L’Interferometro Virgo Michele Punturo INFN Perugia a nome della Collaborazione Virgo.

29
L’Interferometro Virgo Michele Punturo INFN Perugia a nome della Collaborazione Virgo

description

La collaborazione Virgo L’esperimento Virgo è realizzato da una collaborazione italo-francese Firenze/Urbino Frascati (LNF) Napoli Pisa Perugia Roma (Roma1) Annecy (LAPP) Lyon (IPNL) Orsay (LAL) Nice (ILGA/OCA) Paris (ESPCI)

Transcript of L’Interferometro Virgo Michele Punturo INFN Perugia a nome della Collaborazione Virgo.

Page 1: L’Interferometro Virgo Michele Punturo INFN Perugia a nome della Collaborazione Virgo.

L’Interferometro Virgo

Michele PunturoINFN Perugia

a nome della Collaborazione Virgo

Page 2: L’Interferometro Virgo Michele Punturo INFN Perugia a nome della Collaborazione Virgo.

Le onde gravitazionali

all’IFAE?• Cosa c’è di più di “Alta

Energia” della gravitazione?

Page 3: L’Interferometro Virgo Michele Punturo INFN Perugia a nome della Collaborazione Virgo.

La collaborazione Virgo•L’esperimento Virgo è realizzato da una collaborazione italo-francese

• Firenze/Urbino• Frascati (LNF)• Napoli• Pisa• Perugia• Roma (Roma1)

• Annecy (LAPP)• Lyon (IPNL)• Orsay (LAL)• Nice (ILGA/OCA)• Paris (ESPCI)

Page 4: L’Interferometro Virgo Michele Punturo INFN Perugia a nome della Collaborazione Virgo.

Gravitation in the General Relativity• General Relativity field equation

GG

cT8

4

Energy-Momentum tensor

Space-time deformation tensor

• Naïf interpretation of this equation:• Generalized Hooke equation:

klijklij C Stress tensor

Strain tensorElasticity coefficientstensor

NG

c

PaEsteel

424

11

108.48

102

Space-time is a very rigid medium:Linear approximation of the field equation is allowed

•A.Einstein proposed the linearized solution of the field equation in 1916 (wave propagating at speed c and with two polarizations):

Page 5: L’Interferometro Virgo Michele Punturo INFN Perugia a nome della Collaborazione Virgo.

Gravitational Waves

h+

h

Phase: 0 /2 /2

2th

ll

Page 6: L’Interferometro Virgo Michele Punturo INFN Perugia a nome della Collaborazione Virgo.

The Virgo Detector

3 km W

est ar

m

3 km North armCentralBuilding

ControlBuilding

Mode cleaner

building and tube

Page 7: L’Interferometro Virgo Michele Punturo INFN Perugia a nome della Collaborazione Virgo.

Working principle

laser

3.093874

3.093874

fase x( )

L2L1 x1.055 10 6 1.06 10 6 1.065 10 6 1.07 10 64

2

0

2

4

0-/100 /100

Phas

e(L)

hLPP inout

laser

2 2cos

1

0

P x( )

6 6 x5 10 6 0 5 10 60

0.5

1

2123 1010 h

mL 1820 1010

0 /2/2

Page 8: L’Interferometro Virgo Michele Punturo INFN Perugia a nome della Collaborazione Virgo.

Lase

rLB

B2

B2

Q2 1

Q2 2

RFC_DT

IMC

IMC_D1T

Q1

2

Q1 1 B1p

B1p

B5

B1s

BSWI

WE

NI NE

PR

RFCIB

Q8 2

Q8 1

B7

Q8 1

Q8 2

B8WB

NB

L=6m

L=5.

6m

L=6.4m

L=3km

L=3k

m

OM

C

OB

EB

Virgo Optical Scheme

Page 9: L’Interferometro Virgo Michele Punturo INFN Perugia a nome della Collaborazione Virgo.

The injection system

1W master laser Injection bench

Mod

e Cle

aner

L

= 1

43 m

ITF

Local controls

22 W slave laser

Referencecavity

Telescope

Slave Nd:YVO4 Laser

Nd:YAG =1.064 m

Suspended MC mirror

Dio

de p

ump

ULE

mon

olith

ic

Page 10: L’Interferometro Virgo Michele Punturo INFN Perugia a nome della Collaborazione Virgo.

