Geoid Computations in the ltalian Area · 90 123450' 27 5 150 92232' (-2) 6 105230' 121 7 220...

30
ANNO XLIII - BOLLETTINO DI GEODESIA E SCIENZE AFFINI - N. 3, 1984 Geoid Computations in the ltalian Area B. BENCIOLINI - L. MUSSIO - F. SANSÙ Istituto di Topografia, Fotogrammetria e Geofisica, Politecnico di Milano P. GASPERINI - S. ZERBINI Istituto di Geofisica, Università di Bologna Summary. - A gravimetric geoid has been determined in the italian area: this paper re- ports procedures and results. The data which have been used are the gravity anomalies supplied by BGI. A collocation procedure has been applied locally using the Rapp ('79) 180 x 180 model as reference field. The geoidal height m.s.e. is almost everywhere less than 0.5 m on the land. Vertical deflections are estimated too and the discrepancies with the measured values show significant large values in the tectonically active areas. A comparison is made with the Cruz and Rapp geoid showing significant systematic dif- ferences. CALCOLO DEL GEOIDE NELL'AREA ITALIANA. Sommario. - Del calcolo di un geoide gravimetrico nell'area italiana si riportano proce- dure e risultati. Si è fatto uso delle anomalie della gravità fornite dal BGI. La procedura è basata sulla collocazione applicata localmente con riferimento al modello di Rapp ('79), 180 x 180. Lo e.q.m. delle altezze sul geoide è quasi ovunque inferiore a 0.5 m sulla terraferma. Si stimano anche le deviazioni della verticale; le discrepanze con i valori misurati sono maggiori nelle zone tettonicamente attive. Un confronto con il geoide di Cruz e Rapp mostra un significativo sistematismo nelle differenze.

Transcript of Geoid Computations in the ltalian Area · 90 123450' 27 5 150 92232' (-2) 6 105230' 121 7 220...

Page 1: Geoid Computations in the ltalian Area · 90 123450' 27 5 150 92232' (-2) 6 105230' 121 7 220 178122' 204 8 140 314237' 25 9 220 22'696 2 lO 160 28'3264 18 11 130 380037' (-2) 12

ANNO XLIII - BOLLETTINO DI GEODESIA E SCIENZE AFFINI - N. 3, 1984

Geoid Computations in the ltalian Area

B. BENCIOLINI - L. MUSSIO - F. SANSÙ

Istituto di Topografia, Fotogrammetria e Geofisica, Politecnico di Milano

P. GASPERINI - S. ZERBINI

Istituto di Geofisica, Università di Bologna

Summary. - A gravimetric geoid has been determined in the italian area: this paper re­ports procedures and results. The data which have been used are the gravity anomalies suppliedby BGI.

A collocation procedure has been applied locally using the Rapp ('79) 180 x 180 model asreference field. The geoidal height m.s.e. is almost everywhere less than 0.5 m on the land. Verticaldeflections are estimated too and the discrepancies with the measured values show significantlarge values in the tectonically active areas.

A comparison is made with the Cruz and Rapp geoid showing significant systematic dif­ferences.

CALCOLO DEL GEOIDE NELL'AREA ITALIANA.

Sommario. - Del calcolo di un geoide gravimetrico nell'area italiana si riportano proce­dure e risultati. Si è fatto uso delle anomalie della gravità fornite dal BGI.

La procedura è basata sulla collocazione applicata localmente con riferimento al modello diRapp ('79), 180 x 180. Lo e.q.m. delle altezze sul geoide è quasi ovunque inferiore a 0.5 m sullaterraferma. Si stimano anche le deviazioni della verticale; le discrepanze con i valori misurati sonomaggiori nelle zone tettonicamente attive.

Un confronto con il geoide di Cruz e Rapp mostra un significativo sistematismo nelledifferenze.

Page 2: Geoid Computations in the ltalian Area · 90 123450' 27 5 150 92232' (-2) 6 105230' 121 7 220 178122' 204 8 140 314237' 25 9 220 22'696 2 lO 160 28'3264 18 11 130 380037' (-2) 12

214 B. BENCIOLINI- P. GASPERINI- L. MUSSIO- F. SANSÙ- S. ZERBINI

INTRODUCTlON

The present paper reports the status of the research developed by theMilan group with the cooperation of dr. S. Zerbini and dr. P. Gasperini, of theUniversity of Bologna, in the field of computational physical geodesy. Thefinal tasks of the research are the comparisons of several methods for deter­mining the anomalous potential (1), represented as usual by the geoid orbetter by the quasi-geoid (1), and the actual computation of the geoid in theItalian region with the best possible accuracy (target ±20 cm).

The first step of the research was the computation of an astrogeodeticgeoid as reported in the 2nd Intemational Symposium on the European andMediterranean Geoid (Rome, September 1982).

Wath we present here is the 1983 step of the research, Le. mainly the,computation of a first gravimetric geoid.

1. - GENERAL INFORMATION ABOUT THE METHOD

1.1. - TRE COLLOCATIONPROCEDURE

The collocation procedure has been used at this step of the research, for itis particularly simple to use (no a-priori smoothing and interpolation of data isrequired) flexible (any kind of data can be used) and powerful (any kind ofgeodetic quantity can be predicted).

The program we have used is the C.C. Tscheming program with a fewmodifications (see C.C. Tscheming, 1974).

the program allows a three-steps collocation, but only twosteps havebeen used till now, the first of which is the computation of the requestedquantities using a global mode! of the earth anomalous potential representedby spherical harmonic coefficient.

1.2. - PARTITIONINGOFITALYINTOZONES

The Italian region has been partitioned into 13 rectangular zones whichhave been trated independently; this partitioning was necessary in order toavoid too long, and expensive, computations.

It is not a completely satisfactory procedure, but at this stage it seems tobe the best compromise between a completely rigorous (or at least morerigorous) procedure, and the need to reduce the computations to a mana­geable amount.

Justifications and problems of this procedure will be pointed out later onin the papero Table l and figure l illustrate the zone boundaries.

(1) For the sake of brevity we shall use throughout the paper the word «geoid» instead of«quasi-geoid».

Page 3: Geoid Computations in the ltalian Area · 90 123450' 27 5 150 92232' (-2) 6 105230' 121 7 220 178122' 204 8 140 314237' 25 9 220 22'696 2 lO 160 28'3264 18 11 130 380037' (-2) 12

GEOID COMPUTATIONS IN THE ITALIAN AREA

2. - TRE DATA

2.1. - GRAVITY DATA

215

The gravity data we used are the data collected and distributed by theB.G.I., which we like to thank for the kind cooperation.

10116 data have been supplied, 6551 of which are land data and 3564 aremarine data. Only land data have been used, mainly because of the difficultyof finding reliable weights for the two kinds of measurements.

TABLE 1ZONES BOUNDARIES

Zone cpÀ

1

44.00 -;.-45.50 8.00 -;.-11.00

2

44.00 -;.-46.00 10.00 -;.-13.00

3

43.00 -;.-44.50 10.00 -;.-14.00

4

41.00 -;.-43.50 11.00 -;.-15.00

5

40.00 -;.-42.00 14.00 -;.-17.00

6

40.00 -;.-41.50 16.00 -;.-19.00

7

37.50 -;.-40.50 15.50 -;.-17.50

8

36.50 -;.-38.50 12.00 -;.-16.00

9

38.50 -;.-41.50 8.00 -;.-10.00

lO

44.00 -;.-46.00 6.50 -;.- 8.50

11

45.00 -;.-46.50 7.50 -;.-10.00

12

45.50 -;.-47.00 9.50 -;.-12.00

13

45.50 -;.-47.00 11.50 -;.-14.00

2.2. - POTENTIAL COEFFICIENTS

The Rapp 180 model, complete up to degree' and order 180, has been usedin alI computations.

2.3. - SEASAT RADAR ALTIMETRY DATA

The Seasat satellite was launched in 1978 and it has been collecting datafor three months. The Seasat contained a radar altimeter which continuouslymeasured the distance from the satellite to the sea surface; the accuracy of thealtimeter was approximately ±1O cm. From these data the geoid can be ob­tained directly if the orbit of the satellite and the oceanographic corrections

Page 4: Geoid Computations in the ltalian Area · 90 123450' 27 5 150 92232' (-2) 6 105230' 121 7 220 178122' 204 8 140 314237' 25 9 220 22'696 2 lO 160 28'3264 18 11 130 380037' (-2) 12

(3.1)

216 B. BENCIOLINI- P. GASPERINI- L. MUSSIO- F. SANSÙ- S. ZERBINI

are known. Oceanographic corrections consist of tides and both time-depen­dent and steady-state variations produced by currents.

The data from Seasat experiment have been processed by Rapp andRowlands and one global network and four regional network adjustmentswere carried out (Rapp, 1981; Rowlands, 1981). One of these regions, the NorthAtlantic, included data from the Mediterranean Basin; in this area, after ad­justment of the orbital parameters, the cross-over errors were ±26 cm (Cruzand Rapp, 1982). Cruz and Rapp compared the adjusted data from the Seasatand Geos-3 satellites in the Mediterranean and the comparison indicated thepresence of a systematic difference and a slope between the two surfaces. Alocal adjustment of the Seasat data in this region was then carried out. AIso, inthis new adjustment, aH tide values were set to zero because the Schwiderskicorrection is not valid in this area. The cross-over discrepancy of this adjust­ment is ± 15 cm. The data set used in this work is this latest one (Cruz andRapp, 1982).

It is worth mentioning that, in generaI, in the Mediterranean basin tidecorrections are smaH except for the Adriatic Sea where they can be up to 1 mand more.

The Seasat geoid has been used, here, only for comparison purposes.

2.4. - VERTICALDEFLECTIONS

Vertical deflection measurements have been supplied by IAG SSG 5.50,which we heartily thank. A total amount of 323 vertical deflection points whereavailable, which have been used for comparison only.

3. - TRE COVARIANCE FUNCTION

3.1. - COVARIANCEFUNCTIONMODELS

The choice of a priori covariance function or, switching to analitycal de­scription of coHocation, the choice of a proper approxitnation space is thecentraI point when coHocation is applied.

The construction of the maybe most famous covariance function modelssuitable for coHocation has been treated by Tscherning and Rapp (1974) andby Tscherning (1976): the recommended model for the anomalous potentialcovariance function is:

C(P,Q) = I~O (1- 2~1+ 24) (RBj'Yp 'YQ)Hl Pl(COS ~P'Q)

while aH the other needed auto and cross-covariance functions are derivedfrom this basic one.

Page 5: Geoid Computations in the ltalian Area · 90 123450' 27 5 150 92232' (-2) 6 105230' 121 7 220 178122' 204 8 140 314237' 25 9 220 22'696 2 lO 160 28'3264 18 11 130 380037' (-2) 12

GEOID COMPUTATIONS IN THE ITALIAN AREA 217

When working in smaH areas the mentioned global covariance functionmust be replaced by a local one in order to avoid numerical instabilities. It hasbeen found (Tscherning, 1976) that a reasonable model for a local covariancefunction can be expressed again by (3.1) where a certain number of coeffi­cients of the first degrees is set to zero.

