Intro reti telematiche -...

82
Pag. 1 COMPUTER NETWOKRS Network fundamentals COMPUTER NETWORKS Network fundamentals - 1 Copyright Gruppo Reti Politecnico di Torino Network fundamentals Gruppo Reti TLC [email protected] http://www.telematica.polito.it/ COMPUTER NETWORKS Network fundamentals - 2 Copyright Quest’opera è protetta dalla licenza Creative Commons NoDerivs- NonCommercial. Per vedere una copia di questa licenza, consultare: http://creativecommons.org/licenses/nd-nc/1.0/ oppure inviare una lettera a: Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. This work is licensed under the Creative Commons NoDerivs- NonCommercial License. To view a copy of this license, visit: http://creativecommons.org/licenses/nd-nc/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. Copyright Gruppo Reti Politecnico di Torino

Transcript of Intro reti telematiche -...

Page 1: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 1

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 1 Copyright Gruppo Reti – Politecnico di Torino

Network fundamentals

Gruppo Reti TLC

[email protected]

http://www.telematica.polito.it/

COMPUTER NETWORKS – Network fundamentals - 2

Copyright • Quest’opera è protetta dalla licenza Creative Commons NoDerivs-

NonCommercial. Per vedere una copia di questa licenza, consultare:

http://creativecommons.org/licenses/nd-nc/1.0/

oppure inviare una lettera a:

Creative Commons, 559 Nathan Abbott Way, Stanford, California

94305, USA.

• This work is licensed under the Creative Commons NoDerivs-

NonCommercial License. To view a copy of this license, visit:

http://creativecommons.org/licenses/nd-nc/1.0/

or send a letter to

Creative Commons, 559 Nathan Abbott Way, Stanford, California

94305, USA.

Copyright Gruppo Reti – Politecnico di Torino

Page 2: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 2

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 3

Telecommunication chronology?

• “Tele” means distant

– Smoke signals?

– Drums in the jungle?

– Mirrors?

– Flags?

• Focus on moder telecommunication

networks

– Telephone network

– Internet

Copyright Gruppo Reti – Politecnico di Torino

COMPUTER NETWORKS – Network fundamentals - 4

Telephone network: chronology

• 1837: Morse code

• 1876: Bell phone patent

• 1891: Strowger selector patent

• 1894: First electromechanical telephone

exchange

• 1895: Marconi radio experiments

• 1923: first automatic (electromechanical)

long-distance service (Baviera - Siemens)

Copyright Gruppo Reti – Politecnico di Torino

Page 3: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 3

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 5

Telephone network: chronology

• 1938: relè

• 1960: telephone exchange electronically

controlled

• 1964: first exchange fully electronic controlled

(Succasunna - USA)

• 1975: first exchange fully electronic (Chicago)

• 1980: common channel signalling, ISDN,

analog mobile networks

• 1990: Intelligent network (signalling), digital

mobile networks Copyright Gruppo Reti – Politecnico di Torino

COMPUTER NETWORKS – Network fundamentals - 6

Data networks: chronology

• 1969: ARPANET (primo RFC: Host software)

• 1971: ARPANET: 15 nodes e 23 host. E-mail

• 1973: First FTP version

• 1973: First TCP version

• 1976: Ethernet and X.25

• 1980: OSI

• 1982: Token ring (IBM)

• 1982: TCP and IP are defined as the

reference protocols (since 1/1/83) Copyright Gruppo Reti – Politecnico di Torino

Page 4: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 4

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 7

Data networks: chronology

• 1984: DNS

• 1985: FDDI

• 1990: Tim Berners-Lee (CERN) presents a

document (nobody cares) on Hypertext

Information Management. The project name

must be chosen: “Information Mine”,

“Information Mesh” ,“World Wide Web”

• 1993: Web traffic is1% of total Internet traffic

Copyright Gruppo Reti – Politecnico di Torino

COMPUTER NETWORKS – Network fundamentals - 8

Data networks: chronology

• 1997: Internet2, new network for

experimental research

• 1999: peer-to-peer applications to exchange

file file (MP3, video) directly among users (no

server intereaction): Napster, Gnutella,

Kazaa

• Since then most of the novelties in the

application side (Social networks, Streaming,

On-line gaming, P2P TV)

• Today: you know better than us Copyright Gruppo Reti – Politecnico di Torino

Page 5: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 5

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 9 Copyright Gruppo Reti – Politecnico di Torino

TLC networks:

services and functions

Gruppo Reti TLC

[email protected]

http://www.telematica.polito.it/

COMPUTER NETWORKS – Network fundamentals - 10 Copyright Gruppo Reti – Politecnico di Torino

Some definitions

• Taken from the CCITT “Blue Book”

(Reccomendation I.112)

– CCITT: The International Telegraph and Telephone

Consultative Committee of Telecommunication Union

(ITU).

– Since 1994 CCITT become ITU-T

Page 6: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 6

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 11 Copyright Gruppo Reti – Politecnico di Torino

ITU-T

• Communication: information transfer according to

pre-established rules.

– Agreement

• Telecommunication: trasmission and reception of

signale representing signs, text, images, sounds,

info of any nature, via cables, radio, optical or

electromagnetics media

COMPUTER NETWORKS – Network fundamentals - 12 Copyright Gruppo Reti – Politecnico di Torino

Example

• Telephones are user terminals connected to a

network providing telecommunication services

TLC

NETWORK

Page 7: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 7

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 13 Copyright Gruppo Reti – Politecnico di Torino

ITU-T: definitions

• Telecommunication service: offered from a public

or private provider to his customers to satisfy a

specific telecommunication need

• Functions in a telecommunication network:

operations internally executed in a network to

provide services to users

COMPUTER NETWORKS – Network fundamentals - 14

Functions: an example

• By raising the handset the user signals to the

network that he is willing to start the call

procedure

Copyright Gruppo Reti – Politecnico di Torino

Page 8: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 8

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 15

Functions: an example

• The user waits for the free tone from the

central office

Copyright Gruppo Reti – Politecnico di Torino

TU - TU

COMPUTER NETWORKS – Network fundamentals - 16

Functions: an example

• The user dials the number to signal to the

network the user (more precisely the user

terminal) he/she is willing to be connected to

Copyright Gruppo Reti – Politecnico di Torino

00390118935649

(not my phone number!)

Page 9: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 9

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 17

Functions: user signalling

• Control information transfer between the user

and the network

• SIGNALLING.

Copyright Gruppo Reti – Politecnico di Torino

COMPUTER NETWORKS – Network fundamentals - 18

ITU-T definition

• Signalling: exchange of control information

associated with the setup and release of a

telephone call on a telecommunications

circuit.