The Vacuum System• The largest high vacuum system in Europe:

– About 7000 m3

– 1.2 m diameter pipe @ 10-7mbar (H2 partial pressure) (6km long)

• Reduction of light fluctuation given by air flux

– 7 long towers (9m long) with differential vacuum:• Usual 10-7 mbar vacuum in the upper part• 10-9 mbar in the lower part, where mirrors are located

– Thermal noise reduction– Mirror contamination control

– Short towers @ 10-7mbar

Page 11: L’Interferometro Virgo Michele Punturo INFN Perugia a nome della Collaborazione Virgo.

The seismic isolation• What distinguishes Virgo from the competitors is the

high sensitivity at low frequency• In a GW detector, the low frequency range is

dominated by seismic noise • The typical spectral amplitude of the seismic ground

vibration is

xg

x

2

20

220

20

0

gg xx

xx

N stages

N

gxx 2

0

0

The

Supe

r-A

ttenu

ator

2

710f

fxg

Page 12: L’Interferometro Virgo Michele Punturo INFN Perugia a nome della Collaborazione Virgo.

The Super-

Attenuator

Page 13: L’Interferometro Virgo Michele Punturo INFN Perugia a nome della Collaborazione Virgo.
Page 14: L’Interferometro Virgo Michele Punturo INFN Perugia a nome della Collaborazione Virgo.

Last stage design• The last stage has been designed to minimize the thermal

fluctuation of the mirror• The thermal noise is one of the fundamental limits to the Virgo

sensitivity in the 5-500Hz frequency range

• Equi-partition theorem

mxm

Tkx

Tkxk

rmsB

rms

Brmspend

1220

2

2

10

21

21

• Fluctuation-Dissipation theorem

Z

Tkx Btherm

142

2

220

2220

202

))(()()(4)(

mTkx b

therm

Page 15: L’Interferometro Virgo Michele Punturo INFN Perugia a nome della Collaborazione Virgo.

Mirrors• The Virgo mirrors are the largest (and more expensive) mirrors in

the current GW detectors

• Very demanding requirements in term of absorption, birifrangence of the substrate and the coatings

350 mm100 mm

Page 16: L’Interferometro Virgo Michele Punturo INFN Perugia a nome della Collaborazione Virgo.

The Virgo Commissioning

• The last large mirror have been mounted in July 2003• Virgo is a complex machine that needs a deep tuning

of many parameters– Methods and technologies to do that are completely new– Progresses in the commissioning of the machine are

demonstrated by the improvement of the duty cycle and by the enhancement of the sensitivity

Page 17: L’Interferometro Virgo Michele Punturo INFN Perugia a nome della Collaborazione Virgo.

Commissioning planPhase A: Commissioning of interferometer arms

• Test all aspects of control systems with a simple optical configuration- locking, automatic alignment, second stage of frequency stabilization and suspension hierarchical control (tidal and marionette)

• First shake of the sub-systems

Page 18: L’Interferometro Virgo Michele Punturo INFN Perugia a nome della Collaborazione Virgo.

Commissioning planPhase A: Commissioning of interferometer arms

• Test all aspects of control systems with a simple optical configuration- locking, automatic alignment, second stage of frequency stabilization and suspension hierarchical control (tidal and marionette)

• First shake of the sub-systems

Page 19: L’Interferometro Virgo Michele Punturo INFN Perugia a nome della Collaborazione Virgo.

Commissioning planPhase A: Commissioning of interferometer arms

• Test all aspects of control systems with a simple optical configuration- locking, automatic alignment, second stage of frequency stabilization and suspension hierarchical control (tidal and marionette)

• First shake of the sub-systems

Phase B: Commissioning of interferometer in ‘recombined mode’• Useful intermediate step towards full interferometer lock • Verify functioning of BS longitudinal control• Re-run all aspects of control system in a more complex configuration• Start noise investigations

Page 20: L’Interferometro Virgo Michele Punturo INFN Perugia a nome della Collaborazione Virgo.

