I ghiacciai e lopera del ghiaccio Cap. 16 Press et al., Capire la Terra Cap. 31 Strahler, Geografia...

48
I ghiacciai e l’opera del ghiaccio Cap. 16 Press et al., Capire la Terra Cap. 31 Strahler, Geografia fisica

Transcript of I ghiacciai e lopera del ghiaccio Cap. 16 Press et al., Capire la Terra Cap. 31 Strahler, Geografia...

  • Slide 1
  • I ghiacciai e lopera del ghiaccio Cap. 16 Press et al., Capire la Terra Cap. 31 Strahler, Geografia fisica
  • Slide 2
  • Press et al., Capire la Terra I ghiacciai Da neve a ghiaccio Gli strati nevosi, soggetti a processi di costipamento costituiscono il nevato.
  • Slide 3
  • Lupia Palmieri, Parotto, Osservare e capire la Terra Zanichelli editore 2010 I ghiacciai Limite delle nevi permanenti
  • Slide 4
  • BILANCIO DI MASSA GLACIALE Lablazione pu avvenire per: 1)Fusione 2)Calving 3)Sublimazione 4)Erosione eolica
  • Slide 5
  • 15.1 Taku and Norris Glaciers, Juneau Icefield, Alaska (Aerial) Photograph by Peter L. Kresan The advancing terminus of the Taku Glacier (upper center) and the retreating terminus of the Norris Glacier (bottom) are shown in this aerial view. The convex profile of the terminus and lack of a trimline along the margins of the Taku Glacier are indicative of an advancing glacier. In fact, the glacier is plowing down forest on both sides of this advancing lobe. The concave profile of the terminus, the clearly visible trimline, and proglacial lake of the Norris Glacier are characteristic of a retreating glacier. A trim line, also written as trimline, is a clear line on the side of a valley formed by a glacier. The line marks the most recent highest extent of the glacier. The line may be visible due to changes in color to the rock or to changes in vegetation on either side of the line.glacier
  • Slide 6
  • 15.10 Athabasca Glacier, Columbia Icefield, Canada Photograph by Peter L. Kresan The terminus of the Athabasca Glacier in 1985 can be compared to its position, marked by the monument, in 1975. Since 1945, the glacier has retreated 2950 ft (900 m). Total recession of the ice front from 1870 to 1881 is approximately 1 mi (1.6 km), about 50 ft (15 m) per year. The Athabasca Glacier is 3.7 mi (6 km) long. Meltwater from the glacier flows into the Sunwapta and Athabasca rivers and eventually into the Arctic Ocean via the Mackenzie River.
  • Slide 7
  • Ghiacciai vallivi e calotte glaciali
  • Slide 8
  • Lupia Palmieri, Parotto, Osservare e capire la Terra Zanichelli editore 2010 I ghiacciai vallivi I ghiacciai vallivi, o alpini, si originano ad elevate altitudini e defluiscono lungo valli scavate nelle rocce in posto
  • Slide 9
  • I ghiacciai vallivi: morfologia
  • Slide 10
  • Strahler, Geografia fisica. Ed. Piccin
  • Slide 11
  • 15.18 Taku Glacier Terminus, Taku Inlet, Juneau, Alaska (aerial) Photograph by Peter L. Kresan This aerial view (taken in the summer) shows the advancing terminus of the Taku Glacier as it enters Taku inlet near Juneau, Alaska. The convex (bulging) profile of the terminus and lack of a trimline along the margins of the Taku Glacier are indicative of an advancing glacier. In fact, the glacier is plowing down forest on both sides of this advancing lobe. In the distance, where the glacier bends to the left, the surface of the glacier becomes lighter and smoother as the rough, crevassed surface becomes covered with snow. This change in the surface of the glacier marks the snowline, above which snowfall from the previous winter does not melt entirely. Largest in the Juneau Icefield of southeastern Alaska, the Taku Glacier is a temperate, maritime glacier. It has advanced more than 6.8 kilometers since 1890 and 1.6 kilometers since 1948. Studies by the Juneau Icefields Research Program show that the Taku Glacier has a positive mass balance of +0.37 meter per year for the period 1946-1986. This positive accumulation of snow on the glacier accounts for its growth through the end of the 20th Century, even though many other glaciers have been retreating (Pelto & Miller, 1990).