• Example of this control information:

– digits dialed by the caller

– the caller's billing number

– call-related information

• Actions order is important

• Time is important Copyright Gruppo Reti – Politecnico di Torino

Page 10: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 10

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 19 Copyright Gruppo Reti – Politecnico di Torino

Functions: switching

• The network identifies resources needed to

connect the two users

• In the case of telephone networks, a circuit is

established. Circuit switching.

COMPUTER NETWORKS – Network fundamentals - 20

ITU-T definition

• Switching: the process of interconnecting

functional units, transmission channel or

telecommunication circuits for the time

needed to transfer signals

Copyright Gruppo Reti – Politecnico di Torino

Page 11: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 11

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 21

Functions: network signalling

• To execut the switching function, i.e., to build

a circuit

– Nodes need to exchange control information

(e.g. callee phone number)

– Information exchange within the network is

needed

– Network signalling

Copyright Gruppo Reti – Politecnico di Torino

COMPUTER NETWORKS – Network fundamentals - 22

Functions: an example

• In the early, roaring years of telephony

– signalling was voice based

– switching was manual

Copyright Gruppo Reti – Politecnico di Torino

Page 12: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 12

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 23 Copyright Gruppo Reti – Politecnico di Torino

Functions: an example

• In the early, roaring years of telephony

– signalling was voice based

– switching was hand based

COMPUTER NETWORKS – Network fundamentals - 24 Copyright Gruppo Reti – Politecnico di Torino

Functions: an example

• In the early, roaring years of telephony

– signalling was voice based

– switching was hand based

Page 13: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 13

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 25

Functions: transmission

• The two users can (happily?) exchange

information

Copyright Gruppo Reti – Politecnico di Torino

Hi, how are

You doing?

I was fine

COMPUTER NETWORKS – Network fundamentals - 26 Copyright Gruppo Reti – Politecnico di Torino

ITU-T definition

• Transmission: signal transfer from one point to

one or several points

Page 14: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 14

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 27 Copyright Gruppo Reti – Politecnico di Torino

Functions: an example

• When the call is ended, the circuit is

released (to free network resources)

COMPUTER NETWORKS – Network fundamentals - 28 Copyright Gruppo Reti – Politecnico di Torino

Functions: management

• Connecting new users

• Adding channels or nodes

• Upgrade or substitute devices (to follow technological evolution)

• Reconfiguration after fault

• Performance monitoring

• Device control

Page 15: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 15

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 29

Functions in a TLC network

• Signalling (implies routing)

• Switching (implies routing)

• Transmission

• Management

• And many others ….

Copyright Gruppo Reti – Politecnico di Torino

COMPUTER NETWORKS – Network fundamentals - 30 Copyright Gruppo Reti – Politecnico di Torino

Network Topologies

Gruppo Reti TLC

[email protected]

http://www.telematica.polito.it/

Page 16: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 16

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 31

Network

• Definition:

– A set of nodes and channels that offer a

connectionamong two or more points to make

telecommunication possible

• Node is the point where switching occurs

• Channel is any communication media

– The channel may be

• Monodirectional (one way)

• Bidirectional

Copyright Gruppo Reti – Politecnico di Torino

COMPUTER NETWORKS – Network fundamentals - 32

Type of channels

• Point-to-point channel

• Only two nodes connected to channel end

points

• The channel is used by both nodes in the

same fashion

Copyright Gruppo Reti – Politecnico di Torino

A B

Page 17: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 17

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 33

Type of channels

• Multipoint channel

• Several nodes connectes to a single chanel

• One master and several slaves

Copyright Gruppo Reti – Politecnico di Torino

Slave

Master

COMPUTER NETWORKS – Network fundamentals - 34

Type of channels

• Broadcast channel

• Single communication channel shared by all

nodes

– This room!

• The information sent by one node is received

by all other users

• Data should contain the destination address

– YOU pay attention!

Copyright Gruppo Reti – Politecnico di Torino

Page 18: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 18

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 35

Topologies in TLC networks

• The network topology is defined by the

relative position of nodes and channels

• A network topology is a graph G=(V,A)

– V = set of vertices (represented as circles -

nodes)

– A = set of edges (represented as segments -

channels)

Copyright Gruppo Reti – Politecnico di Torino

COMPUTER NETWORKS – Network fundamentals - 36 Copyright Gruppo Reti – Politecnico di Torino

Topologies in TLC networks

• Edges may be:

– direct (directed segments (arrow) – unidirectional

channels)

– Undirect (non directed segmetns – bidirectional

channels)

• Define:

– N= |V|

– C= |A|

Page 19: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 19

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 37 Copyright Gruppo Reti – Politecnico di Torino

Fully meshed topology

• C = N(N-1)/2

• Advantage: highly fault tolerant (many paths available among pair of nodes)

• Disadvantage: too many channels needed

• Many alternative paths, but only one shortest path (one hop)

• There is an obvious, minimunm distance, routing choice

• Used only when N is small (e.g., core nodes in a national telephone network)

A

E B

C D

COMPUTER NETWORKS – Network fundamentals - 38 Copyright Gruppo Reti – Politecnico di Torino

Tree topology • C = N -1

• Disadvantage: fault vulnerable (only one path exist for any node pair)

• Advantage: smallest possible number of channels for a connected topololgy

• Used to reduce cost

• No routing alternatives

A

E B

C D

Page 20: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 20

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 39 Copyright Gruppo Reti – Politecnico di Torino

Active star topology

• C = N (star centre is not a node, used only to enable communication)

• Disadvantage: vulnerability to faults on the star centre

• Advantage: low number of channels

• Used to keep cost under control

• Each node has a unique routing

• All routing complexity in the star centre

• Used – in LANs (switch)

– in satellite networks (satellite)

– in cellulare mobile networks (base station)

A

E B

C D

COMPUTER NETWORKS – Network fundamentals - 40 Copyright Gruppo Reti – Politecnico di Torino

Passive star topology

• C = 1 (even if N wires)

• The star node passively propagates signals on any wire

• Broadcast channel

• Disadvantage: vulnerable to star center fault

• Advantage: small number of channels

• Low cost

• Each node has a unique routing • Used

– in LANs (hub)

– in distribution networks (reflector)

A

E B

C D

Page 21: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 21

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 41 Copyright Gruppo Reti – Politecnico di Torino