3.2. - COVARIANCE FUNCTIONS IN PRACTICE

The actual use of model (3.1) as local covariance function requires theestimation of three parameters, Le.A, which is a scale parameter, the radius R,of the Bjerhammar sphere, and the order, n, of the local function, Le. thenumber of terms to be deleted.

AHthe quantities must be set to proper values in order to obtain a goodagreement between the model-covariance function and the «true» local-cova­riance function according to the main features.

The available gravity anomaly data have been used to estimate zone byzone 13 empirical covariance functions.

The great variety of geophysical situations we have in Italy is immediatelyevident by inspecting the shape and the power of the different functions.

The empirical covariance functions of zone 4 (CentraI Italy) and of zonelO(Alpine Region) are represented in fig. 2 as an example of these differences.In table 2 are shown the values of the functions at the origin; the values of thenoise variances and the positions of the first zero (\);0)'

The great variety of values must be again remarked.

TABLE 2MAIN PARAMETERS OF COVARIANCE FUNCTIONS

Zone ~g signal variance~g noise variance\);0n22

(mgal) (mgal)

1

3662 20230'1602

2930 1540'1203

2214 19150'904

1234 2750'905

922 (-2)32'1506

1052 12130'1607

1781 20422'2208

3142 2537'1409

696 222'220lO

3264 1828'16011

3800 (-2)37'13012

3209 525'20013

1758 1131'160

Page 6: Geoid Computations in the ltalian Area · 90 123450' 27 5 150 92232' (-2) 6 105230' 121 7 220 178122' 204 8 140 314237' 25 9 220 22'696 2 lO 160 28'3264 18 11 130 380037' (-2) 12

218 B. BENCIOLINI - P. GASPERINI - L. MUSSIO - F. SANSÒ - S. ZERBINI

As it is expected from the many researches in this field (see for instanceSiinkel, 1981),the local covariance functions perform a very typical behaviorwith high value at the origin and short correlation length in rough tectonicallyactive areas (e.g. Alps and Sicily) and vice-versa in plain or settled areas.

The A parameter of expression (3.1) is internally computed by the pro­gram using the gravity anomaly signal variance. The local function degree isselected by fitting the first zero-point of the empirical covariance function; thiscan be done following Tscherning and Rapp (1974),because the higher is theorder, the nearer to the origin is the first zero. The radius R has been heldfixed to the value 0.9998RE because it is not clear thoretically how couldreasonably be glued solutions estimated by covariance functions referring todifferent domains of harmonicity.

The noise variance, which is estimated in this way together with the co­variance function can happen to be negative: in this case we have always resetan arbitrary, small positive value (e.g. 1 mgal\

4. - PRACTICALCOMPUTATIONMANAGEMENT

4.1. - SINGLE ZONES TREATMENT

As already explained, the first step of data treatment is the zone parti­tioning and then the estimation of a covariance function for each zone.

Mereover in some areas of particularly high data density, some of themhave been neglected. This resulted in a decrease of the data budget to about3000values, with a much more regular density distribution.

The second step is just the estimation of geoidal heights in a regular gridwith a 101 mesh-side; moreover, the solution of normal equation is saved andcan be used for further computations. In fact, if the normal equation solutionis available, any potential-related quantity can be computed in a separate runtaking advantage of the restarting capability of the program.

Seasat altimeter geoid and vertical deflections have actually been com­pared in this manner.

4.2. - THE ZONES PATCHING

The 13 regions into which we have partitioned Italy are as mentionedstrongly overlapping; there are therefore a lot of grid point where the geoidalheights have been computed using two, or sometimes more, partially differentsets of data. How to combine these different estimates in order to obtain thebest unique estimate is not a practically solved problem, till now.

The main difficulty is to obtain a good estimate of the covariances bet­ween the heights of the common points, estimated from the different zones.

Page 7: Geoid Computations in the ltalian Area · 90 123450' 27 5 150 92232' (-2) 6 105230' 121 7 220 178122' 204 8 140 314237' 25 9 220 22'696 2 lO 160 28'3264 18 11 130 380037' (-2) 12

GEOID COMPUTATIONS IN THE ITALIAN AREA 219

In the present case, the simple weighted average has been used as finalestimate; this is by no means a rigorous solution but it becomes anywaymeaningful if the discrepancies are small.

The mean square values of residuals are computed, too, and are used as atool to decide whether the weighted averages are acceptable or some reasonsfor the discrepancies must be sought for.

4.3. - A REMARK ON LOCAL APPLICATIONS OF COLLOCATION

The principle on which the collocation is used in a local mode relies on thefolIowing heuristic reasoning: the information on the law frequency compo­nents of the gravity field comes from large averages of measured quantities(f.i. gravity anomalies) and cannot be influenced significantly from local ob­servations. Whence a reliable high order reference field must be used in orderto introduce this information. If the corresponding coefficients are fixed andconsidered as known up to a certain degree only higher frequency componentsmust be estimated; correspondingly an «optimal» estimate can be obtained byusing a covariance function where alI the low frequencies have been cutoff (l),what is in fact done as previously described to model the local features of theempirical covariance function. It folIowsfrom this reasoning that the degree ofthe reference fiald should always be larger than the low frequency componentcut off in the local covariance function: this we remark to prevent otherbeginners, as we consider ourselves, from making the same errors that wemade in a first step of computations of the Italian geoid.

5. - PRESENT RESULTS

5.1. - THE GRAVIMETRIC GEOID «ITALGEO 83»

As already mentioned, thegeoidal heights have been computed on a re­gular grid with a 10' mesh-side. The covered area is the whole Italian land andsome smal marine regions, reteined only to simplify the data management.

The final result is tabulated in the appendix.The geoidal height m.s.e.s estimated from collocation formulae are almost

everywhere less than 0.5 m, with the exception of sea zones, Le.zones far awayfrom the data area.

In the overlapping zones we have also computed the m.s.e. of theweighted averages: their distribution is shown in table 3.

(2) This corresponds to a stepwis estimation of the components of Ton two subspace of theHilbert space admitting C(P,Q) as a reproducing kernel: the two projectors on these subspacescoincide as· a matter of fact with the low frequency and high frequency components of kernelC(P,Q).

Page 8: Geoid Computations in the ltalian Area · 90 123450' 27 5 150 92232' (-2) 6 105230' 121 7 220 178122' 204 8 140 314237' 25 9 220 22'696 2 lO 160 28'3264 18 11 130 380037' (-2) 12

220 B. BENCIOLINI - P. GASPERINI - L. MUSSIO - F. SANSÙ - S. ZERBINI

TABLE 3DISTRIBUTION OF M.S.E. OF POINTS IN OVERLAPPING AREAS

rj - intervai (m) Number of points

0.00 + 0.10

238

0.10 + 0.20

1410.20 + 0.30

69

0.30 + 0.4066

0.40 + 0.5036

0.50 +0.60

20

0.60 +0.70

14

0.70 +0.808

0.80 +0.90

4

0.90 + 1.001

> 1.00

7

This should not be taken as an overall measure of the accuracy of theestimates, but more as an internaI consistency of the method.

In any way it is not by chance that 47 of the 54 m.s. weighted residuaisgreater than 0.50 m, were Iocated at a Iatitude higher than 45°30', Le. in theimmediate sorroundings of the AIps.

5.2. - A FIRST COMPARISON WITH AN ASTROGEODETIC GEOID

The Italgeo 83 has been first of alI compared with a geoid derived, aiso bycollocation, from astrogeodetic data.

This has been computed by C.C.Tscherning in '82 and communicated tothe authors in private formo It consists of about a hundred of estimated on­duiations spaced half degree by half degree from Iatitude 43° to 47°; 74 of themare in common with our predicted values.

The average of the discrepancies between the two and their mean squareerror are respectiveIy

x = 0.82 m

5,1 = 1.36 m

This seems for the moment acceptabie considering that the two geoidshave been computed from completely independent data Syts and no Iocaioptimization of the datum shift has been used to transform the verticaideflections from the ED50 to the GRS80 system.

Page 9: Geoid Computations in the ltalian Area · 90 123450' 27 5 150 92232' (-2) 6 105230' 121 7 220 178122' 204 8 140 314237' 25 9 220 22'696 2 lO 160 28'3264 18 11 130 380037' (-2) 12

GEOID COMPUTATIONS IN THE ITALIAN AREA 221

5.3. - COMPARISON BETWEEN GRAVIMETRIC ANO ASTROGEOOETIC OEFLECTIONS

From Italgeo 83, deflections of the vertical have been predicted at thesame points where we had astrogeodetic measurements, for comparison pur­poses.

The results are summarized in table 4 in form of histograms of the di­screpancies

Os = Sobserved - Spredicted

OT) = T)observed - T)predicted

The gravimetric deflections are firstly predicted in the GRS80 system andthen transformed to the ED50 system.

The columns of table 4 refer to dasses of amplitude of one second and arecentered at the heading value. The column «outside» refers to discrepancieswhich are larger than 10".5in absolute value.

Though these results are not exiting, one point is absolutely dear: thelargest discrepancies between gravimetric and observed deflections happen inareas where the topography is extremely rough, like lO, 11, 12, 13,which referto the alpine arc, or to tectonically active areas like zone 5, which indudes thevery strongly seismic region Irpinia or zone 7 with the seismic area of theStraits of Messina.

A reason for the relatively high values of the discrepancies, should besought for in the lack of any correction for the topography, which on the otherhand is known to have a large influence on the deflections 1;, T). Moreover, thegravimetric deflections have been for the moment predicted only at the meansea level, since we were not aware of the height of the measuring points: thismight give a significant difference, specially in montaneous areas.

Furthermore the mean density of gravimetric points is not very high, thusit makes no wonder that only poor predictions can be made, where the gravityfield shows a rough pattern.

5.4. - COMPARISON BETWEEN ITALGEO 83 ANO ALTIMETRY OERIVEO-GEOID

As we said previously a set of Seasat altimetry data adjustment bt Cruzand Rapp (cfr. Cruz and Rapp 1982)has been compared to the Italgeo 83ondulations.

To this aim only points dose to the Italian shores have used so that thecollocation solution could give a really informative prediction there (Le.,witha prediction error of about 0.50-0.70m). It is worth nbting that being bothgeoids referred to the GRS80 system, no datum shift has been applied beforecomparing one to the other.

