Metodologie di progetto di amplificatori di potenza · Lo schema a blocchi semplificato del banco...

30
Capitolo 5 Metodologie di progetto di amplificatori di potenza 5.1 Introduzione Le tecniche di progettazione degli amplificatori di potenza a microonde possono essere sostanzialmente suddivise in due categorie: - approcci sperimentali - simulazioni circuitali Alla prima categoria appartengono i metodi basati sulle misure dirette del dispos- itivo attivo, denominati tecniche di Load/Source Pull; ovviamente, sono i metodi più affidabili ed accurati, ma hanno lo svantaggio non trascurabile di richiedere un appos- ito banco di misura e la disponibilità fisica del dispositivo stesso (aspetto non del tutto secondario). Qualora non fosse possibile eseguire questo tipo di misure, si ricorre all’uso di simulatori non lineari, in cui il dispositivo attivo è rappresentato mediante un modello non lineare il più efficace ed accurato possibile. Ovviamente, tale approccio sarà meno affidabile del precedente ed ovviamente dipenderà dalla accuratezza del modello stesso utilizzato. In questo secondo caso, è inoltre spesso conveniente fare ricorso a delle metodolo- gie semplificate, basate sulla drastica riduzione della complessità delle caratteristiche 86

Transcript of Metodologie di progetto di amplificatori di potenza · Lo schema a blocchi semplificato del banco...

Page 1: Metodologie di progetto di amplificatori di potenza · Lo schema a blocchi semplificato del banco di misura è riportato in figura 5.1. Figura 5.1: Schema semplificato di un banco

Capitolo 5

Metodologie di progetto di

amplificatori di potenza

5.1 Introduzione

Le tecniche di progettazione degli amplificatori di potenza a microonde possono essere

sostanzialmente suddivise in due categorie:

- approcci sperimentali

- simulazioni circuitali

Alla prima categoria appartengono i metodi basati sulle misure dirette del dispos-

itivo attivo, denominati tecniche diLoad/Source Pull; ovviamente, sono i metodi più

affidabili ed accurati, ma hanno lo svantaggio non trascurabile di richiedere un appos-

ito banco di misura e la disponibilità fisica del dispositivo stesso (aspetto non del tutto

secondario).

Qualora non fosse possibile eseguire questo tipo di misure, si ricorre all’uso di

simulatori non lineari, in cui il dispositivo attivo è rappresentato mediante un modello

non lineare il più efficace ed accurato possibile. Ovviamente, tale approccio sarà meno

affidabile del precedente ed ovviamente dipenderà dalla accuratezza del modello stesso

utilizzato.

In questo secondo caso, è inoltre spesso conveniente fare ricorso a delle metodolo-

gie semplificate, basate sulla drastica riduzione della complessità delle caratteristiche

86

Page 2: Metodologie di progetto di amplificatori di potenza · Lo schema a blocchi semplificato del banco di misura è riportato in figura 5.1. Figura 5.1: Schema semplificato di un banco

Metodologie di progetto di amplificatori di potenza

I-V d’uscita del dispositivo attivo (linearizzazione), al fine di stimare con sufficiente

approssimazione le prestazioni dei dispositivi di potenza in condizioni di funziona-

mento lineari. Inoltre, permettono di ottenere una versione preliminare del progetto,

ovvero un buon punto di partenza da cui poi procedere tramite ottimizzazioni (manuali

o automatiche). Tra quelle metodologie, la più diffusa e la più nota è quella proposta

da Cripps nel lontano 1983, che permette distimarei contorni a potenza costante (load

pull power contours) del dispositivo attivo operante in Classe A.

Utilizzando approcci semplificati simili, è possibile stimare le prestazioni di poten-

za del dispositivo attivo anche per altre classi di polarizzazione. Tali metodi sempli-

ficati sono semplici e veloci, ma a causa della loro intrinseca approssimazione pro-

ducono solo dei risultati indicativi delle prestazioni ottenibili e necessitano di una suc-

cessiva fase di raffinamento mediante l’impiego di simulazioni circuitali con modelli

più realistici.

5.2 Tecnica del Load/Source Pull

La tecnica del Load/Source Pull è una tecnica sperimentale che permette di deter-

minare i valori delle impedenze di carico, sia di ingresso che di uscita, che soddisfano

le specifiche di progetto richieste (potenza d’uscita, efficienza, intermodulazione, etc.).

Viene eseguita sperimentalmente su un apposito banco di misura, che può essere in

parte automatizzato. Lo schema a blocchi semplificato del banco di misura è riportato

in figura 5.1.

Figura 5.1: Schema semplificato di un banco di load/source pull.

Le reti di polarizzazione, sia in ingresso sia in uscita, con le relative capacità di

87

Page 3: Metodologie di progetto di amplificatori di potenza · Lo schema a blocchi semplificato del banco di misura è riportato in figura 5.1. Figura 5.1: Schema semplificato di un banco

Metodologie di progetto di amplificatori di potenza

blocco per la continua, vengono indicati come BiasT; i Tuner viceversa rappresentano

delle reti di adattamento variabile (manualmente o in forma controllata da calcolatore).

In fig. 5.2 è riportato uno schema analogo reale di un banco di load/source pull.

(a) (b)

Figura 5.2: Banco di misura per la tecnica del load/source pull: schema a blocchi (a) e

foto (b).

Si consideri ad esempio il caso in cui, fissata la polarizzazione e la potenza d’in-

gressoPin, si vogliano determinare i carichiZin e Zload affinché sia fornita al carico

d’uscita (fissato pari a 50Ω) la massima potenza disponibile in uscitaPout.

