Modelli evolutivi per la verifica del rischio di edifici ...Quaderno 4 Primi concetti di analisi...

90
Odine degli Ingegneri della Provincia di Pistoia Corso sulla Vulnerabilità Sismica Modelli evolutivi per la verifica del rischio di edifici esistenti Quaderno 4 Primi concetti di analisi nonlineare Prof. Enrico Spacone Dipartimento di Ingegneria e Geologia Università degli Studi “G. D’Annunzio” Chieti-Pescara 31 Maggio 2013

Transcript of Modelli evolutivi per la verifica del rischio di edifici ...Quaderno 4 Primi concetti di analisi...

  • Odine degli Ingegneri della Provincia di PistoiaCorso sulla Vulnerabilità Sismica

    Modelli evolutivi per la verifica del rischio di edifici esistenti

    Quaderno 4Primi concetti di analisi nonlineare

    Prof. Enrico SpaconeDipartimento di Ingegneria e Geologia

    Università degli Studi “G. D’Annunzio” Chieti-Pescara

    31 Maggio 2013

  • INTRODUCTION

    � Three examples are presented hereafter to introduce nonlinear problems and nonlinear solution schemes

    2

    nonlinear solution schemes

  • ELASTIC BEAMLe = 3 m

    P1, U1

    P2,U2

    =P KU

    Example 1: Material Nonlinearity

    3

    ELASTO-PLASTICHINGE

    3m

    P3, U3

    1

    2

    3

    1

    2

    3

    P

    P

    P

    U

    U

    U

    =

    =

    P

    U

  • e 1=U

    U1

    U2

    12

    U

    e 1

    1

    2

    0

    =

    =

    ID

    Example 1

    4

    U3

    3

    4

    1

    2

    e 2=U

    U

    ELEMENTS STRUCTURE

    0

    3

    e 20

    3

    = =

    ID

  • e 1=U

    U1

    U2

    U3

    12

    U1

    U2

    U1 U2 U3

    U3 2 3 2

    b b b b

    2 2

    b b b be 1

    b

    3 2 3 2

    12 6 12 6

    L L L L

    6 4 6 2

    L L L LEI

    12 6 12 6

    L L L L

    =

    − = − − −

    K

    Example 1

    5

    3

    4

    1

    2

    U3

    U3

    U3

    e 2=Ue 2

    h

    1 1k

    1 1

    =−

    = − K

    U3

    U2

    U1

    U1 U2 U3

    3 2 3 2

    b b b b

    2 2

    b b b b

    L L L L

    6 2 6 4

    L L L L

    − − − −

    3 2 2

    b b b

    b 2

    b b b

    h2

    b b b

    12 6 6

    L L L

    6 4 2EI

    L L L

    6 2 4k

    L L L

    =

    +

    K

  • ϕ

    M

    linear

    Lb Hp:

    Example 1

    6

    Lpl

    θ = ϕ Lpl

    θ

    M

    non-

    linear

    Lb Hp: curvature ϕ

    constant over Lpl

    Alternative 1

    ELASTO-PLASTIC

    2pl

    dL d≤ ≤

    Order of magnitude ofplastic hinge length

  • ϕ

    M

    linear

    Lb

    ϕ−ϕy

    M

    ϕy

    My

    Example 1

    7

    0-length

    (θ −θy)= (ϕ−ϕ y)Lpl

    θ−θy

    M

    non-

    linear

    LbConsider plastic

    deformations only

    Alternative 2

    PLASTIC

  • ϕ

    M

    linear

    Lbϕ

    My

    Example 1

    8

    0-length

    ϕ

    non-

    linear

    Lb

    Procedure followed here

    PLASTIC

    ϕy

    Strictly speaking this is not correctThe flexibility of the plastic hingelength is accounted for twice, both in the column element and in the hinge

    This approach is followed to illustrate the nonlinear procedure

  • Example 1

    9

    EIel-b = 1013 N-mm2

    EIel-h = 1013 N-mm2

    EIpl-h = 5,2x1010 N-mm2

    kel-h = EIel-cp/Lpl = 5 x1010 N-mm

    kpl-h = EIpl-cp/Lpl = 2,6x108 N-mm

    Lpl = 200 mm

  • 30

    40

    50

    60M

    (k

    N-m

    )

    (0.0009, 45)

    (0.02, 50)

    Example 1

    10

    EIel-b = 104 kN-m2

    kel-h = 5 x104 kN-m

    kpl-h = 2,6x102 kN-m

    0

    10

    20

    0 0,002 0,004 0,006 0,008 0,01 0,012 0,014 0,016 0,018 0,02

    θθθθ (rad)

    M (

    kN

    -m)

  • P=1 kN P1 (kN)