Page 10: Geoid Computations in the ltalian Area · 90 123450' 27 5 150 92232' (-2) 6 105230' 121 7 220 178122' 204 8 140 314237' 25 9 220 22'696 2 lO 160 28'3264 18 11 130 380037' (-2) 12

TABLE 4

Zone N. -10-9 -8 -7 -6 -5 -4 -3 -2 -1 O123456789lOOutsideO~oliSrPTI

1

O~ O1O1OO1253421OO1OOOOO 2-2.5 4.3

OT}

2OO11O11337121OOOOOOO O-1.7 3.4

2 o~

O1O131534442211OOOOOO 4-2.6 5.7

OT}

OO1O1112OO4936212O21O O 1.53.7

3 o~

OO1O142O3322OOOOOOOOO 1-3.2 3.1

OT}

OOOO1OO3233O3211OOOOO O 0.02.8

4 O~

OO1OOO2132513O11OO1OO 1 0.54.5

OT}

O1O1OO2124123O212OOOO O 0.03.9

5 o~

2OOOOOOOO21421O11O121 11 1.810.6

OT}

OO122OOO2O1OOO2125134 3 4.76.4

6 O~

OOOO1OOOO231O8OOOO1OO O 1.62.9

OT}

OOOOOOOO11O331322OOOO O 2.62.4

7 O~

OOOOOOOOO2O3O331O111O lO 0.79.8

OT}

11O1O1OOO21OOOO11OO21 13 6.18.9

8 o~

OOOOOOOO2186735313212 1 3.13.3

~T}OOO1OO1246246512332OO 3 1.45.3

9 o~

11OO1O23222O142422OOO 2-0.2 5.6

OT}

O33O2221231OOO1121O22 3-0.4 7.1

lO o~

21O1O2OOO13113OOO22OO 8-1.4 9.7

OT}

OOOOOOOOOOOOO1O321O11 18 1.020.7

11O~1O23112OO1OO1OOOOOOOO 5-8.7 6.2

OT}

OO1O1OOO15O42OO1O1OOO 1 0.64.5

12 o~

OOOOOOOOOOOOOOOOOOOOO 15-6.052.7

OT}

OOO1OOOOOOOOOOOOOOOOO 14 19.222.8

13 o~

O31213OO1O1OOO11OOOOO 18-8.67.0

OT}

OOOOOOO31O11242523 ' 223 1 4.64.2

NNN

~lJjmZ(")

(5t""

52•...

I;cl

C')>m."m~52•...

Ir:s:c::mm(5

I~m>ZmOI

çn

Nm~lJj

52....

Page 11: Geoid Computations in the ltalian Area · 90 123450' 27 5 150 92232' (-2) 6 105230' 121 7 220 178122' 204 8 140 314237' 25 9 220 22'696 2 lO 160 28'3264 18 11 130 380037' (-2) 12

GEOID COMPUTATIONS IN THE ITALIAN AREA 223

A total of 175 points has been processed and the differences Naltimetry ­

Ngravimetry have been computed: the resulting overall average and the meansquare value are

x = -1.06 m

SJ1 = 1.56 m

As we expected, also according to the remarks in Cruz and Rapp (1982),the mean square error of the differences is significantly too high to be ex­plained as the sum of the prediction error from the land gravity determinedgeoid and the estimation error of the adjustment altimetric ondulations.

For this reason we have tried a comparison in a regional mode partitio­ning the Italian coast as shown in fig. 3.

On the figure for each zone are indicated the number N of points pro­cessed, the zone average difference X, and the zone mean square error SJ1.

Apart from minor oxillations, some generaI remarks can be drawn:

the mean square errors are compatible with the expected theoreticalvalues;

the mean zone values show a clear systematic pattem with an in­creasing difference from north to south seas;

- the - 3.08m difference (NaIt. - Ngrav) in the Southem Adriatic Sea isin quite reasonable agreement with the analogous - 3.70 m found in com­paring the Seasat geoid with the Greek gravimetric geoid DGGG80(cfr. Cruzand Rapp, 1982).

Q. - FINAL COMMENTSAND INDICATIONS

Considering the work done till now we can say that the first steps in thedirection of the production of a high accuracy geoid in Italy and sorroundingareas have been done: in particular a team of researchers has begun to betrained in such geodetic computations. A first gravimetric geoid to which wecan assign a prediction error smaller than 0.50 m in not too rough areas hasbeen completed. Future work will be done to enlargethe data base used andto improve the collocation method by implementing estimates of the effects oftopographic masses (cfr. for instance, H. Siinkel, 1981):to this aim we mentionthat a ·large data set of gravity values as well as of mean topographic heightsis becoming available (M.T. Carrozzo et al., 1981a-1981b).

A further deeper analysis of the biases of altimetric computed geoid isalso deserved, with particular care to the .J.ocaltidal models.

Page 12: Geoid Computations in the ltalian Area · 90 123450' 27 5 150 92232' (-2) 6 105230' 121 7 220 178122' 204 8 140 314237' 25 9 220 22'696 2 lO 160 28'3264 18 11 130 380037' (-2) 12

224 B, BENCIOLINI - p, GASPERINI - L. MUSSIO - F, SANSÙ - S. ZERBINI

,i ......'.':-:::::""

,....-........ -.

......

::::::::::;:::::.:,

'u

/"\"

.....

"0-'"'.

.::;- ... -i~"····

•n ••• •

T"

' .............. \L.,·.··'.'"

(,.m

.:

!::)::~..--\ .

r"i"'"[:'..>"

.... ,..

." ....,........i....··'··

...... ;:..0•.•... ·.·0.•-·

,...•-.'

1.('\...,.·:t ..'

'=,:.. ,:':::.... ::;:::;;:/. '" .. ' ...

(.....

O;;

::.::: ::.::..~.".

'.... :: ~.:. ....

~ .

...+.-.....:::::..... :",:

U .,:

.. ;',: .':.:."".:::" .',lq \, ....D::;:·"; ,;.....

..·H.'.,: ..

' ..

~:;.:i::::·t·::·.' .......·,.. : .. ;.,::::: ... :'"\

l,:.::.··;

:.':' .

. '.::"::>" ··::\\ij:i~;:::·'·::·7iO'?..Ci" ...• ::c·i·· ))~l:;;·i.,:.::,:::,::,,,;,::::):. ':.>:' ..

l....o..~..,·,:~·"

··:,."t. ',

':'. ·::"t",,.,,,,, •..': :'.:" :. " ...•

(~.o ...• ·o"

:'";:'.'.:::..

-'~::;;:-:"',;::' L:=" :":".:-''':::L' ~~:::.:..~.:-...,; .:::,:Y

·:tr,l:,: •::);':'., ··:·::':~i· ":::::'r_.::.:1•

i;,'"

.......,".,,\"',:;.!,; .:' '.j..f.i::·\·· ," " ..--..... ":.

"

I···· ..·····.,,;: ;',' i;""i'<..:;.\: . ':'..p<~;~::~::;.:::,~.:

. '

1)',.'.: .:. :.:':'",.~ "0"('

i.:-.

'\,/

·'-;::::ii'::;:i.~!"··· i··r·::

,,~"., ,... ':'1.'.·:·.·.·~n::::::"::

Ci

.:",::::::;, .. ,.',:~"",,:'::.< .' .

'i:':f.;~~;';'.;.,.•....::!"~: ..~ '.,.,";,.' f;i:::

,:::t :":':'

.', ;.' :i.,';~,::.:... ': '~J::'":'"... -: ..,.

I::;''''':'';:'::/::':

Ci

::"".:.''::.

'.:." ,." '::·:i· .. :...

':::.:,.',

... ,:". i:::,," ;.",.

..:rV':;l:::::

';":'.::':

.,,!,::';;:,:

.... :~,,,:::-:":~:\:':6

Ci

,:.:':,.i::::,., :~:...

:,... ::..'. :,::::;'

9 ....... .J,.. '.• :

(';.:,:::f

"

Ci

"",:,::"" ..,""'''';::".: ...C' ,.0:

.. ,~. '''':

..':::':'::" ':'f'": 7

U ."-.

.......•.......•...•.•. 'o'

:.... ;,.' ....:,,::.::......

. ','.,:'; .

C".,

:.'L ..':;:::' '::<:''c,,'.:

)";';".8..; (.....

i::::,

ni

.......•

'::.

o

,

: : I:

l! .:

:r Ci ?:l Cl ::::~ ~: ~..' ; lo.: ': Ci '1 "I :: U .~ ; . :: ~..: '! .~; II ~••i '; l ; :: :••1 . o,";; ..

Fig, 1

.. . .": .• l: I,'

Page 13: Geoid Computations in the ltalian Area · 90 123450' 27 5 150 92232' (-2) 6 105230' 121 7 220 178122' 204 8 140 314237' 25 9 220 22'696 2 lO 160 28'3264 18 11 130 380037' (-2) 12

GEOID COMPUTATIONS IN THE ITALIAN AREA 225

oO

oM

oo•N

OM•O

SPHERICAL DISTANCE

\-I

O

\

l.1-9'"""

\

00

\

Z

r.f)4:B~ .I

~W

\;

,

Uz

I

,

Zo

7r

:JN

l.1-

\

Il.1-

Wo w'\..

U

u7

zzr.f)

<t:i'o.....

4:w

a::O::::i

<t:

\J

4:4:

~S2>

1\

è5~w

J '\.

wWlf)uO z z -

I

Iz

o o o..•...

-.J4:

N N Z

.•...

·

4:

I

I"

U>

--~

\.

0::_

Q.~

I

~o::

'-

w<.!)

T

J

.

I

)

I

7

77

/'7"7 -I /

~7 /.J1I'

/~

\/' /J

-

--7.-I

.-~;7

.-J-- L,..

COVARIANCE (mgaI2)

OOM

OOlJ')N

OONOOlJ')~

OOO~

OlJ')

O olJ')I

Fig. 2

Page 14: Geoid Computations in the ltalian Area · 90 123450' 27 5 150 92232' (-2) 6 105230' 121 7 220 178122' 204 8 140 314237' 25 9 220 22'696 2 lO 160 28'3264 18 11 130 380037' (-2) 12

226 B. BENCIOLINI - P. GASPERINI - L. MUSSIO - F. SANSÙ - S. ZERBINI

.: /:

,', J,n.. :: .........•.............

,"'" .',:',

...N = ~9

6 = .34

\,= .59

.........

)Fig. 3

Page 15: Geoid Computations in the ltalian Area · 90 123450' 27 5 150 92232' (-2) 6 105230' 121 7 220 178122' 204 8 140 314237' 25 9 220 22'696 2 lO 160 28'3264 18 11 130 380037' (-2) 12

GEOID COMPUTATIONS IN THE ITALIAN AREA

ACKNOWLEDGMENT

227

This work has been realized with the finantial support of the «GruppoNazionale per l'Informatica Matematica (CNR)>>,by a computer use contract.

REFERENCES

B. BENCIOLINI, L. MUSSIO, M.C. ROUFOSSE, F. SANSÙ, S. ZERBINI (1982), Astrogeodeticand Altimetric Geoid Computations in the Italian Area. Presented at the 2nd ln­temational Symposium on the European and Mediterranean Geoid, Roma.

M.T. CARROZza et Al. (1981a), Realizzazione di un archivio delle quote medie. Atti delPrimo Convegno Gruppo Nazionale Geofisica della Terra Solida, Roma.