È allora abbastanza intuitivo considerare in ingresso un caricoZin in modo da

realizzare la condizione di adattamento coniugato, garantendo così il massimo trasfer-

imento di potenza dal generatore esterno al dispositivo attivo. Così facendo, resta da

determinare il solo carico d’uscitaZload che massimizziPout. Indicando conΓL il

relativo coefficiente di riflessione diZload, si determinano su carta di Smith le curve

di livello Pout ottenute al variare di taleΓL (insieme dei valori di caricoΓL per cui

Pout assume uno stesso valore). Tali curve sono molto simili a delle ellissi, ed in fig.

5.3 sono riportati degli esempi di misure di potenze d’uscita e di efficienze aggiunte di

conversione (PAE) rispettivamente per 1dB e 2dB di compressione.

Tali curve si ottengono variando il coefficiente di riflessione del caricoΓL medi-

ante il Tuner in uscita dello schema di fig. 5.1, riadattando opportunamente mediante

il Tuner in ingresso e misurando il livello della potenza sul carico in uscita tramite un

Power meter; il tutto avviene al livello di compressione prefissato.

E’ poi possibile ripetere questo tipo di misura al variare della potenza del segnale di

ingressoPin e della polarizzazione, ottenendo in tal modo una serie di carte di progetto

88

Page 4: Metodologie di progetto di amplificatori di potenza · Lo schema a blocchi semplificato del banco di misura è riportato in figura 5.1. Figura 5.1: Schema semplificato di un banco

Metodologie di progetto di amplificatori di potenza

(a) (b)

Figura 5.3: Esempi di misure di load pull: (a) curve diPout per 1dB di compressione;

(b) curve di PAE a 2dB di compressione.

molto utili per la progettazione dell’amplificatore di potenza.

5.3 Esempi di utilizzo del Load Pull per la realizzazione di

carte di progetto

Si supponga di aver fissato la polarizzazione e di considerare un’impedenzaZin tale da

soddisfare la condizione di adattamento coniugato in ingresso. Un buon compromesso

tra massima potenza di uscitaPout in condizioni lineari ed elevata efficienza aggiunta

ηadd si ha nel punto ad 1 dB di compressione. Consideriamo allora il problema della

determinazione del valore del caricoZload in corrispondenza del quale il punto1dBGc

presenta il valore massimo possibile perPout (il valore di Pin sarà determinato di

conseguenza); indicheremo conZopt tale valore del carico.

In fig. 5.4 è riportato a titolo di esempio l’andamento della potenza d’uscita in

funzione della potenza di ingresso, ottenuta al variare diZload.

Per quanto riguarda la determinazione del caricoZload, occorre adottare una pro-

cedura di tipo iterativo, come mostrato graficamente in fig. 5.5. Fissato il caricoZ(1)load,

si determina il carico di adattamento di ingressoZ(1)in e si esegue un’analisi perPin

variabile, fino a determinare il puntoQ1 corrispondente al punto 1dBGc, e quindi il

valoreP(1)in . Si varia poi il caricoZload fino ad ottenere il valore massimo diPout,

89

Page 5: Metodologie di progetto di amplificatori di potenza · Lo schema a blocchi semplificato del banco di misura è riportato in figura 5.1. Figura 5.1: Schema semplificato di un banco

Metodologie di progetto di amplificatori di potenza

Figura 5.4: Andamento diPout in funzione diPin al variare del caricoZload.

Figura 5.5: Rappresentazione grafica del funzionamento dell’algoritmo per la

determinazine diZopt.

90

Page 6: Metodologie di progetto di amplificatori di potenza · Lo schema a blocchi semplificato del banco di misura è riportato in figura 5.1. Figura 5.1: Schema semplificato di un banco

Metodologie di progetto di amplificatori di potenza

determinando cosìZ(2)load. Si riadatta in ingresso (determinandoZ

(2)in ) e si ripete l’anal-

isi perPin variabile, determinando il puntoQ1 a 1dBGc ed il relativo valoreP (2)in . Si

procede in questo modo fino a quando il procedimento non converge. In genere sono

necessarie poche iterazioni per determinare il carico ottimo, anche se per ognuno di

essi può essere richiesto un tempo elevato di esecuzione.

Un altro esempio di impiego della tecnica di Load Pull è quello della realizzazione

di carte di progetto relative alle misure di intermodulazione. Infatti, per ogni disposi-

tivo attivo, il valore del carico che minimizza l’intermodulazione differisce da quello

che massimizza la potenza di uscita o il guadagno; è quindi necessario trovare un

compromesso in base alle specifiche suPout eC/I richieste.

Delle carte di progetto molto utili in tale situazione possono essere ottenute de-

terminando i valori dei carichi a cui corrispondePout o C/I costante, mediante una

tecnica di misura simile a quella del load pull, ricorrendo ad uno schema a blocchi del

tipo riportato in figura 5.6.

Figura 5.6: Schema a blocchi per misure diPout eC/I al variare del carico.

Ancora una volta, supporremo che il punto di polarizzazione del dispositivo sia

fissato e che laZin sia scelta in modo da adattare in forma coniugata l’ingresso.

L’intermodulazione è misurata applicando in ingresso al dispositivo due segnali

(toni) puri di uguale ampiezza, a frequenzef1 e f2, separate fra loro di pochi MHz.

Il segnale di uscita conterrà allora queste due portanti amplificate, più tutti i segnali

indesiderati di cui si è parlato in precedenza, tra cui il prodotto di intermodulazione da

esaminare, misurabile mediante un analizzatore di spettro. Si eseguono allora delle

misure che consentono di individuare i contorni relativi aPout e C/I costanti, al

variare diZload, ottenendo delle curve del tipo riportato in figura 5.7.