Meshed topology

• N-1 < C < N(N-1)/2

• Not a regular topology

• Advantage: fault tolerance and

number of channels can be traded

off

• Complex routing: many alternative

(good) paths

• Most commonly used (Internet,

telephone)

A

E B

C D

COMPUTER NETWORKS – Network fundamentals - 42 Copyright Gruppo Reti – Politecnico di Torino

Ring topology

• Can be unidirectional or biderectional

Page 22: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 22

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 43 Copyright Gruppo Reti – Politecnico di Torino

Ring topology

• C=N/2 for the unidirectional ring

• C=N for te bidirectional ring

• Used in LAN and MAN but also to build meshed topologies (SDH)

• Two alternative paths for each node pair

COMPUTER NETWORKS – Network fundamentals - 44

Ring topology

• In case of faults, the bidirectional ring

ensures network survivability (with reduced

capacity)

• The bidirectional ring is the simplest topology

that provides an alternative path in case of

faults

Copyright Gruppo Reti – Politecnico di Torino

Page 23: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 23

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 45 Copyright Gruppo Reti – Politecnico di Torino

Bus topology

• C=N-1 for the active bus (peculiar tree)

• C=1 for the passive bus (broadcast channel)

• Only one path for any pair of nodes

• Used in LANs

A

E B

C D

COMPUTER NETWORKS – Network fundamentals - 46 Copyright Gruppo Reti – Politecnico di Torino

Physical and logical topology

• It is important to distinguish between the

physical and logical topology

– Logical topology: logical interconnection among

nodes via channels

– Physical topology: takes into account transmission

media constraints

Page 24: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 24

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 47 Copyright Gruppo Reti – Politecnico di Torino

Physical topology

A B

C D

COMPUTER NETWORKS – Network fundamentals - 48 Copyright Gruppo Reti – Politecnico di Torino

Logical topology

A B

C D

Page 25: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 25

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 49 Copyright Gruppo Reti – Politecnico di Torino

Topologies and performance

• The amount of traffic that can be succesfully

transferred (throughput) in a network is

– for a given channel available capacity

– inversely proportional to the average distance

among node pairs

– weighted by the amount of traffic exchanged

between the two node

• For uniform traffic and regular topologies the

average distance on the topology establish the

throughput

COMPUTER NETWORKS – Network fundamentals - 50 Copyright Gruppo Reti – Politecnico di Torino

Topologies and performance

• Comparison among topologies, with the same

number of nodes (4) and (almost) the same

number of channels

• Uniform traffic

– Every node pair exchange x bit/s. Total generated

traffic is 12x.

• Every unidirectional channel has capacity B bit/s.

• Compute: average distance, network capacity

(maximum throughput), maximum channel

load,maximum node load

Page 26: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 26

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 51

Topologies and performance

• Capacity: 3x2B=6B

• Average distance: 20/12=1.66

• Consider only traffic from left to right (simmetry)

– maximum channel load is 4x. Thus, x <= B/4

• Node 3 (or 2) must handle 7B/4 of traffic unit

• Uniform traffic, non regular topology, unbalanced

channel load, unbalanced node load

Copyright Gruppo Reti – Politecnico di Torino

1 2 3 4 3x 2x

2x

x

x

x

COMPUTER NETWORKS – Network fundamentals - 52 Copyright Gruppo Reti – Politecnico di Torino

Topologies and performance • Capacity: 3x2B=6B

• Average distance: 1.5

• Considering the traffic from node 4.

– Maximum load on (all) channel is 3x. Thus x <=B/3

– The same holds for the other direction

• Node 4 must handle 3B of traffic unit

• Uniform traffic, non regular topology, balanced channel load,

unbalanced node load

x

x

x

x

x

x x

x

x 1 2

4

3

Page 27: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 27

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 53 Copyright Gruppo Reti – Politecnico di Torino

Topologies and performance • Capacity: 4x2B=8B

• Average distance: 1.33

• For clockwise traffic the maximum channel load is 2x. Thus x <=

B/2.

– The same holds for counter clock wise traffic

• Each node must handle 2B unit of traffic

• Uniform traffic, regular topology, balanced channel load, balanced

node load 3x/2

x/2

3x/2

x/2 3x/2

x/2

3x/2

x/2

COMPUTER NETWORKS – Network fundamentals - 54 Copyright Gruppo Reti – Politecnico di Torino

Topologies: average distance

Manhattan

E[d2] =O(N)

E[d1]> E[d2] >E[d3]

Ring

E[d1]=O(N) Shuffle

E[d3]=O(logN)

Page 28: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 28

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 55 Copyright Gruppo Reti – Politecnico di Torino

TLC networks: services

Gruppo Reti TLC

[email protected]

http://www.telematica.polito.it/

COMPUTER NETWORKS – Network fundamentals - 56 Copyright Gruppo Reti – Politecnico di Torino

ITU-T: definition

• Telecommunication service: offered from a public

or private provider to his customers to satisfy a

specific telecommunication need

Page 29: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 29

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 57

Integrated vs dedicated networks

• TLC networks can be:

– Dedicated (to a specific service)

• Telephone

• TV distribution

• Internet (in the early days)

– Integrated (several services)

• Narrowband ISDN o N-ISDN

• Broadband ISDN o B-ISDN

• Internet (today)

Copyright Gruppo Reti – Politecnico di Torino

COMPUTER NETWORKS – Network fundamentals - 58

TLC service taxonomy

• Bearer service

– Permits transmission of information between network

interfaces. These services give the subscriber the

capacity required to transmit appropriate signals between

certain access points, i.e. user network interfaces.

– Example: Point to point direct circuit

• Teleservices

– provide the full capacity for communications by means of

terminaland network functions and possibly functions

provided by dedicated centers.