    λ2P = 15

    λ3P = 17

    Example 1

    11

    Load History

    P1 = λPλ= {7.5, 15, 17}

    λ1P = 7.5

    U1

  • U1

    U2

    u1

    u2

    Example 1

    1

    2

    Unodal

    Udispl.s

    = U

    12

    U3

    u3

    u1

    u2

    u4

    2

    3

    1

    2

    3

    Udispl.s

    U

    Pnodal

    Pforces

    P

    =

    =

    U

    P

    h 2 1 2

    plastic

    u u uhinge

    rotation

    θ = − =

  • U1

    U2

    tr h R

    00 0

    0 0= 0 0

    0 00 0

    0

    ⇒ = = ⇒ =

    U P P P

    u1

    u2i=1LOAD STEP 1: λ1P = 7.5 kN

    Example 1

    13

    U3unb R

    0 00

    7.5

    0

    0

    7.5

    0

    0

    =

    =

    ∆ = − =

    P

    P P P P

    u3

    u1

    u2

    u4

  • 7.5

    R+ =P P 0

    SIGN CONVENTION: When equilibrium is reached:

    Resisting forces at node7.5

    eq

    ua

    l a

    nd

    op

    po

    site

    (fr

    om

    eq

    uili

    bri

    um

    )

    P

    Example 1

    14

    Resisting forcesat element end

    7.5

    eq

    ua

    l a

    nd

    op

    po

    site

    (fr

    om

    eq

    uili

    bri

    um

    )

    R- =P P 0

    Convention used here:formally less correcteasier to represent

  • U1

    U2

    Initial stiffness

    i=1

    LOAD STEP 1: λ1P = 7.5 kN

    0

    10

    20

    30

    40

    50

    60

    0 0,002 0,004 0,006 0,008 0,01 0,012 0,014 0,016 0,018 0,02

    M (

    kN

    -m)

    Example 1

    15

    U3 b b b3 2 2

    b b b

    b b bel 2

    b b b

    b b bel h2

    b b b

    12EI 6EI 6EI

    L L L

    6EI 4EI 2EI

    L L L

    6EI 2EI 4EIk

    L L L−

    = =

    +

    K K

    EIb = 104 kN-m2

    kh = kel-h = EIel-h/Lpl = 5 x104 kN-m

    Lb = 3 m

    0 0,002 0,004 0,006 0,008 0,01 0,012 0,014 0,016 0,018 0,02

    θθθθ (rad)

  • P

    Kel

    Graphic is purely indicativeAxes represent arrays!

    Example 1

    16

    U

    Punb

    λ1P = 7.5

    Axes represent arrays!

  • U1

    U2

    { }-10.0081

    0.0038

    0.00045

    ∆ ∆ = − −

    U = K P

    u1

    u2i=1LOAD STEP 1: λ1P = 7.5 kN

    Example 1

    17

    U3h

    b

    h

    0.00045

    0.0081

    0.0038

    0.00045

    00.0081

    0.000450.0038

    00.00045

    0.00045

    ∆ = − −

    =

    − − = ⇓ θ = − −

    U = U + U

    U

    U

    u3

    u1

    u2

    u4

  • P

    Kel

    Example 1

    18

    7.5

    U

    U

    Determine resisting forces corresponding to

    the current displacement vector U(STRUCTURE STATE DETERMINATION)

  • u1

    u2

    u3

    Elements’ resisting forces(ELEMENT STATE DETERMINATION)

    1) Column: linear elastic

    2) Plastic hinge Mh = min(kel-h θh , M* + kpl-h θh) = -22.5 kN-m

    b b b=P K U

    i=1LOAD STEP 1: λ1P = 7.5 kN

    u4

    Example 1

    19

    u1

    u2

    2) Plastic hinge Mh = min(kel-h θh , M + kpl-h θh) = -22.5 kN-m

    kel-h

    22.5

    kh = kel-h

    0.00045

    0

    10

    20

    30

    40

    50

    60

    0 0,002 0,004 0,006 0,008 0,01 0,012 0,014 0,016 0,018 0,02

    θθθθ (rad)

    M (

    kN

    -m)

  • F

    F*

    F=kel u

    kpl

    kel

    F=F*+kpl u

    F = min(kel u , F* + kpl u)

    Example 1

    20

    u

    F = max(kel u , F* + kpl u)

  • 7.5

    b h

    7.5

    0 22.5

    7.5 22.5

    = =

    − − P P

    7.5

    0

    U1

    U2

    i=1LOAD STEP 1: λ1P = 7.5 kN

    Example 1

    21

    b h

    R

    unb R

    7.5 22.5

    22.5

    7.5

    0

    0

    7.5 7.5 0

    0 0 0

    0 0 0

    − −

    =

    ∆ = − = − = =

    P

    P = P P P 0

    7.5

    22.5

    22.5

    22.5

    U3

  • 7.5

    7.5

    7.5

    7.5

    7.5

    In equililbrium

    External Forces on nodes

    Resisting Forces on nodes

    Element Forces

    Example 1

    22

    7.522.5

    7.5

    22.5

    22.57.5

    7.5

    22.5

    22.57.5

    22.57.5

    7.5

    22.5In equililbrium

    In equililbrium

  • P

    Kel

    There is equilibrium between applied and

    resisting forces

    Example 1

    23

    7.5

    U

    ∆U

    Punb = 0

    resisting forces

    → Load increment

    Apply λ2P

  • P

    P

    Kel

    λ2P = 15

    Example 1

    24

    7.5

    U

    Punb

  • 15

    15

    7.5

    7.5

    7.5

    Not in equililbrium!!