Ciascuno dei contorni chiusi rappresenta i valori dell’impedenza di caricoZload

corrispondenti ad un valore costante della potenza di uscitaPout; il valore del carico

91

Page 7: Metodologie di progetto di amplificatori di potenza · Lo schema a blocchi semplificato del banco di misura è riportato in figura 5.1. Figura 5.1: Schema semplificato di un banco

Metodologie di progetto di amplificatori di potenza

Figura 5.7: Esempio di curve di livello perPout costante e perC/I costante.

che determina il massimo della potenza di uscita per un particolare insieme di con-

dizioni operative, quali potenza di ingresso, frequenza e punto di polarizzazione, è

similmente ottenibile. I contorni aperti rappresentano invece i valori dell’impedenza di

caricoZload che determinano uno stesso valore dell’intermodulazioneC/I, misurata

in base alla equazione (C/I3

)=

Pout

(f1

)Pout

(2f1 − f2

) (5.1)

Come si può vedere dalla figura 5.7, il carico ottimo è individuato dai punti di tan-

genza tra i contorni diC/I ed i contorni diPout. Tali punti di tangenza definiscono

una curva ottima, come riportato nella stessa figura, i cui punti possono essere rappre-

sentati in funzione di una ascissa curvilineaρ. Quanto detto vale per unaPin fissata;

ripetendo le misure per diversi valori diPin, si ottengono altri contorni e quindi altre

curve ottime distinte tra loro. È possibile allora costruire un grafico in cui si ripor-

tano in ascisse i valori dell’ascissa curvilineaρ ed in ordinata i valori diPout e C/I,

ottenendo delle curve parametriche inPin, simili a quelle riportate nella figura 5.8.

Ripetendo il procedimento al variare della polarizzazione e/o della frequenza, è

possibile ottenere delle carte di progetto mediante le quali determinare il carico che

consente di soddisfare le specifiche. Per esempio, fissato come specifica di progetto

92

Page 8: Metodologie di progetto di amplificatori di potenza · Lo schema a blocchi semplificato del banco di misura è riportato in figura 5.1. Figura 5.1: Schema semplificato di un banco

Metodologie di progetto di amplificatori di potenza

Figura 5.8: Andamento diPin eC/I in funzione della impedenza di carico.

il valore di C/I, sul grafico in fig. 5.8 si traccia una retta orizzontale relativa a tale

valore desiderato, come mostrato in figura 5.9

Tale retta intersecherà le curveC/I, parametriche inPin, in punti differenti, indi-

cati come 1, 2 e 3 in fig. 5.9. In corrispondenza a tali punti si determinano, sulle curve

di Pout, i punti 1’, 2’ e 3’; la curva che unisce tali punti, rappresenta approssimativa-

mente i valori diPout in funzione diρ e di Pin per il valore fissato diC/I. Si sceglie

infine il punto di massimo di tale curva, che definisce univocamente il valore diρopt e

di Pin,opt. In base a quest’ultimo valore si determina il valore diGL,opt.

In maniera analoga, se è il livello diPout ad essere fissato dalle specifiche, si ricorre

alla fig. 5.10.

In corrispondenza ai punti 1, 2, e 3 si determinano i punti 1’, 2’ e 3’ che uniti

individuano una curva; il punto di massimo di tale curva rappresenta il massimo valore

di C/I per un valore fissato diPout, pertanto è preso come punto di ottimo. Tale punto

ancora una volta definisce univocamente i valori diρopt ePin,opt e quindiGL,opt.

93

Page 9: Metodologie di progetto di amplificatori di potenza · Lo schema a blocchi semplificato del banco di misura è riportato in figura 5.1. Figura 5.1: Schema semplificato di un banco

Metodologie di progetto di amplificatori di potenza

Figura 5.9: Esempio di massimizzazione diPout perC/I fissato.

Figura 5.10: Esempio di massimizzazione diC/I perPout fissato.

94

Page 10: Metodologie di progetto di amplificatori di potenza · Lo schema a blocchi semplificato del banco di misura è riportato in figura 5.1. Figura 5.1: Schema semplificato di un banco

Metodologie di progetto di amplificatori di potenza

5.4 Approccio alla progettazione mediante l’impiego di sim-

ulatori commerciali

Oltre alla metodologia di progetto basata sulle misure di load pull effettuate sul dispos-

itivo attivo, che ovviamente prevedono sia la disponibilità fisica di quest’ultimo che un

apposito banco di misura, una diversa possibilità consiste nel far ricorso, quando pos-

sibile, all’uso di simulatori non lineari. In questo secondo caso sono possibili diverse

soluzioni, a condizione ovviamente di avere a disposizione un modello non lineare del

dispositivo attivo. In fig. 5.11 è riportato un esempio di implementazione nel simu-

latore commerciale HP-MDS di un modello non lineare per un MESFET di potenza

prodotto della Alenia Marconi Systems.

(a) (b)

Figura 5.11: Esempio di implementazione nel simulatore commerciale HP-MDS di un

dispositivo di potenza a MESFET prodotto dalla Alenia Marconi Systems: (a) circuito;

(b) equazioni.

Una volta implementato il modello non lineare, mediante analisi di tipo harmonic

balance è possibile simulare la metodologia del load pull; un esempio di schema cir-

cuitale utilizzato per tale scopo è riportato in fig. 5.12, insieme ad i risultati ottenuti

sul modello precedentemente descritto.

Ovviamente, tale procedura è molto laboriosa e quindi scarsamente utilizzata,

a causa sia delle innumerevoli simulazioni necessarie, e quindi dello sforzo com-

95

Page 11: Metodologie di progetto di amplificatori di potenza · Lo schema a blocchi semplificato del banco di misura è riportato in figura 5.1. Figura 5.1: Schema semplificato di un banco

Metodologie di progetto di amplificatori di potenza

(a) (b)

Figura 5.12: Esempio di load pull simulato al calcolatore: (a) schema circuitale

utilizzato; (b) risultati ottenuti.

putazionale, sia al fatto che per ogni valore del carico d’uscita è necessario riadattare il

circuito d’ingresso, di nuovo con un aggravio dal punto di vista del tempo di calcolo.