– Examples: phone calls, telefax

– Classified in base services or supplementary services

Copyright Gruppo Reti – Politecnico di Torino

Page 30: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 30

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 59

Teleservices

• Base service

– provides minimal functionalities needed by the

service itself

– Examples:

• POTS (phone calls)

• Television

Copyright Gruppo Reti – Politecnico di Torino

COMPUTER NETWORKS – Network fundamentals - 60

Teleservices

• Supplementary service

– Provides to the user additional functionalities

with respect to the base service

– Can be offered only together with a base service

– Modifies or extends a base service

• Examples

– Telephone networks: call waiting alert, toll free

number, automatic redial, answsering machine

– Television: Video-on-Demand (VOD)

Copyright Gruppo Reti – Politecnico di Torino

Page 31: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 31

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 61 Copyright Gruppo Reti – Politecnico di Torino

Teleservices: information flow

• Information flows can be:

– Symmetric bidirectional

• Phone calls

– Asymmetric bidirectional

• ADSL

– Monodirectional

• TV distribution

• Information flow can be:

– Point to point

• Phone calls

– Point to multipoint

• Multimedia streaming

– Multipoint to multipoint

• Teleconference

COMPUTER NETWORKS – Network fundamentals - 62

Teleservices taxonomy

• Should be taken with some care like any

taxonomy

• Interactive

– conversational

– messaging

– searching/retrieval

• Diffusive

– With or withouth presentation control from the

user

Copyright Gruppo Reti – Politecnico di Torino

Page 32: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 32

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 63 Copyright Gruppo Reti – Politecnico di Torino

Conversational interactive

teleservices • End to end data transfer in real time

• Examples (video, voice)

– Phone calls

– Videoconference

– Videosurveillance

• Examples (data)

– File trasnfer

– Computer interconnection

– Real time control

– Multiplayer games

COMPUTER NETWORKS – Network fundamentals - 64 Copyright Gruppo Reti – Politecnico di Torino

Messaging interactive teleservices

• End to end communication exploiting

intermediate devices for information storage

• Examples (video, voice)

– Answering machine

– Image transfer

• Examples (data)

– e-mail

– SMS

Page 33: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 33

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 65

Searching/retrieval

interactive teleservices • Permits user to search/retrieve information

stored in public data base

• Examples:

– Web

– Teleteaching

– Telesoftware

– Teleshopping

Copyright Gruppo Reti – Politecnico di Torino

COMPUTER NETWORKS – Network fundamentals - 66 Copyright Gruppo Reti – Politecnico di Torino

Diffusive teleservices without

presentation control

• The information flow is distributed from a source

to a set of receivers (authorization may be

required)

• Users cannot control information flow (starting

time, presentation order, etc)

• Examples

– TV

– pay TV

– radio

Page 34: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 34

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 67

Diffusive teleservices without

presentation control • The information flow is distributed from a

source to a set of receivers (authorization may be required)

• Information is organized in sequences that are cyclically repeated

• Users may select starting time and/or presentation ordering

• Examples

– televideo

– near VoD

Copyright Gruppo Reti – Politecnico di Torino

COMPUTER NETWORKS – Network fundamentals - 68 Copyright Gruppo Reti – Politecnico di Torino

How to provide teleservices?

• Two (Internet derived) models

– client-server

– peer-to-peer

• Can be distinguished looking at how user

application software is behaving

Page 35: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 35

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 69 Copyright Gruppo Reti – Politecnico di Torino

Client-server model

• Two clearly different roles

– Client • start interaction with the server (“talks first”), asking for a

service (es. web page, e-mail transfer)

– Server • provdes the requested service to the client( sned the web

page, receives and stores e-mails)

• Idle while waiting for clients

• Most of the time (not always) the information is stored in the server

• Most of Internet applications follow the client server model

COMPUTER NETWORKS – Network fundamentals - 70

Client-server models

• Servers

– are activated when the device hosting them is

switched

– Wait for client requestsa

– Always available

• Clients

– Activated when the user requires a service

– After the service has been provided they are de-

activated

Copyright Gruppo Reti – Politecnico di Torino

Page 36: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 36

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 71 Copyright Gruppo Reti – Politecnico di Torino

request

reply

Client-server model

COMPUTER NETWORKS – Network fundamentals - 72 Copyright Gruppo Reti – Politecnico di Torino

Peer-to-peer model

• Introduced more recently in the Internte

• Phone calls, fax follow a similar model

• Mainly used for interaction among large groups

of users

• All applications are peers

• Information distributed and shared among all

peers

Page 37: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 37

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 73 Copyright Gruppo Reti – Politecnico di Torino

Transmission techniques

in networks

Gruppo Reti TLC

[email protected]

http://www.telematica.polito.it/

COMPUTER NETWORKS – Network fundamentals - 74

Types of transmission

• Analog transmission

– Information is transferred via a signal

• continuous

• limited

• assuming infinite possible values

• Digitral transmission

– Information is transferred via a signal

• Not continuous

• limited

• assuming a finite set of possible values

Copyright Gruppo Reti – Politecnico di Torino

Page 38: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 38

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 75 Copyright Gruppo Reti – Politecnico di Torino

t

Analog transmission

COMPUTER NETWORKS – Network fundamentals - 76 Copyright Gruppo Reti – Politecnico di Torino

t

Digital transmission

Page 39: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 39

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 77 Copyright Gruppo Reti – Politecnico di Torino

From analog to digital

t t

Sampling process

t

Quantization process

Analog signal

t

Digital signal 1010

1001

1000

0111

0110

0101

0100

0011

0010

0001

0000

1010

1001

1000

0111

0110

0101

0100

0011

0010

0001

0000

0011 – 0011 – 0100 – 0100 – 0100 – 0100 – 0010 - 0010

COMPUTER NETWORKS – Network fundamentals - 78

From digital to analog

• If the analog signal is bandwidth limited and

the signal bandwidth is B

– The sampling process is lossless (from the

samples the original signal can be exactly

rebuild) if samling at a frequency 2B

• The quantization process is lossy

– Quantization error

• By selecting a proper number of levels, the

quantization error can be controlled a priori

Copyright Gruppo Reti – Politecnico di Torino

Page 40: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 40

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 79 Copyright Gruppo Reti – Politecnico di Torino

Type of tranmissions

• Analog

– Information, assuming values in a continuous set, is

represented as a continuos variation of an electrical/optical

parameter

• Digital

– Information is represented as an electrical/optical parameter

assuming a set of finite values (discrete)

– However, signals are physically continuos!

– So, where is the difference?

– In the receiver!

• The receiver makes a decision process and tries to rebuild the discrete

information

• Clock synchronization is critical

COMPUTER NETWORKS – Network fundamentals - 80

Parallel vs serial tranmission

• Parallel

– Information is transferred in parallel over a

communication bus (in a computer 8 bit=1byte in parallel)

or on a serial line or through several parallel wires.

Clock (synchronization) signals are sent together with

data to align receiver clock to transmitter clock

• Serial

– Information is sent bit by bit on the channel.