M.T. CARROZza et Al. (1981b), Carta gravimetrica d'Italia: tecniche automatiche per lasua realizzazione. Atti del Primo Convegno Gruppo Nazionale Geofisica della TerraSolida, Roma.

RH. CHOVITZ(1981), Modern Geodetic Earth Reference Models. EOS 62, 65-67.S.Y. CRUZ, RH. RApp (1982), Sea Surface Heights in the Mediterranean Area {rom Seasat

Altimeter Data (to appear in Bollettino di Geofisica Teorica e Applicata).W.A. HEISKANEN, H. MORITZ (1967), Physical Geodesy. W.H. Freeman & Co., San

Francisco and London.

F.J. LERCH, S.M. KLOSKO, RE. LAuBSCHER, C.A. WAGNER (1980), Gravity Model Im­provement Using Geos-3. GEM 9 and lO.

J.J. LEVALLOIS,H. MONGE (1978), Le geoide européen version 1978. Proceedings of thelntemational Symposium on the Geoid in Europe and the Mediterranean Area,Ancona.

H. MORITZ (1980), Advanced Physical Geodesy. H. Wichman Verlag, Karlsruhe.RH. RApp (1979), Geos-3 Data Processing for the Recovery of Geoid Undulation and

Gravity Anomalies. Joum. Geophys. Res. 84, 3784-3785.R.H. RApp (1981), Gravity Field Determinations with Sea~at Altimeter Data. Paper pre­

sented at the fall meeting of the American Geophysical Union, Abstract in EOS 62,844.

M.C. ROUFOSSE (1978), Interpretation of Altimeter Data. Proceedings of the 9th GEOPConference «An· lntemational Symposium on the Applications of Geodesy toGeodynamics»; Dept. of Geodetic Science, Report n. 280, The Ohio State Univer­sity, Columbus, 261-266.

H. SONKEL (1981), The Estimation of Free-Air Anomalies. OSU Report N. 315 of De­partment of Geodetic Science ..

C.c. TSCHERNING(1974), A Fortan IV Program for the Determination of the AnomalousPotential Using Stepwise Least Squares Collocation. OSU Report N. 212 of theDepartment of Geodetic Science.

C.c. TSCHERNING(1976), Covariance Expression for Second and Lower Order Derivativesof the Anomalous Potential. OSU Report N. 225 of the Department of GeodeticScience.

Page 16: Geoid Computations in the ltalian Area · 90 123450' 27 5 150 92232' (-2) 6 105230' 121 7 220 178122' 204 8 140 314237' 25 9 220 22'696 2 lO 160 28'3264 18 11 130 380037' (-2) 12

228 B. BENCIOLINI - P. GASPERINI - L. MUSSIO - F. SANSÙ - S. ZERBINI

C.C. TSCHERNING (1978), A User Guide Geopotential Approximation by Stepwise Col­location on the RC-4000 Computer. Kebenhavn.

C.C. TSCHERNING(1979), Comparison 01 Some Methods for the Detailed Representationof the Earth 's Gravity Pield. Presenté~ at the GeneraI AssembIy of IAG, Camberra.

C.c. TSCHERNING(1982a), Geoid Determil1,ation for the Nordic Countries Using Colloca­tion. Presented at the Symposium on Geoid Definition and Determination, Tokyo.

C.C. TSCHERNING (1982b), Determination of a (quasi) Geoid for the Nordic Countriesfrom Heterogeneous Data Using Collocation. Meeting of the Nordic GeodeticCommission, GiivIe, Sweden, Sept. 1982.

C.C. TSCHERNING(1983), A Brief lntroduction to Geoid Modelling Using Collocation withsome Results from Scandinavia and Greenland.

C.C. TSCHERNING, R.H. RApp (1974), Closed Covariance Expressions for GravityAnomalies, Geoid Undulations, and Deflections of the Vertical lmplied byAnomaly Degree Variance Models. osu Report N. 208 of the Department ofGeodetic Science.

Page 17: Geoid Computations in the ltalian Area · 90 123450' 27 5 150 92232' (-2) 6 105230' 121 7 220 178122' 204 8 140 314237' 25 9 220 22'696 2 lO 160 28'3264 18 11 130 380037' (-2) 12

\

APPENDIX

TRE NUMERICAL REPRESENTATION OF ITALGEO 83

Page 18: Geoid Computations in the ltalian Area · 90 123450' 27 5 150 92232' (-2) 6 105230' 121 7 220 178122' 204 8 140 314237' 25 9 220 22'696 2 lO 160 28'3264 18 11 130 380037' (-2) 12

GEOlD COMPUTATIONS IN THE ITALIAN AREA231

LAT.

LON.GEOIOLAT•LON.GEOIOLAT.L.ONeGEOIOD

'" D'" ••• DMO'" '" OM DM M

47

9 3049.674794050.60479 SO51.3447

1051.8447lO lO52.1047lO 2052.1347

lO 3051.9947lO 4051.744110 5051.17,.7

1150.354711<10"9.984711 20't9.4947

11 3047.944111 4047.734111 50-H.83,47

Il48.104112 lO48.414712 2049.1347

12 3049.694112 4050.054712 SO50.2141

1350.194713 lO50.044713 2049.1841

13 3049.454713 4049.074713 SO48.6447

14/te. l'CI46 SO9 3051.0946 SO9 4051.1746 SO

9 SO51.9846 50lO'51.6746 SO10 lO5l·l2

\46 50

10 2050.5846 SOlO 3049.7046 50lO 4049. 746 SO

lO SO49.1846 501148.5446 5011 lO47.8046 50

11 2047.8646 5011 3046.8646 SO11 4046.5841, 50

11 5046.9646 SO1247.2546 5012 lO47.6146 50

12 2048.3546 5012 3048.9546 5012 4049.3546 SO

12 SO49.5146 SO1349.5146 SO13 lO49.4146 SI)

13 2049.2546 5013 3049.0546 SO13 4048.8046 ~O

13 SO48.5146 501448.1546 409 3051.704()40

9 4052.0546 409 5051.7246 40lO50.4646 40

lO lO48.8346 40lO 2048.8046 40lO 3047.994" 40

lO 4047.2146 4010 5046.7646 401146.3546 40

11 lO46.1146 4011 2046.5946 4011 3046.52

46 4011 4046.7446 4011 SO47.346 40124.1.•63

46 4012 lO47.4346 4012 2047.5246 4012 3047.78

46 4012 4048.0546 4012 5048.0546 401347.99

46 4013 1047.9646 4013 2047.9646 4013 3041.97

46 4013 4047.9846 4013 5047.9.46 40h47.78

46 307 3052.4146 30.,4051.9646 307 SO5h35

46 30850.63~ 30a lO49.9546 308 2049.49

46 308 3049.2646 308 4049.1046 308 SO48.89

46 30948.5746 309 lO48.2146 309 20,47.92

46 309 3049.5846 309 4049.9746 309 5050.00

46 30lO49.5446 30lO lO48.584~ 30lO 2047.72

46 30lO 3047.6446 30lO 4047.1446 30lO 5046.67

46 301146.2446 3011 lO·45.8946 30Il 2045.98

46 3011 3046.6446 3011 4047.4846 3011 SO48.05

46 301247.~l346 3012 lO46.9946 3012 2046.67

46 3012 304f.6046 3012 4046.5446 3012 So.~.21

46 301346.0246 3013 lO46.0546 3013 2046.24

46 3013 3046.5546 3011 4046.8946 3013 SO47.18

46 301447.2346 207 3052.4046 2074051.7.

46 f!O

7 5050.8246 20849.7146 208 lO48.6146 20

8 2047.8746 20A3047.9746 208 4048.0646 20

8 SO41.A246 20947.3446 209 lO46.6046 20

9 2045.7246 209 3046.8446 209 4047.6846 20

q 5047.8546 20lO47.7646 20lO 1047.0846 20

lO 2046.5646 20lO 3046.9246 2010 404~.7146 20

lO 5046.2846 201145.8446 2011 1045.6246 20

11 2046.0346 2011 3047.3446 2011 4047.8246 20

Il 5047.9846 201246.8646 20, 12 lO.6.254" 20

12 2045.8546 20l? 3045.7446 2012 4045.4146 20

12 5045.0346 201344.8046 2013 lO44.8446 20

l3 2045.2446 2013 3045.6946 2013 4046.1(146 20

13 5046.5046 201446.6446 lO7 3052.26·46 lO

7 4051.4546 lO.,SO50.3546 lO849.0246 lO

A lO47.1346 108 2047.3746 108 3047.6946·lO

8. 4047.3646 lOA 5046.8046 io946.30

Page 19: Geoid Computations in the ltalian Area · 90 123450' 27 5 150 92232' (-2) 6 105230' 121 7 220 178122' 204 8 140 314237' 25 9 220 22'696 2 lO 160 28'3264 18 11 130 380037' (-2) 12

232 B. BENCIOLINI ....,...P."GASPERINI- L MUSSIO -.:. F: SANSÒ- S. ZERBINI

4f1l0

91045.6246 lO<) ZO44.8046 lO<) 3045.4346 lO·

9 4045.864.l> lO<) 5045.9246 lOlO45.9946'1;0

lO lO46.2946 lOlO 2046.2746 lOlO 3046.7946 lO

lO 4&46.184·6lOlO 5046.5046 lO1145.9146 rO"

111045.7946 lO11 2046.1046 lO11 3047.6146 1.0

11 4047.9746 lO11 0;047.3746 lO124~.5846 lO

12·1045.4546 lO12 2045.0746 lO12 3044.66

46 {O1~·4044.2346 lO

12 SO43.92·46 lOB 3043.8~46()l. lO43.C)~46 O13 2044.394ftlO 44.8 .

46 lO13 4045.3146 lO13 5045.8046 lO1446.04

4663052.q446f) 4053.29466 5053.36

46753.io467 lO53.12467 2052.10

467 ~O52.l~461 4051.61467 5050.68

46849.64468 lO48.78468 2048.25

468 3041.664684046.48468 5045.79

46945.4246<) lO44.99469 2044.63

46<) 3045.53469 41)45.89469 5046.02

46lO45.8546lO lO46.3546lO 2046.47

4(,lO 3047.0546lO 4046.6846lO 50.".12

.61145.874611 lO46.314611 20.6.97

4611 3047.594611 4047.484611 50.".60

461245.844612 lO.4.964612 20.4.30

.612 3043.794612 4043.494612 5043.37

.61343.384613 lO43.494613 2043.78

4613 3044.144613 4044.634613 50.45.16

461445.4945 50(,3053.7l45 SO6 4053.69

45 506 5053.0A45 507"52.1045 507 lO51.5.