L’altra possibilità allora consiste nel far ricorso all’impiego di ottimizzatori, in

genere disponibili con il simulatore stesso, definendo appropriate funzioni obiettivo.

Tali approcci però sono sicuramente efficaci qualora si abbia ha disposizione un buon

punto di partenza; viceversa, possono incorrere in problemi di convergenza o in minimi

locali.

Per ottenere allora un progetto di base da raffinare eventualmente con l’uso degli

ottimizzatori, si possono sfruttare i criteri derivanti dalle metodologie semplificate, che

saranno analizzate nei prossimi paragrafi.

5.5 Metodologia di Cripps

E’ una metodologia semplificata per calcolare con buona approssimazione i contorni

a potenza d’uscita costante di un dispositivo attivo di potenza operante in Classe A in

condizioni lineari. L’approccio è sostanzialmente basato su una linearizzazione delle

caratteristiche di uscita, come riportato in fig. 5.13.

Tale semplificazione consiste nel supporre che il dispositivo attivo agisca come

un generatore di corrente ideale, linearmente dipendente dalla tensione d’ingresso (di

gate) tramite una transconduttanzagm assunta costante, come riportato in fig. 5.13.

96

Page 12: Metodologie di progetto di amplificatori di potenza · Lo schema a blocchi semplificato del banco di misura è riportato in figura 5.1. Figura 5.1: Schema semplificato di un banco

Metodologie di progetto di amplificatori di potenza

(a) (b)

Figura 5.13: Caratteristica d’uscita linearizzata (a) e modello equivalente (b)

considerati nella metodologia di Cripps.

Assumendo che la corrente d’uscitaid(t) sia esprimibile nella forma

id(t)

= ip cos(ωt)

(5.2)

la tensione prodotta in un’impedenza di carico

Z = R + jX =∣∣Z∣∣ · ejθ (5.3)

sarà data da

vds

(t)

=∣∣Z∣∣ · ip cos

(ωt + θ

)(5.4)

mentre la potenza istantanea dissipata nel carico sarà

p(t)

= id(t)· vds

(t)

= i2p∣∣Z∣∣ · cos

(ωt + θ

)cos(ωt)

(5.5)

Integrando tale potenza su un periodo, si ottiene l’espressione della potenza d’us-

cita

Prf =12i2p∣∣Z∣∣ · cos

(θ)

=12ipvp cos

(θ)

(5.6)

avendo indicato con

vp = ip∣∣Z∣∣ (5.7)

Dall’equazione (5.6), si può facilmente dedurre che la potenza d’uscita è massima

per θ = 0, ovvero per un carico puramente resistivo. Sotto questa ipotesi infatti, la

quantità di potenza a radio frequenza erogata al carico dipende unicamente dal valore

di R. Indicando allora conVM e IM i limiti superiori di vp e ip, che con riferimento

alla fig. 5.13 e per un amplificatore in Classe A sono

IM =Idss

2VM = VDD − Vk (5.8)

97

Page 13: Metodologie di progetto di amplificatori di potenza · Lo schema a blocchi semplificato del banco di misura è riportato in figura 5.1. Figura 5.1: Schema semplificato di un banco

Metodologie di progetto di amplificatori di potenza

l’impedenza di carico ottima sarà

Zopt = Ropt + j0 con Ropt =VM

IM(5.9)

In queste ipotesi, la curva di carico (definita come il luogo dei punti nel piano I-V che

descrivono il funzionamento dinamico del dispositivo attivo) diviene una retta, come

mostrato in fig. 5.14a.

(a) (b)

Figura 5.14: Curva di carico ottima nel caso di carico puramente resistivoR = Ropt:

(a)θ = 0; (b) θ 6= 0.

Se viceversa l’impedenza di carico presenta anche una parte reattiva (cioèθ 6= 0),

allora la curva di carico che si ottiene diventa un’ellisse, come mostrato in fig. 5.14b.

Come è facilmente intuibile, la condizioneR 6= Ropt può essere verificata solo

in casi molto particolari e per bande di funzionamento moderate. Per questa ragione

diventa interessante esaminare anche il caso in cui il carico è di tipo complesso e con

R 6= Ropt.

Nel caso di funzionamento in Classe A, la massima potenza di uscita nel caso

ottimo è

Popt =12VM · IM =

=12(VDD − Vk

)· Idss

2=

=18I2dssRopt =

=12(VDD − Vk

)2Gopt =

(5.10)

98

Page 14: Metodologie di progetto di amplificatori di potenza · Lo schema a blocchi semplificato del banco di misura è riportato in figura 5.1. Figura 5.1: Schema semplificato di un banco

Metodologie di progetto di amplificatori di potenza

dove

Gopt =1

Ropt(5.11)

Ovviamente, nel caso in cui si considerino altre classi di polarizzazione, i parametri

quali IM eVM andranno ridefiniti in modo opportuno.

Indicando conZL l’impedenza del carico, si osserva che quando|ZL| < Ropt

allora il comportamento lineare è essenzialmente limitato dalla massima escursione

possibile della corrente, rappresentata daIdss (ovvero2IM ); viceversa, quando|ZL| >

Ropt, allora il comportamento lineare è limitato dalla massima escursione possibile per

la tensione, rappresentata da2(VDD−Vk) (ovvero2VM ). Analizziamo separatamente

i due casi.∣∣ZL

∣∣ ≤ Ropt

In questo caso è facile effettuare l’analisi esprimendo l’impedenza di carico nella

forma

ZL = RL + jXL (5.12)

In fig. 5.15 è rappresentata la curva di carico (ellittica) corrispondente a questo caso.

Figura 5.15: curva di carico nel caso|ZL| <opt.