Synchronization mechanism are adopted between the

transmitter and the receiver

– More common in networks

Copyright Gruppo Reti – Politecnico di Torino

Page 41: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 41

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 81 Copyright Gruppo Reti – Politecnico di Torino

1

0

0

0

1

1

1

1

0

0

0

1

1

0

1

1

Bit 1

Bit 8

Parallel

Parallel transmission

COMPUTER NETWORKS – Network fundamentals - 82 Copyright Gruppo Reti – Politecnico di Torino

1 0 1 0 0 1 1 1 0 0 1 1 1 0 0 1

Serial transmission

Page 42: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 42

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 83 Copyright Gruppo Reti – Politecnico di Torino

Serial transmission

• Asynchronous

– Every information byte (or packet) is transmitted

separately. The reception clock must be

synchronized to the transmitter clock on any data to

compensate for clock skew

• Synnchronous

– Data to be sent are structured in frames. Transmitter

and receiver clock are continuously synchronized to

ensure that bit detection is correct also at high bit

rate

COMPUTER NETWORKS – Network fundamentals - 84 Copyright Gruppo Reti – Politecnico di Torino

Asynchronous transmission

• S: Start Bit

• P: Parity Bit

• Stop Bits: 1, 1.5, 2

LSB P MSB STOP

BITS S LINE

IDLE

FROM 5 TO 8 BIT

1 CHARACTER

Page 43: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 43

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 85 Copyright Gruppo Reti – Politecnico di Torino

Synchronous trasmission

• Synchronization overhead is reduced

LSB MSB

CHARATER N

MSB LSB

CHARACTER N-1 CHARACTER N+1

CLOCK

COMPUTER NETWORKS – Network fundamentals - 86 Copyright Gruppo Reti – Politecnico di Torino

Reception

• Continuous reception on point-to-point

channels for synchronous transmissione

– Easier to keep clock synchronized

• Burst mode reception

– Ove broadcast or multi-point channels

synchronous transmission is not possible (many

transmitters schare che channel)

– Receiver must adapt is clock to different

transmitters for any data send over the channel

Page 44: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 44

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 87 Copyright Gruppo Reti – Politecnico di Torino

Transfer modes in networks

Gruppo Reti TLC

[email protected]

http://www.telematica.polito.it/

COMPUTER NETWORKS – Network fundamentals - 88

Sharing channel resources

• Sharing of channel resources among data flows comes in two different flavours – Multiplexing

• All flows access the channel from a single point

• Single transmitter scenario

• Centralized problem

• A radio access from an antenna (base station in a cellular network, access point in a WI-FI network, satellite transmission), an output link in a switch or a router

– Multiple-access • Flows access the channel from different access points

• Many transmitters are active

• Distributed problems

• Local area networks (if not switched), mobile phones in a cellulare network, PC accessing via a Wi-FI hot-spot

Page 45: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 45

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 89

Sharing channel resources

• Sharing of channel resources among data blonging to several flows comes in two different flavours – Multiplexing

• All flows access the channel from a single point

• Single transmitter scenario

• Centralized problem

• A radio access from an antenna (base station in a cellular network, access point in a WI-FI network, satellite transmission), an output link in a switch or a router

– Multiple-access • Flows access the channel from different access points

• Many transmitters are active

• Distributed problems

• Local area networks (if not switched), mobile phones in a cellulare network, PC accessing via a Wi-FI hot-spot

– Multiple access is a more complex task

COMPUTER NETWORKS – Network fundamentals - 90

Channel sharing techniques

• Frequency (FDM - FDMA)

• Time (TDM - TDMA)

• Code (CDM - CDMA)

• Space

t

f

channel

Page 46: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 46

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 91 Copyright Gruppo Reti –

Politecnico di Torino

Frequency division

• Each flow is transmitted using different frequency bands

• Need for band guard

• Filters needed to receive the proper channel

f

t

COMPUTER NETWORKS – Network fundamentals - 92

Time division (TDM – TDMA)

• Each flow exploits different time intervals (slots)

• Define frame over which slot allocations are repeated

• Each frame last 125 us

• Need for time guard

• Need to know

the proper time slots

for reception

f

t

Page 47: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 47

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 93

Code division

(CDM – CDMA) • Each flow exploits a different code (waveform

with higher frequency than the bit tx rate)

• Need for orthogonal codes

• Code is not a

new dimension c

t

f

COMPUTER NETWORKS – Network fundamentals - 94 Copyright Gruppo Reti –

Politecnico di Torino

Code division

(CDM – CDMA) • Code is not a subset of frequencies and/or a

a set of timeslots

f

t

Page 48: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 48

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 95 Copyright Gruppo Reti – Politecnico di Torino

CDMA • Data flows separated using orthogonal codes

• Neither time nor frequency separation

• Better noise protection

• Transmission: scalar product of data signal and of the transmitter code signal

• Reception: scalar product of data signal and of the transmitter code signal (must be known)

COMPUTER NETWORKS – Network fundamentals - 96

Code division

• Example

– Code word used bu user i: +1 +1 -1 -1

– Coded sequence = information bit x code word

– Information bit: -1 -1 1 1 -1

– Coded sequence: -1-1+1+1 -1-1+1+1 +1+1-1-1 +1+1-1-1 -1-1+1+1

Page 49: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 49

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 97

Code multiplexing

• Example:

– Code word for user 1: +1 +1 -1 -1

– Code word for user 2: +1 +1 +1 +1

– Code word for user 3: +1 -1 +1 -1

– Code word for user 4: +1 -1 -1 +1

• Over the channel, transmitted signals sum up

(need to equalize power)

– Transmissions of 1+2+3: +3 +1 +1 -1

– Transmissions of 2+3: +2 0 +2 0

COMPUTER NETWORKS – Network fundamentals - 98

Code multiplexing

• Un esempio (segue):

– Reception = correlation with code words

– Reception of user 1 = scalar product of the received sequence with the code word +1 +1 -1 -1

– Transmissions of 1+2+3: +3 +1 +1 -1

– Correlation with +1 +1 - 1 -1 = 4

– Transmissions of 2+3: +2 0 +2 0

– Correlation with +1 +1 -1 -1 = 0

Page 50: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 50

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 99

Space multiplexing

• Networks exploit also space multiplexing

• First idea is to use multiple parallel wires

• Routing techniques may also try to exploit space

multiplexing to increase network capacity

– Cell in wireless access are an example of space

reuse

COMPUTER NETWORKS – Network fundamentals - 100 Copyright Gruppo Reti –

Politecnico di Torino

Multiplexing or multiple access

• Time, frequency, code and space (multiple wires)

are all equivalente alternatives

– Given a channel capacity we can choose one among

the above techniques depending on technological

constraints

• Code division permits to “increase” channel

capacity (allowing more users) if using pseudo-

orthogonal codes but degrading the signal to

noise ratio at the receiver (increase the bit error

rate)