    External Forces on nodes

    Resisting Forces on nodes

    Element Forces

    Example 1

    25

    7.522.5

    7.5

    22.5

    22.57.5

    7.5

    22.5

    22.57.5

    22.57.5

    7.5

    22.5In equililbrium

    In equililbrium

  • U1

    U2

    R

    7.5 15

    0 0

    0 0

    = =

    P P

    u1

    u2i=1LOAD STEP 2: λ2P = 15 kN

    Example 1

    26

    U3{ }

    unb R

    el

    -1

    7.5

    0

    0

    0.0081

    0.0038

    0.00045

    ∆ = − =

    =

    ∆ ∆ = − −

    P = P P P

    K K

    U = K P

    u3

    u1

    u2

    u4

  • P

    15

    Kel

    Example 1

    27

    7.5

    U

    Punb

    ∆U

    Determine resisting forces corresponding to

    the current displacement vector U(STRUCTURE STATE DETERMINATION)

  • U1

    U2

    0.0162

    0.00765

    0.0009

    ∆ = − −

    U = U + U

    u1

    u2i=1LOAD STEP 2: λ2P = 15 kN

    Example 1

    28

    U3

    h

    b

    h

    0.0009

    00.0162

    0.00090.00765

    00.0009

    0.0009

    =

    − − = ⇓ θ = − −

    U

    U

    u3

    u1

    u2

    u4

  • u1

    u2

    u3

    Elements’ resisting forces

    (ELEMENT STATE DETERMINATION)

    1) Column: linear elastic

    2) Plastic hinge

    i=1

    Mh = min(kel-h θh , M* + kpl-h θh) = -45 kN-m

    b b b=P K U

    LOAD STEP 2: λ2P = 15 kN

    u4

    Example 1

    29

    u1

    u2

    2) Plastic hinge

    kel-h

    45

    kh = kel-h

    Mh = min(kel-h θh , M* + kpl-h θh) = -45 kN-m

    0.0009

    0

    10

    20

    30

    40

    50

    60

    0 0,002 0,004 0,006 0,008 0,01 0,012 0,014 0,016 0,018 0,02

    θθθθ (rad)

    M (

    kN

    -m)

  • 15

    b h

    15

    0 45

    15 45

    45

    15

    = =

    − −

    P P

    15

    0

    U1

    U2

    i=1LOAD STEP 2: λ2P = 15 kN

    Example 1

    30

    R

    unb R

    15

    0

    0

    15 15 0

    0 0 0

    0 0 0

    =

    ∆ = = − = − =

    P

    P P P P

    15

    45

    45

    45

    U3

  • P

    Kel

    15 Punb=0

    Example 1

    There is equilibrium between applied and

    resisting forces

    31

    7.5

    U

    resisting forces

    → Load increment

    Apply λ3P

  • U1

    U2

    R

    15 17

    0 0

    0 0

    = =

    P P

    u1

    u2i=1LOAD STEP 3: λ3P = 17 kN

    Example 1

    32

    U3

    { }

    unb R

    el

    -1

    2

    0

    0

    0.00216

    0.001

    0.00012

    ∆ = − =

    =

    ∆ ∆ = − −

    P = P P P

    K K

    U = K P

    u3

    u1

    u2

    u4

  • P

    Ke

    15Punb

    λ3P = 17

    Example 1

    33

    7.5

    U

    ∆U

    Determine resisting forces corresponding to

    the current displacement vector U(STATE DETERMINATION)

  • U1

    U2

    0.01836

    0.00867

    ∆ = −

    U = U + U

    u1

    u2i=1LOAD STEP 3: λ3P = 17 kN

    Example 1

    34

    U3

    h

    b

    h

    0.00102

    00.01836

    0.001020.00867

    00.00102

    0.00102

    =

    − − = ⇓ θ = − −

    U

    U

    u3

    u1

    u2

    u4

  • u1

    u2

    u3

    Elements’ resisting forces

    (ELEMENT STATE DETERMINATION)