In queste condizioni, il massimo valore di picco raggiungibile perid(t) rimane

ip = Idss/2 e la potenza di uscita lineare è data da

PL =12

(Idss

2

)2

RL (5.13)

Come conseguenza si haPL

Popt=

RL

Ropt(5.14)

99

Page 15: Metodologie di progetto di amplificatori di potenza · Lo schema a blocchi semplificato del banco di misura è riportato in figura 5.1. Figura 5.1: Schema semplificato di un banco

Metodologie di progetto di amplificatori di potenza

Per quanto riguarda la tensionevds(t), questa è data dalla eq. (5.4) ed il suo

massimo valore di piccoVM è dato da

VM =Idss

2

√R2

L + X2L =

VDD − Vk

Ropt

√R2

L + X2L (5.15)

Risulta allora evidente che affinché l’escursione della tensione sia minore o al lim-

ite uguale al suo massimo valore possibile, cioèVDD − Vk, la reattanza di caricoXL

deve soddisfare la seguente condizione

X2L ≤ R2

opt −R2L (5.16)∣∣ZL

∣∣ ≥ Ropt

In questo caso è opportuno rappresentare il carico mediante la sua ammettenza

YL = GL + jBL (5.17)

In fig. 5.16 è rappresentata la curva di carico (ellittica) corrispondente a questo caso.

Figura 5.16: curva di carico nel caso|ZL| > Ropt.

In tali condizioni, il massimo valore di picco raggiungibile per la tensionevds(t) è

VDD − V k e la potenza di uscita può essere espressa nella forma

PL =12

(VDD − Vk

)2

GL (5.18)

da cuiPL

Popt=

GL

Gopt(5.19)

Il massimo valore di picco della correnteid(t) è invece dato da

IM =

(VDD − Vk

)√G2

L + B2L =

Idss

2Gopt

√G2

L + B2L (5.20)

100

Page 16: Metodologie di progetto di amplificatori di potenza · Lo schema a blocchi semplificato del banco di misura è riportato in figura 5.1. Figura 5.1: Schema semplificato di un banco

Metodologie di progetto di amplificatori di potenza

Allora, affinché tale valore sia inferiore aIdss/2, BL deve soddisfare la seguente

relazione

B2L ≤ G2

opt −G2L (5.21)

Le considerazioni precedenti suggeriscono l’opportunità di utilizzare le equazioni

(5.14), (5.16), (5.19) e (5.21) al fine di costruire le curve a potenza costante su carta di

Smith.

Per i dettagli sul modo di costruire i contorni a potenza costante mediante la

metodologia di Cripps, si rimanda in appendice al capitolo.

5.6 Esempio di progetto mediante la metodologia di Cripps

Per dimostrare l’impiego della teoria di Cripps con un esempio pratico, viene presen-

tato un esempio di progetto di un amplificatore nella banda 4.5-5.5GHz. Il dispositivo

utilizzato è un MESFET di media potenza della fonderia MMT (UK) e le simulazioni

sono state fatte mediante un simulatore commerciale (HP-MDS) utilizzando un mod-

ello ‘full non linear’ tipo Materka. Il circuito equivalente utilizzato per il dispositivo

attivo e le relative curve in continua, sono riportate in fig. 5.17.

(a) (b)

Figura 5.17: Circuito equivalente del dispositivo attivo considerato (a) e caratteristiche

in continua (b).

Le tensioni di alimentazione scelte sonoVDD = 5V eVGG = −0.5V (Classe A).

Dall’analisi delle caratteristiche, si determina il valore diRopt = 21.9Ω. Si è poi

misurato il valore della capacità di uscita data daCds = 0.3107pF .

In fig. 5.18 sono riportati i contorni a potenza costante mentre in fig. 5.19 è

101

Page 17: Metodologie di progetto di amplificatori di potenza · Lo schema a blocchi semplificato del banco di misura è riportato in figura 5.1. Figura 5.1: Schema semplificato di un banco

Metodologie di progetto di amplificatori di potenza

riportata la rete di uscita sintetizzata ed il corrispondente andamento dell’impedenza

di carico sintetizzata

Figura 5.18: Simulazione delle curve aPout costante.

(a) (b)

Figura 5.19: Rete di adattamento d’uscita progettata (a) e relativo andamento della

impedenza vista ai capi diId (b).

Come si nota, la rete di uscita sintetizza un coefficiente di riflessione che si mantiene

all’interno della curva di livello ad 1dB. E’ inoltre da osservare che considerandoCds

eLd come elementi della rete esterna, l’impedenza ottima da sintetizzare è puramente

resistiva e quindi costante in frequenza, per cui la sintesi della rete di adattamento può

essere fatta usando un unico set di curve di livello (determinate in precedenza).

Infine, la rete di ingresso viene sintetizzata per soddisfare le condizioni di adat-

102

Page 18: Metodologie di progetto di amplificatori di potenza · Lo schema a blocchi semplificato del banco di misura è riportato in figura 5.1. Figura 5.1: Schema semplificato di un banco

Metodologie di progetto di amplificatori di potenza

tamento complesso coniugato, ottenendo l’amplificatore riportato in fig. 5.20, le cui

prestazioni sono riportate in fig. 5.21.

Figura 5.20: Amplificatore di potenza realizzato con la metodologia di Cripps.

(a) (b)

Figura 5.21: Parametri S dell’amplificatore realizzato mediante metodologia di Cripps:

(a) adattamento; (b) guadagno.

Come si può vedere, le prestazioni ottenute risultano in buon accordo con le pre-

visioni di Cripps, ovvero ilripple del guadagno nella banda di interesse è di circa

1dB. Ovviamente, nella simulazione si è tenuto conto sia dei parassiti (trascurati o

semplificati da Cripps) sia del comportamento non lineare. Se necessario, è possibile

successivamente ottimizzare tale progetto di base per soddisfare con più accuratezza

le specifiche richieste.