Page 51: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 51

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 101

Statistical multiplexing

• Multiplexing can be

– deterministic, fixed in time, on the basis of

requirements determined at connection setup

– statistical, variable in time, to adapt to

instantaneous traffic requirements

COMPUTER NETWORKS – Network fundamentals - 102

Statistical Multiplexing

• Sequence of A & B packets does not have

fixed pattern, bandwidth shared on demand

• Dynamic TDM scheme

A

B

C 100 Mb/s Ethernet

1.5 Mb/s

D E

statistical multiplexing

queue of packets waiting for output

link

Page 52: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 52

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 103

Switching techniques

• Resource allocation process for the time

needed to transfer information on the

newtork

• Two main technique

– Circuit switching

• Useful for continuous, regular flows

• Voice on a telephone network

– Packet (and cell) switching

• Useful for bursty, unpredictable flows

• Data transmission on Internret

Copyright Gruppo Reti – Politecnico di Torino

COMPUTER NETWORKS – Network fundamentals - 104 Copyright Gruppo Reti – Politecnico di Torino

Circuit switching

• Resources are allocated on demand (through

signalling) to each user call to create a circuit

• A circuit is (or is equivalent to) a physical link

directly connecting the two user terminals

Page 53: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 53

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 105 Copyright Gruppo Reti – Politecnico di Torino

Circuit switching

• The circuit is uniquely allocated to the two users

for the whole call duration

• No other user can exploit the circuit until the call

is over

• Resources are made available at the end of the

call, when requested by one of the two users

through a signalling procedure

COMPUTER NETWORKS – Network fundamentals - 106

Circuit switching

• Opening

• Data transfer

• Closing

U1 N1 N2 U2

t t t t

Page 54: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 54

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 107

Circuit switching

• Example: telephone network

Copyright Gruppo Reti – Politecnico di Torino

1. Call request 2. Incoming call

3. Call accepted 4. Call accepetd

5. Data transmission 6.Data reception

COMPUTER NETWORKS – Network fundamentals - 108 Copyright Gruppo Reti – Politecnico di Torino

Circuit switching node architecture

Input

interface

Output

interface

Inerconnection

network

Switching

matrix

Command

system Signalling Signalling

command

Page 55: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 55

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 109

Space vs time switching

125 ms

125 ms

U1 N1 N2 U2

U1 N1 N2 U2

COMPUTER NETWORKS – Network fundamentals - 110

Circuit switching

• Advantages:

– Fixed guaranteed bit rate

– Fixed transfer delay

– Circuit transparency (format, speed, protocol)

• Changing the user terminals is enouigh to change

application

– Negligible delays in crossing nodes

Copyright Gruppo Reti – Politecnico di Torino

Page 56: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 56

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 111

Circuit switching

• Disadvantages:

– Resources allocated to a single call

• Efficient only for non bursty (regular) flows

– Time needed to open the circuit

– No conversion of format, speed, protocols

performed by the network (e.g. no error control is

possible)

– Rate (price) time based

Copyright Gruppo Reti – Politecnico di Torino

COMPUTER NETWORKS – Network fundamentals - 112

Packet switching

• No resource allocation

• Well suited for bursty (non regular) sources

• Similar to the mailing system

Copyright Gruppo Reti – Politecnico di Torino

P.T.

P.T.

ADDRESS

Page 57: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 57

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 113 Copyright Gruppo Reti – Politecnico di Torino

Packet switching

• Data to be sent are organized in packets, (PDU)

including user data and control information

• PDU = protocol data unit

• PCI = protocol control information (control)

• SDU = service data unit (user data)

PCI SDU

COMPUTER NETWORKS – Network fundamentals - 114

Packet switching

• Data unit is the ISO definition.

• Other names :

– Packet

– Cella (fixed size data unit)

– Datagram

– Segment

– Message

– Frame

Copyright Gruppo Reti – Politecnico di Torino

Page 58: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 58

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 115

Packet switching

• Data unit are delivered to the network

• Each node

– Stores the packet while receiving it

– Process the packet to define the output channel

over which to send it (routing)

– Stores the packet in the queue for transmission

• Store and forward behaviour

– implies delays:processing, tx, rx AND queueing

Copyright Gruppo Reti – Politecnico di Torino

COMPUTER NETWORKS – Network fundamentals - 116

Store and forward

• Dominant operating mode:

– Need to read the header to execute routing

– Routing (and other processing) requires time

– Some form of header error protection is needed

– Different links may have different speed

Copyright Gruppo Reti – Politecnico di Torino

Page 59: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 59

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 117 Copyright Gruppo Reti – Politecnico di Torino

Packet switching node architecture

• Buffering

– At outputs

– At inputs

– Mixed

Input

interface

Processing

and switching

Buffer Output

queues

Output

interface

COMPUTER NETWORKS – Network fundamentals - 118

Packet switching

• It may be necesary to partition user data in

pieces due to packet size limitations

– Every packet has its own header

• Fixed vs variable packet size?

Copyright Gruppo Reti – Politecnico di Torino

PCI SDU

Page 60: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 60

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 119 Copyright Gruppo Reti – Politecnico di Torino

Packet switching

U1 N1 N2 U2

t t t t

Transmission time

Propagation time

Processing

time

COMPUTER NETWORKS – Network fundamentals - 120

Packet size

• Packet size P

– Measured in bit

• Packet size in time TTX

– Transmission time measured in s

– Different on every link

– TTX = P/VTX where VTX is the link bit rate

• Packet size in meter M on a given link

– M = Speed of light x TTX

Copyright Gruppo Reti – Politecnico di Torino

Page 61: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 61

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 121

Delays

• Delays suffered by each packet from source to destination

node

• In each link

– Transission (and reception) delay

• It is a fiunciton of packet size in bit and of the link bit rate

– Propagation delay

• It is a function of link length in meters

• In each switching node

– Processing time

• Function of the processing speed and of the complexity of the executed

proceures on packet header

• Normallu negligible with respect to transimssion time

– Queuing delays

• Depend on the traffic generated by all users

• Highly variable Copyright Gruppo Reti – Politecnico di Torino

COMPUTER NETWORKS – Network fundamentals - 122

Packet switching

• Packet lenght depends on

– Pipelining

• Small packets increase the tranmsission

pipeline, parallel transmission on different

links of packets belonging to the same flow

– node latency (tx/rx delay) reduction

• Latency can always be reduced increasing

the link bit rate

Copyright Gruppo Reti – Politecnico di Torino

Page 62: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 62

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 123

Pipelined transmission

• HP: negligible propagation and processing

delay

Copyright Gruppo Reti – Politecnico di Torino

A B C D

80 kb/s 80 kb/s 80 kb/s

10 kB

1 kB

1s + 1s + 1s = 3s

{0.1s + … + 0.1s} + 0.1s + 0.1s = 1.2s

COMPUTER NETWORKS – Network fundamentals - 124

Pipelined transmission

• Increasing by 10 the link bit rate

Copyright Gruppo Reti – Politecnico di Torino

A B C D

800 kb/s 800 kb/s 800 kb/s

10 kB

1 kB

0.1s + 0.1s + 0.1s = 0.,3s

{0.01s + … + 0.01s} + 0.01s + 0.01s = 0.12s

Page 63: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 63

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 125

Packet switching

• Packet lenght depends on

– Pipelining

– Packetization delay

• Small packets reduces the packetization

delay

– Time needed to create the packet

– Critical for delay sensitive voice applications

over packet switching networks

– Cannot be reduced by increasing bit rate Copyright Gruppo Reti – Politecnico di Torino

