POLITECNICO DI BARI Front-end for Silicon Photomultiplier (SiPM)

18
POLITECNICO DI BARI Front-end for Silicon Photomultiplier (SiPM)

Transcript of POLITECNICO DI BARI Front-end for Silicon Photomultiplier (SiPM)

Page 1: POLITECNICO DI BARI Front-end for Silicon Photomultiplier (SiPM)

POLITECNICO DI BARI

Front-end for Silicon Photomultiplier (SiPM)

Page 2: POLITECNICO DI BARI Front-end for Silicon Photomultiplier (SiPM)

SiPM: Silicon photomultiplier

MATRICE DI FOTODIODI A VALANGA

POLARIZZATI IN GEIGER MODE

MOLTIPLICAZIONE DEI PORTATORI TRAMITE IL PROCESSO A VALANGA

AMPIEZZA DELl’IMPULSO DI

USCITA PROPORZIONALE AL NUMERO DI FOTONI

ASSORBITI

Politecnico di Bari

24x24 pixels

Page 3: POLITECNICO DI BARI Front-end for Silicon Photomultiplier (SiPM)

Politecnico di Bari

Rq: quenching resistor (hundreds of k)

Cd: photodiode capacitance (few tens of fF) Cq: parasitic capacitance in parallel to Rq (smaller than Cd)

IAV: current source modelling the total charge delivered by a microcell during the avalanche

Cg : parasitic capacitance due to the routing of the bias voltage to the N microcells, realized with a metal grid.

Example: metal-substrate unit area capacitance 0.03 fF/mm2 metal grid = 35% of the total detector area = 1mm2

Avalanche time constants much faster than those introduced by the circuit:

IAV can be approximated as a short pulse containing the total amount of charge delivered by the firing microcell Q=V(Cd+Cq), with V=VBIAS-VBR

Cg 10pF, without considering the fringe parasitics

Electrical model of a SiPM

Page 4: POLITECNICO DI BARI Front-end for Silicon Photomultiplier (SiPM)

Politecnico di Bari

Experimental validation of the model

Two different amplifiers have been used to read-out the FBK-irst SiPM

a) Transimpedance amplifier

BW=80MHz Rs=110 Gain=2.7k

b) Voltage amplifier

BW=360MHz Rs=50 Gain=140

• The model extracted according to the procedure described above has been used in the SPICE simulations

• The fitting between simulations and measurements is quite good

Page 5: POLITECNICO DI BARI Front-end for Silicon Photomultiplier (SiPM)

Politecnico di Bari

RS

SiPM

Vbias

ISkIS=IOUT

Charge sensitive amplifier Voltage amplifier Current amplifier

-

+

SiPM

VbiasCF

VOUT

+-RS

SiPM

Vbias

VOUT

A I-V conversion is realized by means of RS

The value of RS affects the gain and the signal waveform

VOUT must be integrated to extract the charge information: thus a

further V-I conversion is needed

RS is the (small) input impedance of the current buffer

The output current can be easily replicated (by means of current

mirrors) and further processed (e.g. integrated)

The circuit is inherently fast

Less problems of dynamic range

The charge Q delivered by the detector is collected on CF

If the maximum VOUT is 3V and Q is 50pC (about 300 SiPM

microcells), CF must be 16.7pF

Perspective limitations in dynamic range, die area, power

consumption

Front-end electronics: different approaches

Page 6: POLITECNICO DI BARI Front-end for Silicon Photomultiplier (SiPM)

Politecnico di Bari

Main simulated specs

Small signal bandwidth: 250MHz Input resistance: 17 Total current consumption: 800uA Linearity dynamic range: about

50pC Rise time of the output waveform: 400ps 3.3V power supply Vrif variable in the range 1V÷2V

0.35m standard CMOS technology

Common gate configuration (M1)

Feedback applied to increase bandwidth and decrease input

resistance (M3, M2)