    1) Column: linear elastic

    2) Plastic hinge

    i=1

    b b b=P K U

    LOAD STEP 3: λ3P = 17 kN

    Mh = min(kel-h θh , M* + kpl-h θh) = -45,03 kN-m

    u4

    Example 1

    350

    10

    20

    30

    40

    50

    60

    0 0.005 0.01 0.015 0.02 0.025

    rotazione θcp

    Mo

    me

    nto

    (kN

    -m)

    u1

    u2

    2) Plastic hinge

    45,03

    kpl-hkh = kpl-h

    Mh = min(kel-h θh , M* + kpl-h θh) = -45,03 kN-m

    0.00102

  • 17

    b h

    17

    0 45.0312

    17 45.0312

    51

    = =

    − −

    P P

    17

    0

    U1

    U2

    i=1LOAD STEP 3: λ3P = 17 kN

    Example 1

    36

    R

    unb R

    17

    0

    5.9688

    17 17 0

    0 0 0

    0 5.9688 5.9688

    =

    ∆ = − = − = −

    P

    P = P P P

    17

    45.03

    45.03

    51

    U3

    There is no equilibrium between applied and

    resisting forces

  • U1

    U2

    pl

    0.06887

    =

    K K

    u1

    u2i=2LOAD STEP 3: λ3P = 17 kN

    Example 1

    37

    U3

    { }-10.06887

    0.0229

    0.0229

    0.08723

    0.0316

    0.0240

    ∆ ∆ = − −

    = + ∆ = − −

    U = K P

    U U U

    u3

    u1

    u2

    u4

  • P

    Kep15 Punb

    17

    Example 1

    38

    7.5

    U

    ∆U

  • u1

    u2

    u3

    Elements’ resisting forces

    (ELEMENT STATE DETERMINATION)

    1) Column: linear elastic

    2) Plastic hinge

    i=2

    b b b=P K U

    LOAD STEP 3: λ3P = 17 kN

    Mh = min(kel-h θh , M* + kpl-h θh) = -51 kN-m

    u4

    Example 1

    0

    10

    20

    30

    40

    50

    60

    0 0.005 0.01 0.015 0.02 0.025

    rotazione θcp

    Mo

    me

    nto

    (kN

    -m)

    39

    u1

    u2

    2) Plastic hinge

    51 Kh = kpl-h

    Mh = min(kel-h θh , M* + kpl-h θh) = -51 kN-m

    0.024

  • 17

    b h

    17

    0 51

    17 51

    = =

    − − P P

    17

    0

    U1

    U2

    i=2LOAD STEP 1: λ3P = 17 kN

    Example 1

    40

    R

    unb R

    17 51

    51

    17

    0

    0

    17 17 0

    0 0 0

    0 0 0

    − −

    =

    ∆ = − = − =

    P

    P = P P P

    -17

    51

    -51

    51

    U3

  • P

    15

    Punb=017

    Example 1

    41

    7.5

    U

  • P

    (16.2,15)

    (87.23,17)

    Example 1

    42

    (8.1,7.5)

    U

  • P

    (16.2,15)

    (87.23,17)

    Example 1

    43

    U

    (8.1,7.5)

  • P=1 kNP1 (kN)

    λ P = 16

    The load path is not known: A load history is the applied

    Example 1

    44

    Load history

    P1 = λPλ= {2, 4, 6, 8, 10 ,12, 14, 16, …}

    λ1P = 2

    U1

    λ8P = 16

    λ2P = 4

    λ3P = 6

    λ4P = 8

    λ5P = 10

    λ6P = 12

    λ7P = 14

  • P=1 kN

    12

    14

    16

    18

    20

    22

    (k

    N)

    Example 1

    45

    Load history

    P1 = λPλ= {0, 20}

    0

    2

    4

    6

    8

    10

    0 50 100 150 200

    U1 (mm)

    P1 (

    kN

    )

  • P=1 kN

    12

    14

    16

    18

    20

    22

    (k

    N)

    Example 1

    46

    Load history

    P1 = λPλ= {0, 10, 20}

    0

    2

    4

    6

    8

    10

    0 50 100 150 200

    U1 (mm)

    P1 (

    kN

    )

  • P=1 kN

    12

    14

    16

    18

    20

    22

    (k

    N)

    Example 1

    47

    Load history

    P1 = λPλ= {0, 5, 10, 15, 20}

    0

    2

    4

    6

    8

    10

    0 50 100 150 200

    U1 (mm)

    P1 (

    kN

    )

  • P=1 kN

    12

    14

    16

    18

    20

    22

    (k

    N)

    Example 1

    48

    Load history

    P1 = λPλ= {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20}

    0

    2

    4

    6

    8

    10

    0 50 100 150 200

    U1 (mm)

    P1 (

    kN

    )

  • PLASTIC HINGE

    Phenomenological

    nonlinear M-θ modelP, U

    Example 2

    49

    rotation = u2-u1

    u1

    u2

  • P, U

    SYSTEM RESPONSE(closed form solution)

    12

    14

    16

    18

    Example 2

    50

    0

    2

    4

    6

    8

    10

    12

    0 10 20 30 40 50 60 70 80 90

    U1 (mm)

    P1 (

    kN

    )