  • Slide 12
  • Forme superficiali La superficie del ghiacciaio si comporta come un corpo rigido, i movimenti differenziali dei vari strati che lo compongono determinano la frantumazione del ghiaccio in blocchi dando origine ai crepacci, che spesso si incrociano isolando blocchi e formando profonde fenditure, i seracchi.
  • Slide 13
  • Movimento di un ghiacciaio vallivo
  • Slide 14
  • Slide 15
  • 15.12 North Pole, Arctic Ocean Photograph by Yar Petryszyn Yamal, a Russian nuclear icebreaker, makes it to the North Pole, Arctic Ocean, in July. 15.13 North Pole, Arctic Ocean Photograph by Yar Petryszyn A break in sea ice at the North Pole exposes open water in the Arctic Ocean. I ghiacciai continentali o inlandsis
  • Slide 16
  • 15.14 Flow of Sea Ice in Arctic Ocean Photograph by Yar Petryszyn Flow of sea ice in Arctic Ocean mimics the movement of Earth's crustal plates. Note the oblique spreading centers connected by transpressional transform faults.
  • Slide 17
  • 15.15 Mount Munson, Antarctic Photograph by Paul Fitzgerald View east-northeast across the Queen Maud Mountains from Mount Munson, Antarctica. Mount Munson, Antarctic
  • Slide 18
  • Movimento di un ghiacciaio continentale
  • Slide 19
  • Prima della glaciazione: Rilievi dalle forme morbide, valli a V In cosa si differenziano le valli glaciali dalle valli fluviali? Durante la glaciazione: Ghiacciai tributari e valle glaciale principale
  • Slide 20
  • Quando il ghiaccio scompareemergono rilievi dalle forme aspre, circhi, valli sospese con cascate, valli a U Anche i ghiacciai tributari scavano dei truogoli ad U, ma questi hanno una sezione trasversale di ampiezza pi ridotta ed il loro fondo situato pi in alto rispetto a quello delle valli principali, per cui sono chiamati truogoli sospesi.
  • Slide 21
  • Le valli glaciali sono tipicamente a U poich il ghiaccio erode sia il fondovalle che i versanti. Esse hanno un profilo ondulato perch il ghiacciaio tende ad accentuare le irregolarit. Spesso le valli fluviali si sovrappongono, al ritiro del ghiaccio, alle preesistenti valli glaciali. Dove due o pi ghiacciai confluiscono si possono formare valli sospese.
  • Slide 22
  • 15.21 Glacial Carved Valley of Glen Coe, Scotland Photograph by Peter L. Kresan This is a view to the west up Glen Coe, a classic example of a U-shaped valley. In the foreground is a glacial polished surface of 380 million year old andesitic volcanic rock. About 3 million years ago a deterioration of climate led to the build up of glaciers and ice sheets in Scotland. The last glaciation began about 27,000 years ago, reached its maximum about 18,000 years ago, and melted away by about 10,000 years ago, leaving this landscape.
  • Slide 23
  • 15.4 Half Dome and Tenaya Canyon, Yosemite, California Photograph by Peter L. Kresan From Glacier Point in Yosemite, one can easily imagine Tenaya Canyon partially filled with ice 15,000 years ago, just like the Great Gorge in Alaska is today (see Slide 15.3). Immediately to the left of this view, Tenaya and other canyons join to form Yosemite Valley. The U-shape profile of Tenaya Canyon is characteristic of glacial carved valleys. Till and outwash deposits level out the floor of the valley.
  • Slide 24
  • 15.3 The Great Gorge, Ruth Glacier, Alaska Range (Aerial) Photograph by Peter L. Kresan About 15 mi up the Ruth Glacier from the location shown in Slide 15.2 is the Great Gorge. This is a wonderful analog to what Tenaya Canyon and Yosemite Valley must have looked like during the last ice age (see Slide 15.4). Work reported in Earth magazine (March 1993) indicates that the Great Gorge is the deepest gorge in North America-3800 ft (1160 m) deep. The vertical relief from the top of Mt. Dickey (upper right) to the bedrock floor of the gorge is 9000 ft (2740 m).