Commissioning planPhase A: Commissioning of interferometer arms

• Test all aspects of control systems with a simple optical configuration- locking, automatic alignment, second stage of frequency stabilization and suspension hierarchical control (tidal and marionette)

• First shake of the sub-systems

Phase B: Commissioning of interferometer in ‘recombined mode’• Useful intermediate step towards full interferometer lock • Verify functioning of BS longitudinal control• Re-run all aspects of control system in a more complex configuration• Start noise investigations

Phase C: Commissioning of Recycled Fabry-Perot interferometer• Run full locking acquisition process• Verify functioning of PR mirror longitudinal control• Re-run SSFS, tidal control and marionette control• Implement complete wave-front sensing control• Continue noise investigations

Page 21: L’Interferometro Virgo Michele Punturo INFN Perugia a nome della Collaborazione Virgo.

Commissioning planPhase A: Commissioning of interferometer arms

• Test all aspects of control systems with a simple optical configuration- locking, automatic alignment, second stage of frequency stabilization and suspension hierarchical control (tidal and marionette)

• First shake of the sub-systems

Phase B: Commissioning of interferometer in ‘recombined mode’• Useful intermediate step towards full interferometer lock • Verify functioning of BS longitudinal control• Re-run all aspects of control system in a more complex configuration• Start noise investigations

Phase C: Commissioning of Recycled Fabry-Perot interferometer• Run full locking acquisition process• Verify functioning of PR mirror longitudinal control• Re-run SSFS, tidal control and marionette control• Implement complete wave-front sensing control• Continue noise investigations

Phase D: Noise hunting

Page 22: L’Interferometro Virgo Michele Punturo INFN Perugia a nome della Collaborazione Virgo.

Sensitivity Improvement

Page 23: L’Interferometro Virgo Michele Punturo INFN Perugia a nome della Collaborazione Virgo.

Noise Budget

Page 24: L’Interferometro Virgo Michele Punturo INFN Perugia a nome della Collaborazione Virgo.

Data Analysis

• Three kinds of GW sources are expected:– Periodic sources:

• Pulsars with quadrupolar moment– Burst:

• Non-axisymmetric Supernova explosions– Coalescing binaries

• Pair of stars (Neutron stars or Black Holes) rapidly rotating around the center of mass

Page 25: L’Interferometro Virgo Michele Punturo INFN Perugia a nome della Collaborazione Virgo.

CB detection• Coalescing binaries detection needs the development of

a new analysis strategy• Hypothesis:

– The signal shape is well known• The post-Newtonian approximation of the signal

– The noise of the ITF is (almost) stationary and gaussian

• Optimal filtering method:– Wiener (or matched) filtering

• Correlator in time space• “product” in frequency

Page 26: L’Interferometro Virgo Michele Punturo INFN Perugia a nome della Collaborazione Virgo.

Detection Strategy• The star masses are unknown parameters

– we don’t know the optimal filter, but we can parametrize it

• Detection Strategy:– we define a priori the signal-to-noise that we can accept to loose

respect to the optimal one (ambiguity function):– we select a frequency range, imposed by the apparatus sensitivity,

where to detect the CB signal (25-1000 Hz)– We build-up a “templates” grid (about 45000 templates); the grid step

is selected in such a way the SNR lost is below the defined threshold– We perform the matching (correlators) between the ITF output and all

the templates– All the matching above threshold, are cross-checked with a sort of 2

test

Page 27: L’Interferometro Virgo Michele Punturo INFN Perugia a nome della Collaborazione Virgo.

deS

hXtc ti

n

*~~Matched Filter implementation

Template bank is generated hi(t)Hi() distributed on all the processes memorydistributed on all the processes memoryx(t)X(w)

Double Whitening

The integral is evaluatedin each processin each processfor each template hfor each template hii(t)(t)

•Cluster BeoWulf of 23 Opteron 2GHz bi-processor

Page 28: L’Interferometro Virgo Michele Punturo INFN Perugia a nome della Collaborazione Virgo.

Hardware Injections

20 40 60 80 100

1

10

100

1000

All events Events associated with burst injections Events associated with inspiral injections

coun

ts

SNR

0 10 20 30 40 50 60 70 80 90 100 1101

10

100

all triggers hw injected events

r2

SNR

Page 29: L’Interferometro Virgo Michele Punturo INFN Perugia a nome della Collaborazione Virgo.

Conclusions

• The Virgo detector commissioning is under way• Firs science run is expected for the end of 2005

– beginning of 2006• The Data Analysis procedures are under

development and testing