  • U1

    U2

    b h R

    00 0

    0 0= 0 0

    0 00 0

    0

    ⇒ = = ⇒ =

    U P P P

    u1

    u2i=1LOAD STEP 1: λ1P = 7.5 kN

    Example 2

    51

    U3unb R

    0 00

    7.5

    0

    0

    7.5

    0

    0

    =

    ∆ = = − =

    P

    P P P P

    u3

    u1

    u2

    u4

  • 10

    20

    30

    40

    50

    60

    M (

    kN

    -m)

    U1

    U2

    Initial stiffness

    i=1

    LOAD STEP 1: λ1P = 7.5 kN

    Example 2

    0

    0 0,005 0,01 0,015 0,02 0,025

    θcp

    52

    U3 b b b3 2 2

    b b b

    el b b0 el 2

    b b b

    b b bel h2

    b b b

    12EI 6EI 6EI

    L L L

    6EI 4EI 2EI

    L L L

    6EI 2EI 4EIk

    L L L−

    = =

    +

    K K

    EIb = 104 kN-m2

    kh = kel-h = EIel-h/Lpl = 5 x104 kN-m

    Lb = 3 m

  • U1

    U2

    { }-10

    0.0081

    0.0038

    0.00045

    ∆ ∆ = − −

    U = K P

    u1

    u2

    i=1

    LOAD STEP 1: λ1P = 7.5 kN

    Example 2

    53

    U3h

    b

    h

    0.00045

    0.0081

    0.0038

    0.00045

    00.0081

    0.000450.0038

    00.00045

    0.00045

    ∆ = − −

    =

    − − = ⇓ θ = − −

    U = U + U

    U

    U

    u3

    u1

    u2

    u4

  • u1

    u2Elements’ resisting forces

    Column: linear elastic

    Plastic hinge Mh = -15.07 kN-m

    b b b=P K U

    i=1LOAD STEP 1: λ1P = 7.5 kN

    Example 2

    54

    u3

    u1

    u2

    0

    10

    20

    30

    40

    50

    60

    0 0.005 0.01 0.015 0.02 0.025

    rotazione θcp

    Mo

    men

    to (

    kN

    -m)

    0.00045

    15.07

    u4

  • 7.5b h

    7.5

    0 15.066586

    7.5 15.066586

    22.5

    7.5

    = =

    − −

    P P

    7.5

    0

    U1

    U2

    i=1PLASTIC HINGE 1: λ1P = 7.5 kN

    Example 2

    55

    R

    unb R

    7.5

    0

    7.433414

    7.5 7.5 0

    0 0 0

    0 7.433414 7.433414

    =

    ∆ = = − = − = −

    P

    P P P P

    7.5

    15.07

    15.07

    22.5

    U3

    There is no equilibrium between applied and resisting forces

    Apply Punb

  • U1

    U2

    { }-10

    0.00044

    0.00015

    0.00015

    ∆ ∆ = − −

    U = K P

    u1

    u2

    i=2

    LOAD STEP 1: λ1P = 7.5 kN

    Example 2

    56

    U3h

    b

    h

    0.00015

    0.00854

    0.00397

    0.000599

    00.00854

    0.0005990.00397

    00.000599

    0.000599

    ∆ = − −

    =

    − − = ⇓ θ = − −

    U = U + U

    U

    U

    u3

    u1

    u2

    u4

  • u1

    u2

    i=2LOAD STEP 1: λ1P = 7.5 kN

    Elements’ resisting forces

    Column: linear elastic

    Plastic hinge Mh = -19.43 kN-m

    b b b=P K U

    Example 2

    57

    u3

    u1

    u2

    0

    10

    20

    30

    40

    50

    60

    0 0.005 0.01 0.015 0.02 0.025

    rotazione θcp

    Mo

    men

    to (

    kN

    -m)

    0.000599

    19.43

    u4

  • 7.5b h

    7.5

    0 19.430188

    7.5 19.430188

    22.5

    7.5

    = =

    − −

    P P

    7.5

    0

    U1

    U2

    i=2LOAD STEP 1: λ1P = 7.5 kN

    Example 2

    58

    R

    unb R

    7.5

    0

    3.069812

    7.5 7.5 0

    0 0 0

    0 3.069812 3.069812

    =

    ∆ = = − = − = −

    P

    P P P P

    -7.5

    19.43

    -19.43

    22.5

    U3

    =2 =1

    unb unbNote thati i

  • U1

    U2

    { }-10

    0.00018

    0.00006

    0.00006

    ∆ ∆ = − −

    U = K P

    u1

    u2i=3LOAD STEP 1: λ1P = 7.5 kN

    Example 2

    59

    U3h

    b

    h

    0.00006

    0.00873

    0.00403

    0.00066

    00.00873

    0.000660.00403

    00.00066

    0.00066

    ∆ = − −

    =

    − − = ⇓ θ = − −

    U = U + U

    U

    U

    u3

    u1

    u2

    u4

  • u1

    u2

    Mh = -21.06 kN-m

    b b b=P K U

    i=3LOAD STEP 1: λ1P = 7.5 kN

    Example 2

    Elements’ resisting forces

    Column: linear elastic

    Plastic hinge

    60

    u3

    u1

    u2

    0

    10

    20

    30

    40

    50

    60

    0 0.005 0.01 0.015 0.02 0.025

    rotazione θcp

    Mo

    men

    to (

    kN

    -m)