103

Page 19: Metodologie di progetto di amplificatori di potenza · Lo schema a blocchi semplificato del banco di misura è riportato in figura 5.1. Figura 5.1: Schema semplificato di un banco

Metodologie di progetto di amplificatori di potenza

5.7 Metodologia semplificata per amplificatori di tipo lin-

eare

In un amplificatore di potenza, in condizioni di grande segnale, la corrente e la tensione

d’uscita non sono puramente sinusoidali, ma presentano un elevato contenuto armoni-

co. La generazione di tali componenti armoniche è generalmente ascritta a fenomeni di

taglio (clipping) dovuti alla conduzione diretta della giunzione gate-canale, al pinch-

off del canale stesso, al breakdown della giunzione gate-drain o al comportamento

ohmico nella regione di triodo (bassa tensioneVds). La presenza di queste limitazioni

porta ad analizzare il dispositivo attivo mediante un modello equivalente semplificato

del tipo riportato in fig. 5.22, assumendo che possa essere rappresentato con un gen-

eratore di corrente controllato in tensione, caratterizzato da una transconduttanzagm

costante (oppure linearmente variabile con la tensione di pilotaggio).

(a) (b)

Figura 5.22: Caratteristiche del dispositivo attivo nel caso digm costante (a) o lineare

(b).

Nel caso si assuma un modello agm costante, la corrente in uscita dal dispositivo

attivo può essere espressa in funzione dell’angolo di circolazione, che indichiamo con

φ, ovvero :

Id =

Im

1−cos(

φ2

) · [cos(ϑ)− cos

(φ2

)]se|ϑ| < φ

2 ,

0 altrimenti

(5.22)

doveIm rappresenta il massimo valore della corrente d’uscita eϑ = ωt. L’angolo di

104

Page 20: Metodologie di progetto di amplificatori di potenza · Lo schema a blocchi semplificato del banco di misura è riportato in figura 5.1. Figura 5.1: Schema semplificato di un banco

Metodologie di progetto di amplificatori di potenza

circolazione può essere espresso in funzione della corrente di polarizzazioneId,DC ,

ossia:

φ = cos−1

(Id,DC

Id,DC − Im

)(5.23)

In fig. 5.23 è riportato un esempio diId pergm supposto costante.

Figura 5.23: Esempio di forma d’ondaId di tipo sinusoidale.

La tensione di uscita dipenderà invece dal tipo di terminazione armonica. Defini-

amo comeCondizioni di Riferimentoquelle per un amplificatore in classe A, in cui le

espressioni della resistenza di carico ottima, della potenza d’uscita a RF, della potenza

in continua dissipata e della efficienza di conversione sono date da:

RA = 2Vds,DC − Vk

ImPdc,A =

Im · Vds,DC

2

Prf,A =V 2

ds,DC ·(1− αk

)22RA

Pdiss,A =Vds,DC · Im

4·(1− αk

)(5.24)

ηd,A =Prf,A

Pdc,A=

12·(1− αk

)dove

αk ≡Vk

Vds,DC(5.25)

rappresenta la tensione di ginocchioVk normalizzata rispetto alla tensione di polariz-

zazioneVds,DC .

Nel caso di funzionamento di tipoTuned Load, di cui in fig. 5.24 è riportata per

comodità la sola rete d’uscita (l’ingresso è adattato in modo complesso coniugato), è

105

Page 21: Metodologie di progetto di amplificatori di potenza · Lo schema a blocchi semplificato del banco di misura è riportato in figura 5.1. Figura 5.1: Schema semplificato di un banco

Metodologie di progetto di amplificatori di potenza

Figura 5.24: Esempio d’amplificatore di tipoTuned Load.

possibile determinare in forma chiusa le espressioni della resistenza di carico ottima,

del livello (normalizzato) della potenza d’uscita e dell’efficienza di drain ottenibili, in

funzione dell’angolo di circolazioneφ (ossia della classe di polarizzazione e del livello

di pilotaggio:

RTL = RA · π ·1− cos

(φ2

)φ− sin

(φ2

) (5.26)

Pdc,TL =Pdc,A

π·2 sin

(φ2

)− φ · cos

(φ2

)1− cos

(φ2

) (5.27)

Prf,TL =Prf,A

π·

φ− sin(φ)

1− cos(

φ2

) (5.28)

ηd,TL = ηd,A ·φ− sin

(φ)

2 sin(

φ2

)− φ · cos

(φ2

) (5.29)

Le quantità definite sono riportate graficamente in figura 5.25, in funzione dell’an-

golo di circolazione.

Per quanto riguarda la potenza dissipata sul dispositivo attivo, questa è esprimibile

nella forma:

Pdiss,TL =Pdc,A

π·sin(

φ2

[2 + cos

(φ2

)]− φ

2 ·

[1 + 2 cos

(φ2

)]1− cos

(φ2

) (5.30)

riportata graficamente in fig. 5.26.

106

Page 22: Metodologie di progetto di amplificatori di potenza · Lo schema a blocchi semplificato del banco di misura è riportato in figura 5.1. Figura 5.1: Schema semplificato di un banco

Metodologie di progetto di amplificatori di potenza

Figura 5.25: Resistenza di carico ottimo a frequenza fondamentale (a), potenza dissi-

pata in continua (b), potenza d’uscita (c) ed efficienza di conversione (d) normalizzate

rispetto alla Classe-A, in funzione dell’angolo di circolazioneφ della corrente di uscita,

per il Tuned Load.

Figura 5.26: Potenza dissipata sul dispositivo attivo, normalizzata rispetto alla Classe

A, in funzione dell’angolo di circolazioneφ della corrente di uscita per ilTuned Load.

107

Page 23: Metodologie di progetto di amplificatori di potenza · Lo schema a blocchi semplificato del banco di misura è riportato in figura 5.1. Figura 5.1: Schema semplificato di un banco

Metodologie di progetto di amplificatori di potenza

Nel caso invece di configurazione di tipo resistivo o accordato, ovvero con una

resistenza a tutte le armoniche, come riportato in fig. 5.27, si ottengono le espressioni

riassunte in fig. 5.28.