COMPUTER NETWORKS – Network fundamentals - 126

Packet switching

• Packet lenght depends on

– Pipelining

– Packetization delay

– Ratio between header and payload

• Large packets permit to reduce the

percentage of control information (header)

• Suppose

– PCI of size p bit

– SDU of size s bit

Copyright Gruppo Reti – Politecnico di Torino

p s

p

+

Page 64: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 64

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 127

Packet switching

• Packet lenght depends on

– Pipelining

– Packetization delay

– Ratio between header and payload

– Error probability

• Small packets reduce the bit error probability

– Packet of n bit

– Bit error probabiltiy p with idependent bit error

– Probability of correct reception (1-p)n

Copyright Gruppo Reti – Politecnico di Torino

COMPUTER NETWORKS – Network fundamentals - 128

Packet switching

• Advantages with respect to circuit switching

– Efficient resource utilization also for bursty sources

– Possible to introduce error control in network nodes

– Possible to convert formats, bit rate, protocol

– Accounting based on the amount of transmitted data

• Disadvantages with respect to circuit switching

– Difficult to obtain bit rate guarantees

– Each packet is processed in each node

– Highly variable delays

Copyright Gruppo Reti – Politecnico di Torino

Page 65: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 65

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 129

Packet switching

• Two different techniques/services to transfer

packets

– datagram

– virtual circuits

• The initial description referred to the

datagram service

Copyright Gruppo Reti – Politecnico di Torino

COMPUTER NETWORKS – Network fundamentals - 130

Datagram service

• No end to end agreement is needed to

provide the data transfer service among the

two users and the newtork

• Connectionless approach

• Each packet contains the source and

destination address

• Each packet is routed independently

– Packets with the same addresses may follow

different paths unique

– No flow concept in the network Copyright Gruppo Reti – Politecnico di Torino

Page 66: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 66

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 131

Virtual circuit service

• Communication is organized in three phases

– Connection opening (signalling)

– Data transfer

– Connection closing (signalling)

• Connection oriented approach

• The two users and the network must agree

before the data transfer can take place

• Packets with the same source and

destination addresses follow the same path

Copyright Gruppo Reti – Politecnico di Torino

COMPUTER NETWORKS – Network fundamentals - 132

Virtual circuit service

• It is packet switching

– There is no static allocation of network resources

to the connection

• It is not equivalent to circuit switching

– Although time to set up the connection may be

needed

Copyright Gruppo Reti – Politecnico di Torino

Page 67: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 67

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 133

Virtual circuit service

• Advantages with respect to datagram

– Sequence is guaranteed

– Delays are more controlled (reduced variability)

– Routing (which is the best path?) executed only

when opening the connection

– Addressing (see later)

• The network becomes aware of the notion of

flow of packets

Copyright Gruppo Reti – Politecnico di Torino

COMPUTER NETWORKS – Network fundamentals - 134

Addressing

• In the datagram service in each packet any

pair of users must be uniquely identified

network wide

– Global identifiers

• In the virtual circuit service it is only needed

to distinguish among each virtual circuit

– Local (on each path/link) identifiers (labels) are

enough

– Labels can be reused on different paths

Copyright Gruppo Reti – Politecnico di Torino

Page 68: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 68

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 135 Copyright Gruppo Reti – Politecnico di Torino

TE1

TE2

1 2 3 4

5

1

2 3 4

5

1 2

3 1 2 3 4 5

32 612

216

IN label OUT label

1 32 5 612

TE3 512

Virtual circuits: identifiers

COMPUTER NETWORKS – Network fundamentals - 136

Virtual circuits identifiers

• Logically one connection is identified one label

– Labels are changed on each link for practical issues

• Label sometimes are in pairs

– LCG-LCN in X.25/ISDN, VCI-VPI in ATM

• Virtual circuit: associated with a single connection

• Group: associated with a set of virtual circuits

• Groups permit flow aggregation

– Ease network management

– Examples: LAN connection, multimedia flows, etc,

sharing the same end to end path

Copyright Gruppo Reti – Politecnico di Torino

Page 69: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 69

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 137 Copyright Gruppo Reti – Politecnico di Torino

VPI 1

VPI 6

VCI 1

VCI 2

VCI 3

VCI 4

VCI 5

ATM terminology for grouping

VSc

COMPUTER NETWORKS – Network fundamentals - 138

Permanent vs switched VCs

• SVC (Switched virtual circuit)

– Created on demand, upon user request, via

signalling procedures

• PVC (Permanent virtual circuit)

– Created through management procedure, not in

real time

– Define a semi-static network configuration

Copyright Gruppo Reti – Politecnico di Torino

Page 70: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 70

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 139 Copyright Gruppo Reti – Politecnico di Torino

Signalling techniques

Gruppo Reti TLC

[email protected]

http://www.telematica.polito.it/

COMPUTER NETWORKS – Network fundamentals - 140

ITU-T

• Signalling: exchange of control information

associated with the setup and release of a

telephone call on a telecommunications

circuit.

Copyright Gruppo Reti – Politecnico di Torino

Page 71: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 71

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 141

Signalling techniques

• Classification:

– User signalling: exchange of control information

between the user and network access node

– Network signalling: exchange of control

information among network nodes

• Type of signalling

– Associated to the channel:

• In band

• Out of band

– Common channel

Copyright Gruppo Reti – Politecnico di Torino

COMPUTER NETWORKS – Network fundamentals - 142

Associated signalling

• There is a one-to-one correspondance

between:

– Controlling channel (signalling info)

– Contolled channel (user info)

• Used in the early days of telephone netwoks

Copyright Gruppo Reti – Politecnico di Torino

1

2

k

userdata

1

2

k

signalling

association

Page 72: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 72

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 143

Signalling associated with the

channel • In band

– Controlling and controlled channels are the

same

– Used in different times

Copyright Gruppo Reti – Politecnico di Torino

1

2 k

signalling

COMPUTER NETWORKS – Network fundamentals - 144

Signalling associated with the

channel • Out of band.