    0.00066

    21.06

    u4

  • 7.5b h

    7.5

    0 21.060194

    7.5 21.060194

    22.5

    7.5

    = =

    − −

    P P

    7.5

    0

    U1

    U2

    i=3LOAD STEP 1: λ1P = 7.5 kN

    Example 2

    61

    R

    unb R

    7.5

    0

    1.439806

    7.5 7.5 0

    0 0 0

    0 1.439806 1.439806

    =

    ∆ = = − = − = −

    P

    P P P P

    7.5

    21.06

    21.06

    22.5

    U3

    =3 =2

    unb unbNote thati i

  • U1

    U2

    { }-10

    0.00000000007

    0.00000000002

    0.00000000002

    ∆ ∆ = − −

    U = K P

    u1

    u2

    i=15

    LOAD STEP 1: λ1P = 7.5 kN

    Example 2

    62

    U3h

    b

    h

    0.00000000002

    0.0089

    0.00409

    0.00072

    00.0089

    0.000720.00409

    00.00072

    0.00072

    ∆ = − −

    =

    − − = ⇓ θ = − −

    U = U + U

    U

    U

    u3

    u1

    u2

    u4

  • u1

    u2

    Mh = -22.5 kN-m

    h h h=P K U

    i=15LOAD STEP 1: λ1P = 7.5 kN

    Example 2

    Elements’ resisting forces

    Column: linear elastic

    Plastic hinge

    63

    u3

    u1

    u2

    0

    10

    20

    30

    40

    50

    60

    0 0.005 0.01 0.015 0.02 0.025

    rotazione θcp

    Mo

    men

    to (

    kN

    -m)

    0.00072

    22.5

    u4

  • 7.5

    7.5

    0

    U1

    U2

    i=15LOAD STEP 1: λ1P = 7.5 kN

    b h

    7.5

    0 22.499999

    7.5 22.499999

    22.5

    7.5

    = =

    − −

    P P

    Example 2

    64

    7.5

    22.5

    22.5

    22.5

    U3

    Small enough!!

    R

    unb R

    7.5

    0

    .00000113

    7.5 7.5 0

    0 0 0

    0 .00000113 .00000113

    =

    = − = − = −

    P

    P P P

    =15

    unbNote thati ≈P 0

    There is equilibrium between

    applied and resisting forces Apply λ2P

  • Convergence was very slow because initial stiffness was used

    Example 2

    5,00

    6,00

    7,00

    8,00

    -m)

    K-initial

    65

    0,00

    1,00

    2,00

    3,00

    4,00

    5,00

    1 3 5 7 9 11 13 15

    Pu

    nb

    (3)

    (kN

    -

    iteration (i)

  • The tangent stiffness does not change:

    Example 2

    66

    The tangent stiffness does not change:Advantage: K is inverted only onceDisadvantage: convergence is slow

    What if the stiffness is updated at every step (tangent stiffness)?

  • Tangent stiffness (Newton-Raphson)

    Example 2

    67

    It should be much faster!

  • U1

    U2

    b h R

    00 0

    0 0= 0 0

    0 00 0

    0

    ⇒ = = ⇒ =

    U P P P

    u1

    u2i=1LOAD STEP 1: λ1P = 7.5 kN

    Example 2

    68

    U3unb R

    0 00

    7.5

    0

    0

    7.5

    0

    0

    =

    ∆ = = − =

    P

    P P P P

    u3

    u1

    u2

    u4

  • U1

    U2

    { }-1tan tan 0

    0.0081

    0.0038 for 1,

    0.00045

    i

    ∆ ∆ = − = = −

    U = K P K K

    u1

    u2

    i=1

    LOAD STEP 1: λ1P = 7.5 kN

    Example 2

    69

    U3h

    b

    h

    0.00045

    0.0081

    0.0038

    0.00045

    00.0081

    0.000450.0038

    00.00045

    0.00045

    ∆ = − −

    =

    − − = ⇓ θ = − −

    U = U + U

    U

    U

    u3

    u1

    u2

    u4

  • u1

    u2

    Mh = -15.07 kN-m

    b b b=P K U

    i=1LOAD STEP 1: λ1P = 7.5 kN

    K = 3.14 104 kN-m

    Example 2

    Elements’ resisting forces

    Column: linear elastic

    Plastic hinge

    70

    u3

    u1

    u2

    0

    10

    20

    30

    40

    50

    60

    0 0.005 0.01 0.015 0.02 0.025

    rotazione θcp

    Mo

    men

    to (

    kN

    -m)