Figura 5.27: Esempio d’amplificatore di tipo accordato.

Sulla base dei risultati semplificati ottenuti, è possibile effettuare alcune consid-

erazioni di carattere pratico. Per amplificatori in classe A è preferibile scegliere (se

possibile) un dispositivo attivo con transconduttanzagm variabile linearmente, piut-

tosto che costante: nel caso Tuned Load la potenza d’uscita rimane costante, mentre

l’efficienza passa dal 50% al 78.5% (casoαk=1). Nel caso invece di terminazione di

tipo resistivo, si ha un degrado nelle prestazioni se la transconduttanzagm è lineare,

mentre non si hanno cambiamenti nel caso digm costante, visto che in questo caso non

si ha una forte generazione di armoniche. Per la classe B invece si hanno prestazioni

migliori se si considera una transconduttanza costante anziché lineare. In tutti i casi

è comunque preferibile avere una terminazione di tipo Tuned Load anziché resistiva,

come è logico aspettarsi poiché si elimina la dissipazione di potenza sulle terminazioni

alle armoniche indesiderate.

Per quanto riguarda il valore di resistenza di carico ottima, questo varia ben poco

nel passare dalla classe A alla classe B (è addirittura lo stesso nei casi estremi se si

assume ungm costante, fig. 5.25a).

Gli amplificatori in classe A generalmente sono utilizzati come stadi di pilotaggio,

in quanto presentano un guadagno elevato con scarsi effetti di distorsione. Viceversa,

gli amplificatori in classe B sono molto più efficienti (η per un classe B è 1.5 volte più

108

Page 24: Metodologie di progetto di amplificatori di potenza · Lo schema a blocchi semplificato del banco di misura è riportato in figura 5.1. Figura 5.1: Schema semplificato di un banco

Metodologie di progetto di amplificatori di potenza

grande che per un classe A in configurazione Tuned Load) fornendo grosso modo lo

stesso livello di potenza d’uscita, anche se con un guadagno ridotto di 1/4 rispetto alla

classe A.

Nelle considerazioni fatte in precedenza non si è tenuto conto degli effetti della

ammettenza di uscita del dispositivo attivo, in genere rappresentata come una condut-

tanzagds in parallelo ad una capacitàCds. Le considerazioni fatte in precedenza allora

continuano a rimanere valide, purché però siano riferite al generatore controllatoId.

Nel caso in cui il carico imposto a questo generatore non fosse puramente resistivo, la

retta di carico diverrebbe una curva (chiusa) di carico (un’ellisse)

Figura 5.28: Tabella numerico delle prestazioni di un sistema di amplificazione

Sempre con lo stesso modello semplificato, si può dimostrare per il Tuned Load

che il guadagno lineare diminuisce di 6 dB nel passare dalla Classe A alla Classe B.

Infatti, se si assume una stessa escursione del segnale di ingresso (vgs), e quindi la

109

Page 25: Metodologie di progetto di amplificatori di potenza · Lo schema a blocchi semplificato del banco di misura è riportato in figura 5.1. Figura 5.1: Schema semplificato di un banco

Metodologie di progetto di amplificatori di potenza

stessa potenza di ingressoPin nei due casi si hanno le curve di carico riportate in fig.

5.29a.

(a) (b)

Figura 5.29: Curve di carico (linearizzate) (a) e relativi andamenti diPout vsPin (b)

per il Classe A ed il Classe B.

Nel caso del Classe A si ha

Pout,A =12· Im

2·(Vds,DC − Vk

)=

Im

4·(Vds,DC − Vk

)(5.31)

Analogamente, per il Classe B si ha

Pout,B =12· Im

(Vds,DC − Vk

)4

=14· Pout,A (5.32)

In termini di guadagno è allora possibile scrivere

GA =Pout,A

Pin=

4 · Pout,B

Pin= 4 ·GB (5.33)

e quindi

GA

∣∣∣[dB]

= 10 · log10 4 + GB

∣∣∣[dB]

= 6dB + GB

∣∣∣[dB]

(5.34)

ottenendo quindi andamenti diPout vsPincome riportato in fig. 5.29b.

110

Page 26: Metodologie di progetto di amplificatori di potenza · Lo schema a blocchi semplificato del banco di misura è riportato in figura 5.1. Figura 5.1: Schema semplificato di un banco

Appendice A

Algoritmo di Cripps

A.1 Algoritmo

Le considerazioni fatte nel capitolo sulla teoria di Cripps, suggeriscono l’opportunità

di usare le equazioni (5.14), (5.16), (5.19) e (5.21) al fine di costruire le curve a potenza

costante su carta di Smith.

Il modo di procedere può essere riassunto nel seguente modo:

1. Si calcolaRopt ePopt rispettivamente dalla (5.9) e (5.10);

2. Si valuta il valore diRL eGL per una curva a N-dBm usando la (5.14) e (5.19);

(a) Posto

PL,N = Popt −N [dBm]

(b) Ricordando che

PL = 10PL,N

10 [mWatt]

(c) Si individuano sulla carta di Smith i due punti resistivi

RL−HIGH = Ropt100.1N RL−LOW = Ropt10−0.1N

GL−LOW = R−1L−HIGH GL−HIGH = R−1

L−LOW

(d) Si noti cheRL−LOW eRL−HIGH devono essere eventualmente scambiati

in modo che sia soddisfatta la seguente condizione

RL−LOW < Ropt < RL−HIGH

111

Page 27: Metodologie di progetto di amplificatori di potenza · Lo schema a blocchi semplificato del banco di misura è riportato in figura 5.1. Figura 5.1: Schema semplificato di un banco