45 507 2050.7045 SO7 3050.4445 507 4050.25

45 507 5050.0345 50A49.5145 508 lO49.05

45 50A 2048.1245 50A 3.046.6845 508 4045.57

45 50A 5045.03455qQ44.5045 509 lO44.19

45 509 204.4.().845 509 3044.7845 509 4045.07

45 509 5045.2745 50lO45.1845 50lO lO45.43

45 50102046.1045 50lO 3046.2445 SOlO 4046.13

45 50lO 5045.904S 501146.1845 50111041.01

45 5011 2047.4'445 5011 3047.4545 5011 40"6.84

45 50115045.Rl45 501244.9545 SO12 lO44.24

455012 204J.7~45 5012 3043.3845 5012 4043.25

45 5012 5043.2245 501343.2.845 5013 lO41.40

45 50132043.6645 SO13 3043.9345 SO13 4044.31

45 5013 SO44.1545 501445.0845 406 3054.54

45406 4054.3645 40'.l 5053.5645 40752.05

45 40.,lO50.7345 407 2050.0445 407 3049.85

45 407 4049.3445 407 5049.1645 40Il48.89

.5 408 lO48.1145 .0e 2046.8245 408 3045.66

45 40

8 4044.4145.40A 5043.8245 40Cl--.3.4645 40

9 lO43.2745 409 2043.2445 409 .3043.Sl.5 40

9 .043.8445 409 5044.2145 40lO44••945 40

lO lO.4.784$ 40lO la45.2145 .0lO 3045.40"5 40

lO 4045.434540lO 5045.6945 4011.6.5140;~O

11 lO46.5945 4011 2046.2745 4011 3045.9645 40

11 4045.3645 4011 5044.7245 401244.2745 40

12 lO43.8145 4012 2043.5145 4012 3043.3745 40

12 40.43.]445 4012 5043.4445 401343.6145 41)

13 lO43.8045 4011 2043.994r;4013 3044.16

4~ 40

13 404~·~345 4613 5044.5545 401444·n4 306 305.: 345 30~ 4054.9645 306 5054.

45 30752.9{'45 307 lO5h5845 307 2050.36

45 )07 3050.11~5 307 4049.8245 307 50.9.1>6

45 3084e.0745 3081046.624S 308 2045.43

45 308 3044.5145 30A 4043.4545 3085042.90

Page 20: Geoid Computations in the ltalian Area · 90 123450' 27 5 150 92232' (-2) 6 105230' 121 7 220 178122' 204 8 140 314237' 25 9 220 22'696 2 lO 160 28'3264 18 11 130 380037' (-2) 12

GEOID COMPUTA:TIONS IN TRE rtALIAN AREA233

45 30

942.5145 309 1042.2245 309 2041.9945 .30

9 3042.0245 309 4042.2245 309 5042.6145 3.0

lO42.92•.5.30101043.3045 30lO 2043.7245 30

lO 3043.9745 30lO 4044.4745 30ltl5044e7145 30

1145.1245 3011 lO.45.3045 3011 2045.2745 30

11 3045.0145 3011 4044.5245 3011 5044.1245 30

1243.7a45 3012 lO43.514S 3012 2043.40

45,30

12 3043.4445 3012 4043.584S 3012 5043.1945 30

1344.0645 3013 lO44.4145'3013 2044.5645 30

13 3044.664S 3013 4044.7145 3013 5044.8045 30

1444.9445 20l'. 3055.4545 206 4054.9445 20

6.5054.0545 20752.944S 207 lO51.7545 20

7 2050.6345 207 3050.1845 207 4049.52

n ~gè i84a,.~~:~~8846.69:~ ~8B 18:~:~~44.

8 3043.444520

a SO42.0745 20941.664S 209 lO41.2945 20

9 2040.9245 209 3040.64'45 209 4040.5345 20

Cl 5040.5645 20lO40-.6645 20lO lO40.804520

102041.2645 20lO 3041.7645 20lO 4042.~045 20

lO 5042.7545 201143.1145 2011 lO43.4545 20

11 2043.7145 2011 3043.8845 2011 4043.8945 20

11 5043.7045 201243.4145 2012 lOU.2345 20

12 2043.1845 2012 3043.2245 2012 4043.34452.0

12 5043.5245 201343.7545 lO6 3055.26'45 lO

6 4054.1945 lO6 SO52.9445 lO751.7445 lO

7 lO50.9.645 lO7 2050.5145 lO7 3050.0145 lO

7 4041!.6845 lO7 5047.214510845.8945 lO

8 lO44.6145 lO8 2043.5445 lO8 3042.6445 lO

A 4041.8345 lO8 5041.3845 lO940.9645 lO

9 lO40.5645 lO9 2040.1845 lO9 3039.8245 lO

9 4039.55'4S lO9 SO39.4145 lOlO39.3445 lO

lO lO39.3645 lOlO 2039.6845 lOlO 3040.1145 lO

lO 4040.5645 lOlO 5041.0345 lO1141.5545 10 . 11 lO

42.0545 lOn 2042.5145 lO11 3042.9045 lO

J.l 4043.1645 lO11 SO43.1745 lO1243.0.045 lO

12 lO42.sa45 lO12 2042.8945 lO12 3042.9745 lO

12 4.0403.1245 1012 5043.3445 lO1343.6045

6 3055.40456 4054.09456 5052.9245

752.00457 lO50.96457 2050.4445

7 3044.6845.7 4048.29457 5046.8245

845.12458 lO44.42458 2043.4.3~5

8 3042.48458 4041.52458 5041.0445

940.67459 lO40.40459 2040•.0745

9 3039.5445Q 4039.12459 5038.8645

lO38.754516 lO38.4645lO 2038.5645

lO 3038.8345lO 4039.214510 5039.7245

1140.294511 lO40.884511 2041.4545

11 3041.914511 4042.224511 5042.3345

1242.304512 lO42.294512 2042.3645

12 3042.494512 4042.714512 5042.9945

1343.3144 506 3056.1444 SO6 4055.3044 50

6 5054.2244 50752.8444 507 1051.4444 50

7 2050.6044 501 3049.3244 SO7 4047.904450

7 5046.6444 50845.5844 508 lO44.6244 SO

8 2043.1144 SO8 3042.8044508 4042.0144 50

A 5041.65.44 50941.5344 5091041.3344 50

9 2040.9644 50Cl 3040.3544 509 4039.8744 50

9 SO39.3144 50lO38.7944 50lO lO3B.4044 50

10 2038.1944 SOlO 3038.2044 SOlO 4038.4244 50

lO 5038.85'44 501139.3344 SO111039.8844 50

11 2040.4444 5011 3040.9644 SO11 4041.31

Page 21: Geoid Computations in the ltalian Area · 90 123450' 27 5 150 92232' (-2) 6 105230' 121 7 220 178122' 204 8 140 314237' 25 9 220 22'696 2 lO 160 28'3264 18 11 130 380037' (-2) 12

234 B. BENCIOLINI .:....P. OASPER:lNI .....•.L. MUSSIO --F. SANSO .......S.ZERBINI

44 50

11 SO41.464450li.'41.4944 SO12 lO41.5244 50

12 204l.b']4~$0l? 3041.8444 5012 4042.1544 50

12 SO42.5144 SO1342.9144 406 3056.6044 40

6 4055.9844406 5054.8944 40753.5344 40

7 1052.3544 40·1 2051.1244 407 3049.8144 40

1 4048.2clJ44 407 SO47.09.44 40846.3644 40

8 1045.7544 408 2045.0044 408 3044.3444 40

8 4043.8244 40R 5043.4444 40943.1544 40

9 10.43.1344 409.2042.6344 409 3042.174440

9 4041.5144 409 5040.1544 401039.8444 40

10 lO39.2344 4010 2038.7644 4010 3039.5144 40

10 4038.4244 4010 5038.4844 40113".6844 40

11 lO39.0044 4011 2039.4544 4011 3039.9344 40

11 4040.2944 4011 5040.5544 401240.6844 40

12 lO40.6944 4012 2040.8444 4012 304lei544 40

17.4041.5544 4012 5042.0044 401342.4744 30

6 3056.41.44 306 4055.9244 306 SO~4.1244 30

153.1444 301 lO52.194.4307 2051.4844 30

7 3050.4144 307 4049.1244 307 5048.0844 30

R41.6544 308 1047·U

44 308 20"'6~5644 30

(3 3046.2744 30A 4045.44 308 SO45.1644 30

944.8944 309 1044.6444 309 2044.4544 30

9 3044.0244 309 4043.2744 309 SO42.4144 30

1041.1)544 30lO lO41.1344 30lO 2040.4344 30

lO 3040.0544 30lO 4039.5944 3010 5039•.4144 30

1139.2644 3011 1039.1244 3011 2039.1744 30

11 3039.3144 3011 4039.4544 3011 5039.5544 30

1239.6944 3012 1039.1344 3012 2039.8144 30

12 3040.1444 3012 4040.S844 3012 504l.lì44 -30

1341.b844 30n lO41.8544 3013 2042.S044 30

13 304~.ì.344 3013 4043.1044 3013 SO44.2044 30

1444.6344 204'; 3055.9344 206 4055.-5444 20

6 5054.5844 20153.2644 207 lO52.1544 lO

7 2051.5544 207 3050.8844 207 4050.1044 2·0

1 5049.4044 20R48.7644 208 lO48.3544 20

8 2041.8344 20A 3047.2144 208 4046.6344 20

8 5046.2144 20945.9244 209 1045.6544 20

q 2045.3344 209 3045.1144 209 4044.6944 20

9 SO44.2044 201043.6344 20lO lO4~.3044 20

lO 2042.8,144 2010 3042.2944 2010 4041.:7944 20

lO 5041.3344 20n40.88-44 2011 lO40.2544 20

11 2040.1244 20Il 3039.89442011 4039.6644 20

11 SO39.4844 201239.4144 2012 lO39.4544 20

12 2039.6344 2012 3039.9444 2012 4040.4044 20 12 50

40.9344 20l~41.4944 2013 lO41.704420

3 2042.33442013 3042.•9344 2013 4043.4944 20

13 SO43.9844 201444.4144 lO6 3055.n44 lO

6 4054.9'744 lO6 SO54.4344 lO753.5944 10

1 lO52.7444 lO7 2052.0744 lO7 3051.624410

7 4051.04.44 lO1 5050.2944 10849.4544 lO

8 lO48.#J944 108 2048.2244 108 3047.1444 lo

F.l4.041.2744 10~ SO46.9844 10946.1544 lO

9 lO46•.5444 lOq 2046.3444 lo9 3046.1244 lO

9 404'5.8144 lO9 5045.4844 lOlO45.0144 lO

lO lO44.7144 1.0lO 2044.4644 lO10 3044.2844 lO

10 4043.874410lO 5043.3944 lO1142.71'44 10

11 lO42.2944 lO11 2041.9944 1011 3041.4944 10

n 4040.9744 1011 SO-40.5144 10124.0.1444 lO

12 1040.0144 1012 2040.1044 1012 3040.2644 10

12 404Ò~5944 lO

12 5041.0244 lO1341.5144 lO

13 lO41.1044013 2042.2644 1013 3042.80

Page 22: Geoid Computations in the ltalian Area · 90 123450' 27 5 150 92232' (-2) 6 105230' 121 7 220 178122' 204 8 140 314237' 25 9 220 22'696 2 lO 160 28'3264 18 11 130 380037' (-2) 12