    0.00045

    15.07

    Kh,tan= 3.14 104 kN-m

    u4

  • 7.5b h

    7.5

    0 15.066586

    7.5 15.066586

    22.5

    7.5

    = =

    − −

    P P

    7.5

    0

    U1

    U2

    i=1LOAD STEP 1: λ1P = 7.5 kN

    Example 2

    71

    R

    unb R

    7.5

    0

    7.433414

    7.5 7.5 0

    0 0 0

    0 7.433414 7.433414

    =

    ∆ = = − = − = −

    P

    P P P P

    7.5

    15.07

    15.07

    22.5

    U3

    There is no equilibrium between applied and resisting forces

    Apply Punb

  • U1

    U2

    { }-1tan

    0.00071

    0.00024

    0.00024

    ∆ ∆ = − −

    U = K P

    u1

    u2

    i=2

    LOAD STEP 1: λ1P = 7.5 kN

    Example 2

    72

    U3h

    b

    h

    0.00024

    0.00881

    0.00406

    0.000687

    00.00881

    0.0006870.00406

    00.000687

    0.000687

    ∆ = − −

    =

    − − = ⇓ θ = − −

    U = U + U

    U

    U

    u3

    u1

    u2

    u4

  • u1

    u2

    Mh = -21.74 kN-m

    b b b=P K U

    i=2LOAD STEP 1: λ1P = 7.5 kN

    K = 2.5 104 kN-m

    Example 2

    Elements’ resisting forces

    Column: linear elastic

    Plastic hinge

    73

    u3

    u1

    u2

    0

    10

    20

    30

    40

    50

    60

    0 0.005 0.01 0.015 0.02 0.025

    rotazione θcp

    Mo

    men

    to (

    kN

    -m)

    0.000687

    21.74

    Kh,tan= 2.5 104 kN-m

    u4

  • 7.5b h

    7.5

    0 21.743466

    7.5 21.743466

    22.5

    7.5

    = =

    − −

    P P

    7.5

    0

    U1

    U2

    i=2LOAD STEP 1: λ1P = 7.5 kN

    Example 2

    74

    R

    unb R

    7.5

    0

    0.756533

    7.5 7.5 0

    0 0 0

    0 0.756533 0.756533

    =

    ∆ = = − = − = −

    P

    P P P P

    7.5

    21.74

    21.74

    22.5

    U3

    =2 =1

    unb unbNote thati iP P�

    There is no equilibrium between applied and resisting forces

    Apply Punb

  • U1

    U2

    { }-1tan

    0.00009

    0.00003

    0.00003

    ∆ ∆ = − −

    U = K P

    u1

    u2

    i=3

    LOAD STEP 1: λ1P = 7.5 kN

    Example 2

    75

    U3h

    b

    h

    0.00003

    0.0089

    0.00409

    0.000717

    00.0089

    0.0007170.00400

    00.000717

    0.000717

    ∆ = − −

    =

    − − = ⇓ θ = − −

    U = U + U

    U

    U

    u3

    u1

    u2

    u4

  • u1

    u2

    Mh = -22.49 kN-m

    b b b=P K U

    i=3LOAD STEP 1: λ1P = 7.5 kN

    K = 2.43 1010 N-mm

    Example 2

    Elements’ resisting forces

    Column: linear elastic

    Plastic hinge

    76

    u3

    u1

    u2

    0

    10

    20

    30

    40

    50

    60

    0 0.005 0.01 0.015 0.02 0.025

    rotazione θcp

    Mo

    men

    to (

    kN

    -m)

    0.000717

    22.49

    Kh,tan= 2.43 1010 N-mm

    u4

  • 7.5b h

    7.5

    0 22.488482

    7.5 22.488482

    22.5

    7.5

    = =

    − −

    P P

    7.5

    0

    U1

    U2

    i=3LOAD STEP 1: λ1P = 7.5 kN

    Example 2

    77

    R

    unb R

    7.5

    0

    0.011518

    7.5 7.5 0

    0 0 0

    0 0.011518 0.011518

    = −

    ∆ = = − = − = −

    P

    P P P P

    7.5

    22.49

    22.49

    22.5

    U3

    =3 =2

    unb unbNote thati iP P�

    There is no equilibrium between applied and resisting forces

    Apply Punb

  • U1

    U2

    { }-1tan

    0.0000014

    0.000000474

    0.000000474

    ∆ ∆ = − −

    U = K P

    u1

    u2

    i=4

    LOAD STEP 1: λ1P = 7.5 kN

    Example 2

    78

    U3h

    b

    h

    0.000000474

    0.0089

    0.00409

    0.00072

    00.0089

    0.000720.00409

    00.00072

    0.00072

    ∆ = − −

    =

    − − = ⇓ θ = − −

    U = U + U

    U

    U

    u3

    u1

    u2

    u4

  • u1

    u2

    Mh = -22.5 kN-m

    b b b=P K U

    i=4LOAD STEP 1: λ1P = 7.5 kN

    K = 2.4289 104 kN-m

    Example 2

    Elements’ resisting forces

    Column: linear elastic

    Plastic hinge

    79

    u3

    u1

    u2

    0

    10

    20

    30

    40

    50

    60

    0 0.005 0.01 0.015 0.02 0.025

    rotazione θcp

    Mo

    men

    to (

    kN

    -m)