  • Slide 25
  • Levoluzione di una valle glaciale Il ghiaccio ha una densit tale che, quando galleggia, da 3/4 a 9/10 della sua massa si trovano sotto il livello del mare. Quindi, un ghiacciaio pu erodere ben sotto il livello del mare!
  • Slide 26
  • 15.22 Sognefjord near Aurland, Norway Photograph by Peter L. Kresan This is a view of the Aurland arm of the Sognefjord, the worlds longest fjord, in the heart of Fjordland, southwestern Norway. Glaciers retreated from this region about 9,000 to 10,000 years ago, leaving a dramatic landscape of fjords, waterfalls, and rounded mountain tops and plateaus. Fjords typically mark the location of faults or fracture systems in the bedrock. Fjords open to the ocean. Their dimensions are difficult to imagine. Glacial sediments and water partially fill the fjord to depths of hundreds of meters. One section of the Sogne Fjord has sides that tower 1,220 meters above the water level and extend another 1,220 meters below. To reach open ocean from the location of this image, you would travel close to 200 kilometers in a jet boat.
  • Slide 27
  • 15.9 McCarty Ford, Kenai Peninsula, Alaska (Aerial) Photograph by Peter L. Kresan The Harding Icefield on the Kenai Peninsula of Alaska feeds the McCarty Tidewater Glacier, which cut this 23-mi (37-km) -long fjord. Since 1860, the McCarty Glacier has retreated 17 mi (27 km) to its present position at the head of the fjord. Most tidewater glaciers in Alaska have undergone rapid retreat during the twentieth century.
  • Slide 28
  • Azione geomorfologica: forme di erosione I ghiacciai esercitano unazione erosiva potente ed efficace sulle rocce del fondo e sui versanti. Essa si esplica attraverso due processi: La rimozione dei frammenti gi disgregati Lestrazione di detriti dai versanti e dal fondo. I detriti sono trasportati nella massa di ghiaccio o sulla sua superficie. Lazione erosiva sul fondo detta esarazione. Le rocce vengono levigate e striate solo sul lato rivolto verso monte, sono cos asimmetriche e vengono dette rocce montonate.
  • Slide 29
  • 15.7 Glacial Striations and Polish, Athabasca Glacier, Columbia Icefield, Canada Photograph by Peter L. Kresan Glacier-striated and -polished bedrock is exposed beneath a mantle of till at the terminus of the Athabasca Glacier in the Rocky Mountains, Canada. This photo was taken on top of a bedrock hill, probably a roche moutonn, that has just become exposed as the glacier retreats (see Slide 15.10).
  • Slide 30
  • 15.20 Exposed Bedrock along the Flank of the Mendenhall Glacier, Juneau, Alaska Photograph by Peter L. Kresan This exposure of ice-polished bedrock near the terminus of the Mendenhall Glacier is within a trimline which parallels the glaciers flank. The trimline is barren of vegetation and exposes bedrock and glacial till. A trimline forms during a period of recent glacial ice retreat. Over a period of decades, the trimline will become progressively more obscure as vegetation expands into this disturbed area. So in contrast to the Taku Glacier, the Mendenhall is retreating. Additional evidence for its retreat is found beyond the glacial terminus behind the person in the upper right, where thirteen distinct recessional moraines mark different stages of the retreat. In 1750, during the Little Ice Age, the Mendenhall Glacier extended 4 kilometers farther down the valley.
  • Slide 31
  • 15.6 Glacial Erratic, South Bubble, Acadia, Maine Photograph by Peter L. Kresan The speckled white color of this glacial erratic does not match the pink granitic rock of the South Bubble in Acadia National Park, near Bar Harbor, Maine. The closest outcrop of bedrock matching the boulder is many miles to the north. Massi erratici
  • Slide 32
  • Forme di deposito
  • Slide 33
  • 15.2 Ruth Glacier, Alaska Range (Aerial) Photograph by Peter L. Kresan This low aerial oblique view down the Ruth Glacier in Alaska shows medial and lateral moraines. The Ruth Glacier is a valley or piedmont glacier formed by the confluence of many smaller glaciers.