GEOID'COMPUTATIONS IN rtm ITALIAN AREA 235

44 lO 13 4043.3144 lO13 5043.7144 lO1444.1644

6 30~~:3~44~ 40~4.0944'

• 19U:3l44'7 44.lO3.0344

447 30S2•.Ò2447 4051.38447 5050.53

44849.50448 lO48.90448 20••8.40

448 3047.97448 4047.62448 SO47.45

44947.31H9 lO47.21449 2047.09

449 JO46.94449 4046.7~449 5046.51

441046.0044lO lO45.8444lO 2045.56

44lO 3045.12440lO 40404.8844lO 5044.14

441144.234411 lO43.854411 2043.48

44011 3043.074411 4042.634411 5042.06

441241.514412 lO41.204412 2041.10

4412 30'41.004412 4041.134412 SO41.38

441341.134413 lO41.844413 2042.30

4413 3042.764413 4043.204413 5043.59

4401443.9243 SOlO46.54-43 50lO lO46.37

43 50lO 2046.26435010 3046.1643 SOlO 4045.89

USOHl 5045.6143501145.4143 5011 lO45.12

4;)50

11 2044.8943 5011 3044.5543 5011 4044.5343 50

11 5043.9843501243.3243 SO12 lO42.7743 50

122042.4543 5012 3042.1343 5012 4042.01.4350

12 5041.9743 501341.9543 SO13 lO42.1'343 SO

13.2042.4643 5013 3042.8443 5013 4043.19-43 50

135043.4843 501443.7343 40lO47.33

4~ 41)18 1847·~843 4819 ~g47·n4l 40n 30:l:U4 40

4f.i.43 446.4 40

43 4011 lO46.4943.40Il 2046.2843 4011 3045.86

43 4011 4045.674,3~4011 SO45.3343 401244.99

43 4012 lO44.4443 4012 2043.9343 4012 3043.41

43 4012 4043.2143 4012 5043.0043 4.01342.10

43 4.013 lO42.6343 4013 2042.8243 4013 3043.11

43 4013 4043.32434013 SO.43.4843 4{)1443.62

43 30lO/te.0643 '30lO lO48.0143 30lO 2041.91

43 30lO 3047.964330lO 4047.9943 30lO 504.7.90

43 301147.(f0433'()li lO47.7943 3011 20~1.63

43 3011 3047.1843 lan 4'046.7643 3011 5046.49

43 3012.,.6•.17·433012 lO45.8043 3012 2045.48

43 3G12 3045.04-43 3012 40'44.6443 3012 1504••.29

43 301343.9543 3013 lO43.1543 3013 2043.73

43 3013 3043.1943 3013 4043.8543 3013 5043.88

43 301443.9343 3014 lO44.1543 30'14 2044,,25

43 3014 3044.4143 la14 4044.6143 3014 SO44.86

43 301545.1543 20lO48.6243 20lO lO48.63

43 20lO 204A.5943 20lO 3048.4743 20lO 4048.52

43 20lO 5048.634.3201148.7343 20Il lO48.63

43 2011 2lt4R.3143 2011 3048.0643 2011 4047.74

43 2011 5047.4743 201247.2843 2012 lO46.99

43 2012 2046.6243 2012 3046.2643 2012 4045.83

43 ?O12 5045.3943 20P44.9743 2013 lO44.71

43 2013 20.,.4.3543 2013 lO4'h0643 2013 4043.93

43 2013 SO43.8843 20·1443.8543 2014 1043.99

.,.32014 204_,,1043 2014 3044.2843 20H 4044.52

43 2014 5044.8143 20}C;45.1543 lOlO49.00

43 lOlO lO4Q.0443 lOlO 2049.0443 lOlO 3049.04

43 lOlO 4049.2243 lOlO 5049.4043 lO1149.31

,4,3lO11 1049.1443 lO11 2048.8843 lO11 3048.62

43 lO

11 4048.4443 lOIl SO48.2043 lO1248.0343 lO

12 lO47.H443 1012 2047.5843 lO12 3047.204] lO

12 4046.8143 lO12 5046è3843 lO1345.9243 10

13 lO45.3943 1013 2044.8943 lO13 3044.37

Page 23: Geoid Computations in the ltalian Area · 90 123450' 27 5 150 92232' (-2) 6 105230' 121 7 220 178122' 204 8 140 314237' 25 9 220 22'696 2 lO 160 28'3264 18 11 130 380037' (-2) 12

236 B. BENCIOLINI- P.GASPElUNI -L. MUSSIO -:...F. SANSO - S. ZERBINI

43 lO

P 4844.02

:~ i8U ~B43.8743 lO1:.30

43.8243 .O

4 r43.•8& 44.0143 O .4.2443 lO

14 4044.5243 1014 SO44.8743 101545.25

43

lO49.2343l'O lO49.3243lO 2049.3843

103049.4243lO 4049.5243lO 5049.1043

1141).514311 lO49.424311 2049.3343

Il 3049.H43Il 4049.0243Il SO4/0\.8443

Il48.714312 lO48.604312 2048.3043

12 304P. (H4312 4047.594312 5047.3243

134(:.(~O4313 lO46.434313 204-;.6743

13 3044.874313 4044.304313 5043.9443

1443.A54314 lO43•.824314 2044.034J

14 3044.314314 4044.654314 5045•.0443

1545.4742 SOIl49.5042 50II 1049.5242 S{l

11 2049.6542 SO11 3049.7042 5011 4049.6742 50

11 5049.3942 SOl?49.2942 5012 1049.1942 50

12 2049.0242 5012 3048.7342 SO12 4048.1942 50

12 5047.ti542 ·501347.6142 5013 lO47.2842.50

13 2.04".4642 SO13 3045.5142 5013 4044.6347.50

13 5044.0442 501443.8442 SO14 lO43.9542 50

14 2044.2042 5014 3044.5342 5014 4044.9242 SO

14 5045.3.642 501545.824.240114<1.7042 40

Il lO49.7442.4011 2049.9242 4011 304-9.9842 40

Il 4049.8942 4011 5049.8242 401249.6642 40

12 lO49.5142 4012 2049.3642 4012 3049.0642 40

17 404P.1',542 4012 5048.4042 401348.3142 40

13 lO48.1342 4011 2047.3-242 4013 3046.35:42 40

13 4045.'+8'+240'13 5044.7142 401444.3542 40

14 lO44.3"42 4014 2044.5842 4(\14 304.4.9342 40

14 4045.3542 4014 5045.8142 401546.304? 30

Il49.0742 3011 lO49.874'230Il 204<1.93

4~ 30U 3049.9942 30Il t849.954~ 30U ~849.95

4. lO49.H342 lO 49.694 30 49.44

42 3012 3049.1742 3012 4048.93·42 3012 5'048.83

42 30n48.1442 3013-lO4t\.4642 301J 2048.13

42 3013 3047.3842 3013 4046.6842 3013 5045.94

42 301445.2642 3014 lO45.0042 3014 2045.18

423014 3045.9242 3014 4045.9342 3014 50".6.39

42 30le;,46.8A42 201150.0642 20111050.,07

42 2011 2050.0642 2011 3050.0242 20Il 4049.98

42 2011 SO'49.9642 20Il?49.9642 2012 lO49.S'8

42 2012 2049.58422012 3049.2842 2012 4049.1;1

42 lO12 5049.0642 201348.8242 2013 lO48.74

42 20 13 ~1)48.4042 2013 3048•.1~42 2013 4047.71

42 2013 .O47.0042 201446.142 2014 lO45.91

42 201"42046.{1}42 2014 3046.2642 2014 4046.62

42 2014 SO47.0542 201547.5242 lOIl50.15·

42 lO

11 lO$0.21>42 lO11 2050.1942 lOIl 30SO.1442 lO

n 4050.0642 lO.11 5050.0142 lO1249.9.942 lO

12 lO49.~442 '1012 2049.5642 lO12 30'9.3142 lO

12 4049.1342 1012 5049~1142 lO·13"9.0'342 lO

13 lO49.0742 lO13 2048~9042 lO13 [email protected]

42 lO13 404P.1642 lO13 5047.6342 lO141t.1.29

42 lO

14 lO47.0842 lo14 2047.0342 lO14 3047.c1442 lO

14 4047.4142 lO14 5047.1742 lO154·.~.1742

IlSO.124211 lO50.194211 2050.2242

11 3050.2042Il 4050.164211 5050.0942

1249.974212 1049.804212 2049_5842

12 lo49.354212 4049.154212 SO49.1042

1349.134213 lO49.314213 20'49.1442

13 3048~974213 4048.994213 SO48.82

Page 24: Geoid Computations in the ltalian Area · 90 123450' 27 5 150 92232' (-2) 6 105230' 121 7 220 178122' 204 8 140 314237' 25 9 220 22'696 2 lO 160 28'3264 18 11 130 380037' (-2) 12

GEOIDCOMPUTATlONS IN TRE ITALIAN AREA237

42

1449.014214 lO'48.874214 2048.5542

14 3048.5.642.14 4048.6~

4214 SO48.7542

l~4 l\. q)425 lO49.342 .15 2049.9142

15 3050.524215 4050.954215 SO51.1542

1651.214.216 lO51.124216 2050.e1~2

16 3050.464216 4049.aQ4216 504Q.1942

1748.3941 So1250.0341 5012 lO49.9041 50

12 2049.()941 SO12 3049.4841 5012 4049.3641 50

12 SO49.2941 SO1349.3041 SO13 lO49.3141 50

13 2049.1641 SO13 3049.1641 5013 4049.4941 50

13 SO49.5341 501449.6741 SO14 lO49.5941 Se}

14 2049.4241 5014 3049.4141 SO14 4049.3241 SO

14 5049.3841 SO1549.4541 5015 lO49.1641 50

15 2050.2'741 50}C; 3050.9541 SO15 4051.364150

15 SO51.5441 SO1651.6341 SO16 lO51.6141 50

16 2051.4441 SOIl'> 3051.0841 SO16 4050.5441 50

16 5049.8441 501749.0241401250.04.41 40

12 lO49.9641 40.122049.8141 4012 3049•.6241 40

12 4049.!:>241 4012 SO49.4141 4013't9.3241 40

13 lO49.22414011 2049.1841'4013 3049.1241 40

13 4049.11414013 5049.4341 401449.1341 4.0

14 lOf+9.7641 4014 2049.6841 4014 301t9.53

• 1 4014 40.49.6441 4014 5049.7041 401549.14

4140.115 lO49.8641 4015 2050.2941 4015 3050.72

41 4015 4051.1141 4015 5051.3941 401651.59

41 4016 lO51.7241 4016 2051.6841 ItO16 3051.1t4

41 4016 4051.001t14016 5050•.)941 1t01749.61

41 30$j47.7241308 lO47.9741 308 2048.21

.41 308 304A.4441 30~ 4048.6541 308 C;O4A.84

41 30949.01Itl309 lO49.1441 309 2049.24

i;I;i.~_ '

