografia R/IR: sfrutta le proprietà di trasparenza di alcuni pigmenti.

Un esempio la chiesa di SS. Egidio e Omobono di Cremona

Nella foto in luce visibile si vede un’alterazione cromatica dovuta ad una ormai esaurita risalita

capillare.

Le zone più scure risultano più calde. T 1.39 ºC.Le statue e la lapide circolare nel timpano sono

nettamente più calde in quanto di pietra rispetto al cotto della facciata.

Ma la parte in basso dove c’era risalita capillare?

Immagine nel visibile

Ripresa termografica attiva, illuminazione naturale (sole).

Fascia scura dovuta a risalita capillare, poi risolta.

Immagine in infrarosso

Page 20: Tecniche diagnostiche in infrarosso Riflettografia R/IR e Termovisione T/IR Riflettografia R/IR: sfrutta le proprietà di trasparenza di alcuni pigmenti.

Sulla scala dei grigi, maggiore luminosità

dovuta a maggiore temperatura.

Scala dei colori: ad ogni colore viene associata una temperatura.

È necessaria quindi una scala dei colori

Page 21: Tecniche diagnostiche in infrarosso Riflettografia R/IR e Termovisione T/IR Riflettografia R/IR: sfrutta le proprietà di trasparenza di alcuni pigmenti.

Diagnostica dell’umidità

Flusso evaporativo e degrado delle superfici:

Passaggio dell’acqua d’imbibizione dal liquido al vapore con deposito di sali e conseguente cristallizzazione in superficie: efflorescenze o nei pori del material subflorescenze. Conseguenze

fratturazioni o sfarinamento.

Processo di evaporazione dalle murature: guidato da differenze di concentrazione di acqua fra muro e aria (gradiente idrico), non solo dall’umidità nella muratura.

Difficile da valutare e richiede uno studio degli scambi idrici muro aria.Oltre al contenuto ponderale nel muro è necessario monitorare le variabili ambientali: temperatura

ed umidità dell’aria esterna, temperatura ed umidità a contatto con la superficie, ventilazione e riscaldamento esterno.

Metodo efficace per determinare il flusso evaporativo: valutazione termografica delle zone sottoposte a raffreddamento per il processo di evaporazione.

Passaggio dell’acqua da liquido a vapore (calore latente di evaporazione) ~ 100-300 W/m2.

La termografia consente di ottenere la mappatura delle zone soggette a traspirazione acquea e valutare quali sono sede di maggiori flussi evaporativi.

Si individuano facilmente aree che, a causa dell’evaporazione dell’acqua, sono più fredde.

Page 22: Tecniche diagnostiche in infrarosso Riflettografia R/IR e Termovisione T/IR Riflettografia R/IR: sfrutta le proprietà di trasparenza di alcuni pigmenti.

Il raffreddamento evaporativo viene evidenziato come punto freddo, una minore nero radianza.

Le zone fredde sono attribuibili a presenza di umidità?

Fonti di umidità

Page 23: Tecniche diagnostiche in infrarosso Riflettografia R/IR e Termovisione T/IR Riflettografia R/IR: sfrutta le proprietà di trasparenza di alcuni pigmenti.

Difficoltà nel descrivere una relazione semplice tra massa

ponderale e flussi evaporativi.

In ogni caso l’evidenza di flussi evaporativi è di un’importanza capitale nel rilevare zone dove il degrado, se non già presente,

non tarderà a manifestarsi.

Massa ponderale e flussi evaporativi

Transizione tra trasporto dell’acqua per capillarità e

diffusione di vapore.

Queste variazioni brusche non permettono di risalire facilmente dai flussi evaporativi alla massa

ponderale di acqua.

Page 24: Tecniche diagnostiche in infrarosso Riflettografia R/IR e Termovisione T/IR Riflettografia R/IR: sfrutta le proprietà di trasparenza di alcuni pigmenti.

Lo studio dei flussi evaporativi vanno correlati ai fenomeni di trasporto dell’acqua. La termografia permette uno studio in tempo reale delle caratteristiche vapore-condensa-

capillarità nei materiali porosi, sempre nell’ambiente in cui “vivono” e respirano le murature.

Flussi evaporativi e fenomeni di trasporto

In genere materiali ad elevata percentuale di assorbimento di acqua presentano riduzioni maggiori in temperatura. Una calibrazione in laboratorio di materiali noti,

permette anche la mappatura dei vari interventi successivi.

Lo studio sulle fortificazioni Venete a Heraklion, hanno permesso di distinguere malte composte con cemento (parti più calde) da quelle tradizionali composte in calce e/o pietra. Per il diverso comportamento dei materiali rispetto all’impregnazione e ai

fenomeni di evaporazione si può avere un controllo sull’adeguatezza del restauro alla situazione originaria.