SiPM bias (and gain) fine tuning possible by varying Vrif

The CMOS current buffer

Page 7: POLITECNICO DI BARI Front-end for Silicon Photomultiplier (SiPM)

Politecnico di Bari

7V

Experimental setup: blue LED light source

Picture of the setup Single dark pulse measurement (Vbr=-30.5V; Vbias=-32.5V)

The circuit has been coupled to a SiPM realized by FBK-Irst

Vrif

Vbias

BlueLed Iout

50ΩPulse Generator

CurrentBuffer

Voltage Amplifier

BNC

SiPMRIV

Page 8: POLITECNICO DI BARI Front-end for Silicon Photomultiplier (SiPM)

Politecnico di Bari

Dark pulse measurements

Charge measurements at Vbias = -32.5V

Comparison with a very fast discrete voltage amplifier front-end, used as a reference:

Average dark pulse charge

• Integrated current buffer: 143fC

• Discrete voltage amplifier: 142fC

The standard deviation is worse:

int2disc

Blue LED measurements

Average number of fired microcells as a function of the input pulse width

Charge distribution for a 8.25ns input pulse width (in terms of no. of fired microcells)

Comparison with the ref. amplifier :

Average no. of fired microcells

• Current buffer: 39

• Ref. amplifier: 38.4

Standard deviation

• Current buffer: 7.5

• Ref. Amplifier: 7.2

Page 9: POLITECNICO DI BARI Front-end for Silicon Photomultiplier (SiPM)

Politecnico di Bari

Architecture of the analog channel

Variable gain integrator: Gain: 1V/pC 0.33V/pC (2 bits);

f = 200ns;

Output voltage range: 0.3V ÷ 2.7V;

Current mirror scaling factor 10:1

Current discriminator: Current mirror scaling factor 1:1;

Threshold variable from 0 to 40µA (about 50 microcells @ VBIAS=-31.5V);

Baseline holder : Baseline value Vbl = 300mV

Very slow time constant;

Non-linearities added to prevent baseline shifts at increasing event rates

Page 10: POLITECNICO DI BARI Front-end for Silicon Photomultiplier (SiPM)

Politecnico di Bari

Experimental setup: LED light source

Lemo

BlueLed

SiPM

Vbias

50Ω Lemo

Pulse Generator

Voltage Buffer

Logic Buffer

ChipCh_inCh_out

Disc

SiPM A51 ( FBK – IRST ) Blue Led HSMB-C150

Typical output waveforms

(Vbias=31.5V)

Page 11: POLITECNICO DI BARI Front-end for Silicon Photomultiplier (SiPM)

Politecnico di Bari

Charge measurements (blue LED light source)

Ouput voltage vs pulse width for different gain settings

From the previous characterization measurements we have:

For pulse width = 9ns, n=115 fired microcells

If Vbias = 31.5 V, the total injected charge is QT= Q µcell(31.5V)*n = 6.9pC

If Vbias = 32.5 V, the total injected charge is QT= Q µcell(32.5V)*n = 17.3pC

Vbias 31.5V 32.5V

QT/(M*Cf) 690mV 1.73V

Vpeak-Vbl 670mV 1.76V

Measurement are in good agreement with the expected results

Page 12: POLITECNICO DI BARI Front-end for Silicon Photomultiplier (SiPM)

Politecnico di Bari

Design of the 8 channel ASIC: the Peak Detector (PD)

• It is based on a P-MOS current mirror as a rectifying element

• IBIAS added to improve the speed of operation, especially for small signals

Page 13: POLITECNICO DI BARI Front-end for Silicon Photomultiplier (SiPM)

Politecnico di Bari

Cur_disc

M0

M1

M7

trig_0

trig_1

trig_7

Vdd

Vdd

Vdd

Vdd

Vbias VbiasIbias

Ibias

Ibias

I0

I1I2

Ithresh

Cbus

F_or

Ithresh= I2-(I0-I1)

MNBUF MPBUF

• Fast-OR circuit operating in current mode, to improve the speed of operation

• Current buffer to reduce the input impedence

• Current discriminator with fixed treshold

Design of the 8 channel ASIC: the fast-OR

Page 14: POLITECNICO DI BARI Front-end for Silicon Photomultiplier (SiPM)

Architecture of the test chip

Politecnico di Bari

config_reg

DACVrif

DAC I_th

MUX_reg

Trig. reg.