41309 3049.3041 309 4049.3341 3095049.32

41 30lO49.3041 301249.9641 31)12 lO49.92

41 3012 2049.-8541 3012 3049.7641 3012 1t049.60

41 3012 SO49.4641 '301349.3941 3013 lO49.33

41 3013 2049.2741 3013 3049.2141 3013 4049.22

41 3013 SO49.28Itl301449.1t941 3014 lO1t9.1t8

41 3014 2049.&741 3:014 3049.6741 3014 ItO49.77

:118l~i8~9.76~1~8l~30.49.7A·41 ~o1118~9.91l).20

50.44 .O 0.741 30

15 SO.51.0141 301651.2841 3016 lO51~3~41 30

16 2.051.341t.1 3016 3051.1741 3016 4050.8541 30

165051>.3641.301749.1341 3017 lO48•.6341 30

17 2047.65413017 3046.9941 3011 4046.9·94130

17 5045.1841 301844.3041 3018 lO43.5041 30

18 2042.61Itl30lA 3042.2841 3018 4041.9441 3.0

lA 5041.1941 301941.8541 20.847.8441 20

8 lO48.1441 20A 2048.3941208 3048.6241 20

A 4048.8341 20fl 5049.0241 20949.1841.20

9 lO49.3241 209 204-9.4141 209 3049.4341 20

9 4049.4141 209 5049.3741 20lO49.3141 20

1249.1941 2012 lO49.8141 2012 201t9.81

41 2012 3049.7841 :2012 4049.7141 2012 SO49.61

41 201349.5541 2013 lO49.5641 2013 2049.54

41 2013 3049.5041 2013 4049.39412013'·5049.34

41 201449.4841 2014 lO49.4541 2014 2049.46

41 2014 3049.6441 2:014 4049.8241 2014 5050.00

41 201550.1041 20l~ lO50.2141 2015 2050.26

41 2015 3050.3941 20ti; 4050.5641 2015 SO50.82

41 201651.1541 2016 lO51.2541 2016 2051.21

41 2016 3051.0741 2016 4050.8541 2016 SO50.50

4} 201150.0041 2017 lO49.0141.2011 2048.28

Page 25: Geoid Computations in the ltalian Area · 90 123450' 27 5 150 92232' (-2) 6 105230' 121 7 220 178122' 204 8 140 314237' 25 9 220 22'696 2 lO 160 28'3264 18 11 130 380037' (-2) 12

238 a. BENCIOUNI- P. GASPERINI-L. MUSSIO- F. SANSO- S. ZERBINI

41 20

17 3047.4441 2017 4046.5341 2017 5045.58'41 lO

lA44.e.341 20lA lO·U.7341 2018 2042.9541 20

18 3042.3041 2018 4041.8441 2018 5041.1J041 20

1941.5741 lO848.1041 lO8 lO48.4541 lO

8 2048.7~

41 lO8 3048.8941 lO8 4049.0741 lO

e 5049.241 lO949.4641 lO9 lO49.6141 lO

9 2049.6341 lO9 3049•.5741 lO9 4049.5041 lO

9 5049.4241 lO1(}49.3241 lO1249.5541 lO

12 lO49.6141 lO12 204~.6741 lO123049.7041 lO

12 ,4049.724l lO12 5049.7341 lO1349.74•.1 lO

13 lO.49.7841 lO13 2049.8041 lO13 3049.7841 lO

13 4049.6.14.1lO13 5049.5741 lO1449.6041 lO

14 lO49.5941 lO14 2049.6441 lO14 3049.65U lO

14 40.Ito9.7741 lO14 50.Ito9.8941 lO1550.0041 lO

15 lO50.2441 lO15 2050.4841 lO15 3050.5741 lO

15 4050.6541 lO15 5050.8641 lO1651.2241 lO

16 lO51.3641 lO16 2051.2941 lO16 3051.0641 lO

16 4050.1741 lO16 5050.4741 lO17SO.09'41 lO

17 lO49.3041 lO11 2048.6541 lO17 3047.8741 lO

17 404~.Q741 lO17 SO46.0141 lO1845.0341 lO

18 lO44.0741 lO18 2043.2141 lO18 3042.4741 lO

18 4041.9141 lOlA,5041.5641 lO1941.44ltl

848.46418 lO48.95418 2049.1541

a 3049.21418 4049.30418 5049.5741

949.97419 lO50.08419 2049.8641

9 3049.67419 4049.55419 5049.4541

lO49.31411249.234112 lO49.3441

12 204.,9.454112 3049.SS4112 4049.6341

12 5049.71411349.184113 lO49.8541

13 2049.894113 3049.894113 40+9.844)

13 5049.734.11449.754114 10~9.13--'"4) 14 2049.7241h :lO49.844114 4050.0441

14 5050.06411550.~44115 lOSO.5241

15 2050.704115 3050.694115 4050.9141

15 5050.q7411651.194116 lO51.3141

16 2051.2441,1ft3051.064116 4050.7841

16 SO50.49411750.114117 lO49.5541

Il 204e.~H4117 3048.194117 4047.3541

11 SO46.4041l~45.424118 lO44.~441

lA 2043.~3Itl18 .1042.134118 4042.0941

l~ 504l.b4411941.4240 SO848.7840 50

A lO.9. 3ft40 50R 2049.5140 508 30~9.S440 50

8 4049.7640 508 5049.8040 50949.90

48 50

9' lO50.1~

4.050li 2050.04

40 509 304.9.714 509 404Q.t.40 50q 5049.440 50lO49.2

40 501449.9840 5014 lO49.9440 5014 2049.95

40 5014 3050.1040 SÌ)14 4050.3440 5014 5050.50

40 501550.63405015 lO50.6440 50lS 2050.62

41)-SO

l'i3050.Ii?-40 5015 .050.9040 5l}15 5050.9640 50

1650.8440,5016 lO50.8340 5016 2050•.7840 50

16 3050.7340 5016 4050.6040 5016 5050.4140 50

1750.0940 So17 1~~9.6440 5017 2049.0640 50

11 304'8.384(1SO11 4047.5640 5017 5046.6640 50

18,45.714~ SOlA lO44.7540 5018 2043.8340 50

18 3043.0040 5018 4042.3040 5018 5041.77

48 50

194~.4'"'O408

48.9g40 408 1049·~l4 4.()8 204 .b40 408 3049.840 408 o50.0 '

40408 5050.1440 40950.1140 409 lO50.31

40 409 2050.4140 409 3050.1240 409 4049.81

40 409 5049.5040 40lO49~2140 ~O1450.31

40 4014 lO50.484il~O14 2050.6840;4014 3050.58

Page 26: Geoid Computations in the ltalian Area · 90 123450' 27 5 150 92232' (-2) 6 105230' 121 7 220 178122' 204 8 140 314237' 25 9 220 22'696 2 lO 160 28'3264 18 11 130 380037' (-2) 12

GEOID COMPUTATlONS IN·TRE ITALIAN AREA 239

40 4014 4050.4940 4014 50 '50.3740 4'01550.434'040 l~ 18~g:~~40 40l~~8~g:~t48 4'0l~ 30~0.444'04'0

4'0404 40'0.5640 40

16 l'O50.2940 40lt)'2050.'0,440 4016 30,4CJ.924'040

16 4049.8140 4'016 5049.7540 40174CJ.4040 40

17 lO49.0.240 4017 2048.7l40 4'01-73048.154,040

17 4047••440 4017 SO46.6540 401845.8140 .0

18 lO.4.9440 4018 2044.0540 4018 3043.2240 40

18 4'042.4740 4018 5041.8840 401941.4640 30

84e.9340 308 lO49.4740 308 2049.9340/30

8 3050.274'0308 4050.4140 3'08 5050.524030

950.7040 30Q lO50.6940 309 2050.58U 30

9 3'050.334,0309 4049.8940 3'09 SO49.4040 30

lO49.0940 301450.3940 3014 lO50.6940.30

14 2050.9940 3014 3051.0040 3014 4050.114G 30

14 SO50.4440 30lS50.3040 3015 1050.3740 30

15 2050.2940 3015 3050.2640 3015 4050.3740 30

15 SO50.284'0301649.8340 3016 lO49.4140,30

16 2049.01403016 3048.6140 3016 404R.5040 3'0

16 5048.464'03'01748.2740 30171048.0040 30

11 2047.7940 3017 3047.4340 3017 4046.9240 3'0

17 SO46.344'0301845.7040 3'018 lO44.9540 30

18 2044.144'03018 3043.3240 3018 4042.5540 30

18 5041.8940301941.3940 20848.9240 20

8 lO49.4440 208 2049.8840 208 3050.2340 20

8 4050.5240 208 5050.6940 209'50.4640 20

9 lO50.5440 209 2050.4540 209 3050.0140 20

9 4049.5440 209 5049.2740 20lO48.9640 20

1450.1340 2014 lO5'0.5340 2014 2050.84.0 20

14 3051.0040 2014 4050.9640 2014 5050••81,,..--

~ 40 201550.7440 2015 lO50.7840 2015 2050.6340 20

15 3050.294020le;4050.0740 2015 5049.8040 20

1649.20•.O 2016 lO48.4140 2016 2047.1040 20

16 304.7.1940 2016 4041.0240 2016 5047.054'020

1747.22"'O2011 lO47.1440 2017 2046.9040 20

17 3046.6.140 2017 4046.2040 2'017 5045.8141) 20

1845••3240 2018 lO44.7240 2018 2044.0340 20

18 30"3.2640 2018 4042.4640 2018 5041.7440 20

1941.1640 lO848.85 '40 lO81049.294.0lO

A 2049.5940 lO8 lO49.8540 lO8 4050.22"'0 lO

8 SO59.1140 lO950.3140 lO9 lO50.7240 lO

9 2050.7540 lOq 3050.5640 lO9 4049.9340 10

Q 5049.3540 lOlO'48.8640 lO1449.5640 lO

14 lO50.0340 lO14 2050.4340 lO14 3050.724'0lO

14 4050.e640 lO14 5050.8440 lOlS50.11

40 lO

lS lO50.6540 lO15 2050.7240 lO15 3050.1140 lO

15 4049.99 .40 lO15 5049.6840 lO16'48.9940 lO

16 lO47.7940 lO16'2046.1840 lO16 3046.2740 lO

16 4045."940 lO16 5046.0440 lO1746~15''0 lO

17 lO46.1040 lO17 zo45.8640 1-017 3045.5~"0 lO11 4045.234'0lO175044.9740 lO18"4.6

",01018 lO4'4.2440 lO18 2043.6740 lO18 3042.94

4'0lOlR 4042.0940 lO18 5041.3240 lO1940.69

40R48.75408 lO49.12408 2049.32

408 3.049.36408 4049.51408 5049.17

.4'0950.33409 lO50.71409 2050.91

.09 30·50.50409 4049.84409 SO49.22

40lO48.66401448.784014 lO49.30

.4014 20 .49.784014 3050.194014 4'050•.49

4014 SO50.67401550.754015 1050.,76

4015 2050.644015 3050.084015 4049.64

Page 27: Geoid Computations in the ltalian Area · 90 123450' 27 5 150 92232' (-2) 6 105230' 121 7 220 178122' 204 8 140 314237' 25 9 220 22'696 2 lO 160 28'3264 18 11 130 380037' (-2) 12