  • Slide 34
  • 15.19 Lateral Moraine, Tasman Glacier, Mount Cook National Park, New Zealand Photograph by Peter L. Kresan This long lateral moraine along the west flank of the Tasman Glacier was formed when the glacier was much thicker during its last advance. Starting in the 1890s, the ice began its retreat and the rock debris, plastered along the mountain flank, collapsed to form this ridge.
  • Slide 35
  • Slide 36
  • Lupia Palmieri, Parotto, Saraceni, Strumia, Scienze integrate Zanichelli editore 2010 I cambiamenti climatici La temperatura atmosferica media annua degli ultimi 750 000 anni variata da condizioni di clima pi freddo (periodi glaciali) a condizioni di clima pi caldo (periodi interglaciali)
  • Slide 37
  • Lupia Palmieri, Parotto, Saraceni, Strumia, Scienze integrate Zanichelli editore 2010 I cambiamenti climatici Landamento della concentrazione di anidride carbonica nellatmosfera da 650 000 anni fa a oggi
  • Slide 38
  • 15.16 Ice Lab at the Department of Geosciences, University of Arizona Photograph by Peter L. Kresan Sublimation of a 100,000-year-old Vostok ice core from Antarctica in the Ice Lab at the Department of Geosciences, University of Arizona. Trapped gases within the ice, such as carbon dioxide, are collected and studied to reconstruct past levels of the gases in Earth's atmosphere. 15.17 Lemon Glacier, Juneau Icefield, Alaska Photograph by Peter L. Kresan Snow accumulation study on the Lemon Glacier, Juneau Icefield, Alaska. The thin bluish ice layers mark past summers' melt surfaces.
  • Slide 39
  • Lupia Palmieri, Parotto, Saraceni, Strumia, Scienze integrate Zanichelli editore 2010 I cambiamenti climatici Le due fotografie, scattate dallo stesso punto di osservazione nel 1910 e nel 2001, mostrano di quanto si ridotto il Ghiacciaio di Tschierva, nelle Alpi svizzere
  • Slide 40
  • Variazioni rapporto isotopico O 16 /O 18 18 O is two neutrons heavier than 16 O and causes the water molecule in which it occurs to be heavier by that amount. The addition of more energy is required to vaporize H 2 18 O than H 2 16 O, and H 2 18 O liberates more energy when it condenses. In addition, H 2 16 O tends to diffuse more rapidly.neutronsvaporizecondenses The 18 O/ 16 O ratio provides a record of ancient water temperature. Water 10 to 15 degrees Celsius (18 to 27 degrees Fahrenheit) cooler than present represents glaciation. Precipitation and therefore glacial ice contain water with a low 18 O content. Since large amounts of 16 O water are being stored as glacial ice, the 18 O content of oceanic water is high. Water up to 5 degrees Celsius (9 F) warmer than today represents an interglacial, when the 18 O content of oceanic water is lower. A plot of ancient water temperature over time indicates that climate has varied cyclically, with large cycles and harmonics, or smaller cycles, superimposed on the large ones. This technique has been especially valuable for identifying glacial maxima and minima in the Pleistocene.degrees Celsiusdegrees FahrenheitglaciationharmonicsPleistocene
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Glaciazioni europee Modello riferibile al versante settentrionale delle Alpi Pleistocene inferiore interglaciazione Donau-Gnz (1.700.000-1.200.000 anni fa) glaciazione Gnzglaciazione Gnz (1.200.000-700.000 anni fa) Pleistocene medio interglaciazione Gnz-Mindel (700.000-650.000 anni fa) glaciazione Mindel (650.000-300.000 anni fa)Mindel interglaciazione Mindel-Riss (300.000-250.000 anni fa) glaciazione Riss (250.000-120.000 anni fa)Riss Pleistocene superiore interglaciazione Riss-Wrminterglaciazione Riss-Wrm (120.000 - 80.000 anni fa) glaciazione Wrmglaciazione Wrm (80.000-10.000 anni fa)
  • Slide 47
  • Slide 48
  • Il sollevamento isostatico post- glaciale