    0.00072

    22.5

    Kh,tan= 2.4289 104 kN-m

    u4

  • 7.5b h

    7.5

    0 22.499999

    7.5 22.499999

    22.5

    7.5

    = =

    − −

    P P

    7.5

    0

    U1

    U2

    i=4LOAD STEP 1: λ1P = 7.5 kN

    Example 2

    80

    R

    unb R

    7.5

    0

    0.0000028

    7.5 7.5 0

    0 0 0

    0 0.0000028 0.0000028

    =

    ∆ = = − = − = −

    P

    P P P P

    7.5

    22.5

    22.5

    22.5

    U3

    Small enough!!

    =4 =3

    unb unb

    =4

    unb

    Note that i i

    i ≈

    P P

    P 0

    There is equilibrium between

    applied and resisting forces Apply λ2P

  • COMPARISON BETWEEN CONVERGENCE SPEEDS

    Example 2

    5,00

    6,00

    7,00

    8,00

    Pu

    nb

    (3)

    (kN

    -m)

    K-initial

    K-tangent

    81

    0,00

    1,00

    2,00

    3,00

    4,00

    1 3 5 7 9 11 13 15

    Pu

    nb

    (3)

    (kN

    iteration

  • NONLINEAR GEOMETRY: P-∆ ∆ ∆ ∆ EFFECT

    H

    P P

    H ∆

    P∆

  • Example 3

    30

    40

    50

    60

    hin

    ge

    (kN

    -m)

    NL law: Example 2

    NL law: Example 2

    83

    Nonlinear hinge law: from Example 2

    0

    10

    20

    0 0,005 0,01 0,015 0,02

    Mh

    ing

    e

    rotation θθθθcp

    NL law: Example 2

  • P

    H∆y

    θh

    ( )-

    M x = -Pv - Hx

    EIv" = -Pv Hx

    P Hxv" + v = -

    Example 3

    84

    L

    x

    v

    xθh

    ( )

    ( )

    ( ) hh

    sin cos

    0 0

    cos

    1 2

    2

    1

    P Hxv" + v = -

    EI EI

    P P Hv x = C x C x x

    EI EI P

    v 0 = C

    H P +v' L = C

    P PL

    EI EI

    θθ

    + −

    ⇒ =

    ⇒ =

  • ( ) h sincos

    tan

    H P + P Hv x = x x

    EI PP PL

    EI EI

    PL

    H P H

    θ

    θ

    −P

    H∆y

    θcp

    Example 3

    EQUILIBRIUM IN THE DEFORMED CONFIGURATION

    85

    ( ) h

    h

    h

    tan

    tan

    LH P HEI= v L = + L LP EI PP P

    EI EI

    from equilibrium M = HL+ P

    M HL=

    P

    θ∆ −

    −∆

    L

    x

    v

    xθcp

    Get closed form solution ∆

  • hh

    tan

    tan

    PL

    PEIM = H + P LEIP P

    EI EI

    P

    θ

    Example 3

    EQUILIBRIUM IN THE DEFORMED CONFIGURATION

    86

    h h

    h

    h h

    tan

    Assign

    P

    EIH = M PP

    LEI

    M - HL

    P

    M H

    θ

    θ

    ∆ =

    ⇒ ⇒ ⇒ ∆

  • H

    P

    Example 3

    872740kN

    4

    π=

    2

    cr-el 2

    EIP =

    L

  • � 7.3.1 ... Second order effests

    P (forces from all stories above)

    V (total floor load)

    dr θ < 0,1

    0,1< θ < 0,2

    Secondo order effects

    are neglected

    Horizontal seismic action

    Effects are incremented by

    Nonlinear geometry in NTC 2008

    88

    V (total floor load)

    θ = P dr/V hh

    V

    0,1< θ < 0,2 Effects are incremented by1/(1-θ)

    Not allowedθ > 0,3

    0,2 < θ < 0,3 No comment

  • αP1

    αP2 ∆

    α

    1st order linear elastic analysis

    2nd order linear elastic analysis

    Bifurcation

    Conclusions

    89∆

    1st order inelastic analysis

    2nd order inelastic analysis

  • Elastic Analysis – Materials are all linear elasticInelastic Analysis – Materials are inelastic

    First order analysis – Equilibrium in the underformed configurationSecond order analysis – Equilibrium in the deformed

    Material

    Geometry

    Conclusions

    90

    Second order analysis – Equilibrium in the deformed configuration (large displacements, small, moderate or finite deformations)

    Structural collapse is typically associated with loads that lead materials into the inelastic range, and with displacements that lead to structural instability at collapse