CSACurbuf PD

Curdisc

CSACurbuf PD

Curdisc

CSACurbuf PD

Curdisc

MUXADC

Read_outlogic

srq_pad

MUX_sel

Vrif

F_or

reset_pad

ck_pad

rw_pad

data_pad

gain

ch_0

ch_1

ch_7

gainI_thVrif

I_thVrif gain

I_thVrif gain

EOC

ADC_ck

a_out_0

a_out_1

a_out_7

trig_0

trig_1

trig_7

I_th

dataExt.bias

Ext.bias

Ext.bias

Page 15: POLITECNICO DI BARI Front-end for Silicon Photomultiplier (SiPM)

Politecnico di Bari

Design of the 8 channel ASIC: Layout

Page 16: POLITECNICO DI BARI Front-end for Silicon Photomultiplier (SiPM)

Politecnico di Bari

Read-out procedure for the test chip

A) An event activates the SRQ bus (by default at Hi-Z)

B) FPGA gives a time-stamp to the event and takes control of the SRQ bus during the read-out procedure

C) SRQ, in its active state, is used to “freeze” the content of the trigger registers (no more trigger are accepted)

D) FPGA waits the time needed by the PDs to reach the peak

and sends the CLOCK signal to the ASICs

F) The read-out logic starts the A/D conversions and sends the results to FPGA on the DATA_i pad

G) When all the conversions have been completed, FPGA releases the SRQ bus and sends a RESET signal

SRQCHIP

DATA

CLOCK

FPGA

DATA_0

CLOCK

SRQ

RESET RESET

Package SMD

Page 17: POLITECNICO DI BARI Front-end for Silicon Photomultiplier (SiPM)

Politecnico di Bari

Jitter measurements on fast-OR signal

Canale colpito Valore medio del

ritardo

Deviazione

standard

1 1.77 ns 50 ps

2 1.66 ns 53 ps

3 1.68 ns 49 ps

4 1.69 ns 49 ps

5 1.74 ns 48 ps

6 1.57 ns 49 ps

7 1.66 ns 49 ps

8 1.67 ns 48 ps

Coppia canali Valore medio del

ritardo

Deviazione

standard

1-5 1.618 ns 47.26 ps

2-4 1.55 ns 50.5 ps

2-3 1.55 ns 48.6 ps

3-4 1.57 ns 49.7 ps

1-4 1.62 ns 49 ps

4-8 1.53 ns 50.3 ps

3-7 1.53 ns 50 ps

6-8 1.415 ns 50.5 ps

7-8 1.55 ns 50 ps

Misure di jitter in presenza di un solo canale soprasoglia Misure di jitter in presenza di due canali soprasoglia

Page 18: POLITECNICO DI BARI Front-end for Silicon Photomultiplier (SiPM)

Design of the 32 channel ASIC: Logic Readout

config_reg

DACVrif

DAC I_th

MUX_reg

Trig. reg.

MUX

ADC_1

Logic Readout

srq_pad

Vrif

F_or

reset_pad

ck_pad

rw_pad

gain

EOC

pd_out_0

pd_out_1

pd_out_31

trig_0

trig_1

trig_31

I_th

dataADC_2

SPI interface

DEMUX

DEMUX_reg

ex_ADC

MUX

ADC/Clock Manager cK_ADC

MUX_reg

SDI_pad

SDO_padSS

coincidence_pad

Politecnico di Bari