Algoritmo di Cripps

3. Dal punto corrispondente aRL−LOW si tracciano sulla carta di Smith le curve

a resistenza costante, mentre dal punto corrispondente aRL−HIGH si tracciano

le curve a conduttanza costante;

4. Si individuano le intersezioni di tali curve;

5. La curva a N-dBm è definita da queste due curve, che soddisfano le eq. (5.16) e

(5.21)

(a) Si considera

XL =√

R2opt −R2

L−LOW e BL =√

G2opt −G2

L−LOW

(b) Si considerano poi valori diX ∈ [−XL, XL] eB ∈ [−BL, BL]

(c) Si calcolaZL = RL−LOW + jX eYL = GL−LOW + jB

(d) Metà della curva di livello è individuata dai punti su carta di Smith definiti

da

ΓL( =ZL − 50ZL + 50

mentre l’altra metà è individuata da

ΓL) =0.02− YL

0.02 + YL

(e) Si tracciano queste curve sulla carta di Smith

6. Si ripete dal passo 2 per un altro valore di N.

A.2 Esempio di costruzione dei ‘load pull contours’

In fig. A.1 sono riportate come esempio le curve di livello diPout nel caso diRopt =

20W , costruite mediante l’algoritmo descritto in precedenza.

E’ da osservare però che fino ad ora le reattanze parassite interne ed esterne pre-

senti nel dispositivo attivo, non sono state affatto prese in considerazione. Allora, al

fine di ‘confrontare’ la previsione teorica con i dati misurati, è necessario introdurre l’-

effetto della capacità di uscita (o di drain)Cds e dell’induttanza di connessione esterna

(Ld). Indicando allora conZload l’impedenza di carico ai capi dei terminali d’uscita

112

Page 28: Metodologie di progetto di amplificatori di potenza · Lo schema a blocchi semplificato del banco di misura è riportato in figura 5.1. Figura 5.1: Schema semplificato di un banco

Algoritmo di Cripps

Figura A.1: Curve di livello diPout nel casoRopt = 20W , riferite ai capi diId.

del dispositivo attivo e conZL quella ai capi del generatore controllatoId, si ha la

relazione

ZLoad =ZL ·

(1− ω2CdsLd

)− jωLd

1− jωCdsLd(A.1)

Ciò corrisponde ad uno ‘spostamento’ dei piani di riferimento. Il risultato che si

ottiene nel casoCds = 1pF , Ld = 0.25nH ef = 10GHz è riportato in fig. A.2.

Figura A.2: Curve di livello diPout nel casoRopt = 20W , riferite ai terminali esterni

del dispositivo attivo.

113

Page 29: Metodologie di progetto di amplificatori di potenza · Lo schema a blocchi semplificato del banco di misura è riportato in figura 5.1. Figura 5.1: Schema semplificato di un banco

Algoritmo di Cripps

A.3 Applicazione della metodologia di Cripps mediante l’u-

so di simulatori commerciali

Come detto in precedenza, le curve di potenza costante sono ottenute ‘seguendo’ sulla

carta di Smith le curve a resistenza o a conduttanza costante. Risulta allora evidente

che sarà necessario costruire (simulare) due circuiti risonanti, per ricreare al calcola-

tore queste due curve. Infatti, per disegnare il contorno di sinistra (corrispondente alla

curva a resistenza costante) sarà necessario un circuito RLC serie, mentre per diseg-

nare la restante metà (corrispondente alla curva a conduttanza costante) sarà necessario

un circuito RLC parallelo.

Per quanto riguarda il circuito serie, riportato in fig. A.3, l’impedenza vista dalla

porta è data da

ZS = RS + jωLS +1

jωCS(A.2)

Figura A.3: Circuito risonante serie utilizzato per costruire metà curva di livello di

Pout.

Per ottenere il contorno a N-dBm, la resistenza deve esse determinata in accordo

con l’eq. (5.14):

RS = Ropt10−0.1N (A.3)

I componenti reattivi possono essere determinati dalle equazioni

+XL = ωHIGHLS −1

ωHIGHCS(A.4)

−XL = ωLOW LS −1

ωLOW CS(A.5)

114

Page 30: Metodologie di progetto di amplificatori di potenza · Lo schema a blocchi semplificato del banco di misura è riportato in figura 5.1. Figura 5.1: Schema semplificato di un banco

Algoritmo di Cripps

doveωLOW e ωHIGH sono i limiti in frequenza della banda di interesse. Risol-

vendo le equazioni precedenti si trova

LS =

∣∣XL

∣∣ · (ωHIGH + ωLOW

)ω2

HIGH − ω2LOW

(A.6)

CS =ω2

HIGH − ω2LOW∣∣XL

∣∣ · (ωHIGHω2LOW + ωLOW ω2

HIGH

) (A.7)

Analoga trattazione può essere fatta per il circuito parallelo, riportato in fig. A.4,

dove l’ammettenza vista dalla porta in questo caso è

YP =1

RP+

1jωLP

+ jωCP (A.8)

Figura A.4: Circuito risonante parallelo utilizzato per costruire metà curva di livello di

Pout.

Per ottenere il contorno a N-dBm, la resistenza deve esse determinata in accordo

con l’eq. (5.14).

RP = Ropt100.1N (A.9)

I componenti reattivi possono essere determinati dalle equazioni

+BL = ωHIGHCP −1

ωHIGHLP(A.10)

−BL = ωLOW CP −1

ωLOW LP(A.11)

dove ancora una voltaωLOW e ωHIGH sono i limiti in frequenza della banda di

interesse. Risolvendo le equazioni precedenti si trova

LP =ω2

HIGH − ω2LOW∣∣BL

∣∣ · (ωHIGHω2LOW + ωLOW ω2

HIGH

) (A.12)

CP =

∣∣XL

∣∣ · (ωHIGH + ωLOW

)ω2

HIGH − ω2LOW

(A.13)

115