– Separate controlling and controlled channels

Copyright Gruppo Reti – Politecnico di Torino

1

2 k

1

2 k

User data

signalling

Page 73: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 73

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 145

Common channel signalling

• A single signalling channel control many user

information channels

• Singalling channel is packet switched

• ITU-T SS (Signalling System) n.7

Copyright Gruppo Reti – Politecnico di Torino

1

2

k

user data

signalling

1 k

COMPUTER NETWORKS – Network fundamentals - 146 Copyright Gruppo Reti – Politecnico di Torino

Common channel signalling

• Leads to the definiton of a signalling network

– Logically (and sometimes physically) separated from

the circuit switching data networksegnalazione

• Among signalling information

– Addresses

– Addressing scheme

Page 74: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 74

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 147 Copyright Gruppo Reti – Politecnico di Torino

Management techniques

Gruppo Reti TLC

[email protected]

http://www.telematica.polito.it/

COMPUTER NETWORKS – Network fundamentals - 148

Network management

• Network Management organized according

to several functions:

– Configuration Management

– Performance Management

– Fault Management

– Security Management

– Accounting Management

Copyright Gruppo Reti – Politecnico di Torino

Page 75: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 75

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 149 Copyright Gruppo Reti – Politecnico di Torino

Quality of service

and traffic characterization

Gruppo Reti TLC

[email protected]

http://www.telematica.polito.it/

COMPUTER NETWORKS – Network fundamentals - 150

Quality of service (QoS)

• In network design, traffic characteristics must

be known to provide a given service

• The amount of available resources and the

adopted switching technique (which establish

resource allocation) define QoS provided to

the users

• Network analysis and design exploit

mathematical models that permit the QoS

estimation given the available resources and

traffic behaviour Copyright Gruppo Reti – Politecnico di Torino

Page 76: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 76

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 151

Quality of service

• Network analysis

– Given

• Service requests

• Available resources

– Define

• Quality of service

• Network design

– Given

• Service requests

• Quality of service

– Define

• Needed network resources

Copyright Gruppo Reti – Politecnico di Torino

COMPUTER NETWORKS – Network fundamentals - 152

Quality of service

• Need to rely on mathematical models to:

– Characterize service requests

– Describe interaction among activities and

resources

– Compute quality of service

Copyright Gruppo Reti – Politecnico di Torino

Page 77: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 77

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 153

Traffic characterization

• Analog sources: voice, video

– Defined through their spectral characterization

(required bandwidth, correlation, ...)

• Digital (or digitalized) sources: data, voice,

video

– Defined through average bit rate and burstiness

Copyright Gruppo Reti – Politecnico di Torino

COMPUTER NETWORKS – Network fundamentals - 154

Traffic characterization

• Digital sources

– Constant Bit Rate - CBR

• Voice (64 kb/s)

• Videoconference (n x 64 kb/s)

• Uncompressed video (180Mb/s)

– Variable Bit Rate - VBR

• Compressed voice (tens of kb/s)

• MPEG video (Mb/s)

• file transfer (from kb/s to Mb/s to Gb/s)

Copyright Gruppo Reti – Politecnico di Torino

Page 78: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 78

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 155

Traffic characterization

• CBR sources

– Bit rate (bit/s)

• Packet size

– Call duration (s)

– Call generation process

Copyright Gruppo Reti – Politecnico di Torino

COMPUTER NETWORKS – Network fundamentals - 156

Traffic characterization

• VBR sources

– Peak rate (bit/s)

– Average rate (bit/s)

• Over which time window?

– Burstiness is defined as peak rate/average rate

– Call duration (s)

– Call generation process

Copyright Gruppo Reti – Politecnico di Torino

Page 79: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 79

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 157

Traffic characterization

• How to control traffic shape

Copyright Gruppo Reti – Politecnico di Torino

L

V1

V2

source network

token

bucket

COMPUTER NETWORKS – Network fundamentals - 158

QoS parameters

• Different applications have different

requirements

• QoS indices:

– Delay (average, percentile, wors case)

– Bit rate

– Error probability

– Loss probability

– Call blocking probability

Copyright Gruppo Reti – Politecnico di Torino

Page 80: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 80

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 159

QoS indices: example

• Phone calls

– CBR source

– Worst case delay of hundredths of milliseconds

• Real time communication

– Bit rate of 64 kbit/s

– Error probability of few %

– Negligible call blocking probability

Copyright Gruppo Reti – Politecnico di Torino

COMPUTER NETWORKS – Network fundamentals - 160

QoS indices: example

• E-mail

– VBR source

– No requirements on delay (minutes is fine)

– No requirements on bit rate

– Negligible error probability

– Negligible blocking probability

Copyright Gruppo Reti – Politecnico di Torino

Page 81: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 81

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 161

QoS indices: example

• Video on demand

– VBR source

– Maximun delay of few seconds

– Bit rate of Mbit/s

– Small error probability

– Negligible call blocking probability

Copyright Gruppo Reti – Politecnico di Torino

COMPUTER NETWORKS – Network fundamentals - 162

105

104

103

102

101

1 hour

1 min

telemetry

101 102 103 104 105 106 107 108

hi-fi audio video

videoconference low speed data

fax

voice video

telephony

Co

nn

ec

tio

n d

ura

tio

n [

s]

1

Speed

[bit/s] 1 kbit/s 1 Mbit/s

high

speed

data

Service characteristics

Page 82: Intro reti telematiche - netgroup.polito.itnetgroup.polito.it/courses/Didattica/CN/Network_fundamentals._2.pdf · Network fundamentals - 89 Sharing channel resources – t channel

Pag. 82

COMPUTER NETWOKRS – Network fundamentals

COMPUTER NETWORKS – Network fundamentals - 163

low

speed

data

alphanumeric

terminals

LAN alta velocità

immagini

connectionless

data

transmission

supercomputer

interconnection

voice audio

HDTV VIDEO

compressed

non compressed

Bu

rsti

ne

ss

Peak rate [bit/s]

103 104 105 106 107 108 109 1010

1000

100

10

1

LAN

graphical

terminal

Burstiness= Peak rate/ Average rate

Traffic characterization