240 B.BENCIOLlNI .......•P. GASPERlNL ••...L. MUSSIO •.•..F. SANSO~ S. ZERBINI

40

15 5049•.35401648.634016 lO47.65 --40

16,2046.624016 3045.784016 4045.2840

16 5045.12401745.024017 lO44.1140

11 2044.•524017 3044.214017 4044.0140

17 5043.82401843.644018 lO43.3840

18 2642.914018 3042.184018 4041.3440

18 SO40.56401939.9239 50848.6239 SO

8 lO48.9439508 lO49.0139 SO'8 304A.9139 50

8 4049.0039 SOe 5049.4339 SO949.8539 50

9 lO50.3039 509_2050.5139 509 3050.2039 50

'9 4049.3739 509 5048.8439 50 .104~.3.239 SO

15 3049.5939 5015 4049.1939 SO15 5048.8139 50

1648.3939 5016 lO41.1439 5016 2045.6839 50

16 30.44.3739 SO16 40·43.8139 5016 5043.133950

1143.563.95011 lO43.3039 5017 2042.9639.50

17 3042.5539 501842.19:'395018 lO42.0039 50

18 2041.6339 50lA 3040.9339 SO18 4040.15·39 SO

lA 503ç.4539 50193A.8539 40848.4339 40

8 lO41h16.J9408 2048.9439 408 304-'.9539 40

8 4048.743940A 5048.9039 40949.2739 40

9 lO49.1039 409 2049.8339 409 3049.5939 40

9 404e.9039 409 5048.4639 40lO47.9.639 40

15 3049.1139 4015 4048.7939 4015 5048.4939 40

164P..OJ394016 lO46.6739 4016 2045.4339 40

16 3044.1539 4016 4043.3139 4016 5042.1339 4,0

17.42.2939 4017 lO4le8439 4017 2041.3639 40

17 3040.8939 401840.4139 4018 lO40.1339 40

18 2039.7539 40lA 3039.2239 4018 4038.6239 40

18 5038.0439 401931.5239 3084A.1439 30

8 lO48.4739 30A 2048.7l39 308 3048.903930

8 4048.1139 30A 5048.5239 30948.74-"3930

9 lO49.2239 309 2-049.4739 309 3048.9939 30

9 [email protected] 309 5048.1139 30lO4.7.6439 30

15 3048.3639 301Ci4048.1339 3015 5047.9239 30

1647.52393016 lO46.5039 3016 2045.6239 30

16 3044.8239 3016 4043.8039 30lfJ5042.7439 30

Il41.7239 3017 lO40.8039 3011 2040.0'239 30

11 30'39.3139 301838.5739 3018 lO38.2139 30

18 2037.A239 3018 3037.3839 3018 4036.9239 30

18 SO36.4139 301936.0539 20847~1439 20

8 lO48.0739 20A 204Eh3439 208 3048.6539 20

8 4048~6139 20A 5048.3839 20'948.3239 20

9 lO48.1639 209 2049.2639 209 3048.903920

9 40-4e~4839 209 5041.9539 20lO47.3639 20

15 3047.4439 2015 4041.2839 2015 5041.2139 20

1647.1339.2016 lO46.6939 2016 2046.283~ 20

16 3,045.94392016 4044.6139 2016 SO'43.0939 20

1141.4939 2017 lO40.0139 2017 2038.9139 20

17 3-038.0439 lOa47.2439 108 lO41.5539 lO

8 2047.8339 lO8 304.8.0939 lO8 4041:1.2039 1(1

8 S948.22")9. 10948.0739 lO9 1048.2139 lO

9 2048.5939 lO9 3048.7439 lO9,4048.2939 1(1

9 SO47.6839 lOlO47.0639 lO15 3046.4739 lO

15 4046.36391015 5046.4039 lO1646.6039 lO

16 lO46.7039: lo16 2046.3839 lO16 3045.84

39 l0

16 4044.443910l" 5042.5839 lOIl40.8239 o

17 lO39.2539 1017 2037.8839 lO17 3036.8539

846.6439A lO46.91398 2047.1639

a 3047.403~8 4047.63998 5047.8139

947.87399 lO47.93399 2048.0639

9 304e.06399 4041.743~9 5047.23

Page 28: Geoid Computations in the ltalian Area · 90 123450' 27 5 150 92232' (-2) 6 105230' 121 7 220 178122' 204 8 140 314237' 25 9 220 22'696 2 lO 160 28'3264 18 11 130 380037' (-2) 12

GEOID COMPUTATIONS IN THEITALIAN AREA241

39

lO46.693915 3'045.623915 4045.5139

15 5045.57391645.753916 lO45.9639.

16 2045.483916 3044.503916 4043.0639

16 SO41.44391739.903917 lO38.3339

17 2036.653917 3035.7738 SO846.0238 50

8 lO46.2338 508 2046.4638 508 3046.103850

8 4046.9438 50B 5041.1338 50941.2638 SO

91047.3538 50q 2041.3838 509 3047.303850

9 ./t047.0738 50q SO46.7138 SolO46.3038 SO

lS 3045.0438 SO15 4044.9338 5015 5044.•9938 50

1645.0638 5016 lO44.8238 50162044.0938 50

16 3042.9438 5016 4041.4538 5016 5039.8938 50

113e.3938 5017 lO36.9738 5017 2035.7138 50

11 3034.7738 40.A45.4138 40e lO45.5138 40

B 2045.7838ltOA 3046.0038 408 4046.2231'41)

8 5046.42)8 40946.5838 .409 lO46.6838 40

9 2046.7138 409 3046.6638 41)9 4046.5038 40

9 5046.263840lO45.9838 4015 3044.7138 40

15 4044.6638 4015 5044.7238 4016,44.933840

16 lO44.44.384016 2043.3538 4016 3041.8638 40

16 4040.0338 4016 SO38.3438 401736.8838 40

11 lO35.6638 4017 2034.6938 4017 3033.953~ 30

844.8838 308 lO45.0138 308 20413.18.38 308 30it5.3838 308 4045.6038 308 5045. 1

38 30945.9938 309 lO46.1138 .309 2046.18

38 309 3046.1138 309 4046.0838 309 SO45.94

3A 30lO45.7634J.301246.3538 3012 lO46.50

38 3012 2046.593830Il 304~.6l38 3012 4046.55

38 3012 5046.4138 301346.2038 3013 lQ45.91

38 3013 2045.59383013 JO.5.2~38 3~13 404./+.98

383ft13 5044.8138 .~1444.1338 30H lO44.76

3A ]014 2044•.8938 le14 3045.11lA 3014 404~;'31

38 3014 SO45.63J8 301545.833A 3015 lO45.96

38 :lO

15 2045}.9738·3015 3045.0238 3015 4044.76.38 30

15 504'~45~83011;43.9838 3016 lO43.2238 30

162042.Ò4383016 3040.5938 3016 4038.853A 30

16 SO37.1'43& 301735.1738 3017 lOJ4.143836

172033.rJ7Jt30

17 3033.4038 201246.4138 20

121046.56.8 20122046.6638 2012 3046.1138 70

1240"".693&.2012 5046.5938 201346.4238,20

131046.1938 20132045.8438 2013 3045·.4538 ?l)

13 4045.1538 2013 5044.9538 201444.873820

14 lO44.8738 2014 20·44.9636 ~O14 3045.1638 ·2·0

14 4045.4238 2014 5045.6531'2015.45.7536 20

15 lO4!i.1.738 2015 2045.7338 2015 3045.0538 20

154044.5338 2015.5044.083A 201643.24.38 2·('-

16 lO42.1738 2016.2040.6938 lOi6 3039.203820

16 4037..5938 2016 SO36.123A 201734.97lll20

1710.34.1438 201720:U.54382017 3033.1038 lO

12·46.J538 lO ·UI046.4638 lO12 2046.543SU

12 3046.6338 1012.4046.6938 lO12 5046.5938 lO

13·4~.44381013 lO46.343A lO13 20413.99381Q.

13 30.5-.5438 lOl'l 4045.2438 la13 5045.093810.

1445.0.f,38 1014 io45.0.53A .11)14 20.45.103A lO

14 30.45.2938Hl14 40.45.6238 lO.1. SO45.933tL lO.

1545.7938 lO15 1045.50.18 lO.IS 20.413.2738 lO

1530.44.3138 lO.15 4043.6138 lO.15 SO43.1-038 lO.

1642.•1338 lO16 lO.40..60.38 lO16 2039.0138 lO.

16 30.31.6238 lO16 40.36.333R lO.16 SO35.2338 ~~

1134'.3838 la11 lO33.1638 lO17 2033.3238 lO

17 3032.97381246.163812 lO46.19

Page 29: Geoid Computations in the ltalian Area · 90 123450' 27 5 150 92232' (-2) 6 105230' 121 7 220 178122' 204 8 140 314237' 25 9 220 22'696 2 lO 160 28'3264 18 11 130 380037' (-2) 12

242 B. BENCIOLINI - P. GASPERINI - L. MUSSIO - F. SANSO - S. ZERBINI

38

12 2046.193812 3046.203812 4046.2838

12 5046.18381346.033813 lO46.0438

13 2045.~93813 3045.493813 4045.2038

13 5045.01381445.1838·14 lO45.2438

14 2045.383814 3045.663814 4046.0438

14 5046.37381546.103815 lO45.5138

15 2044.37:J815 3043.0538IS 4042.2638

15 SO41.50381640.513816 lO39.2138

16 2037.693816 3036.403816 403'i.3638

16 5034.54381733.943817 lO33.5138

17 2033.193817 3032.9137 501245.8737 50

12 lO45.8137 5012 2045.6937 5012 3045.5937 50

12 4045.5837 SO12 5045.5237 5013415.4637 50

13 lO45.4437 5013 ?O45.3337 5013 3045.0237 50

13 4044.6037 5013 5044.4331 501444.7037 50

14 lO44.9337 5014 2045.1937 5014 3045.41j1 50

14 4045.8537 5014 SO45.9137 501545.6237 SO

15 lO44.7137 SO15 2043.41]7 5015 3042.0037 50

15 4040.9637 5015 5039.9837 501639.923750

16 lO37.69375016 2036.4837 5016 3035.4237 50

16 4034.5931 5016 5033.9937 501733.573750

17 lO33.2837 SO17 2033.0537 5017 3032.8237 40

1245.5337 4012 lO45.4137 4012 2045.2437 40

12 3045.0737 4012 4045.0037 4012 SO44.80.31 40

1344.6837 4013 lO44.4937 4013 2044.11

~7 40Il 30.1~:~~n :8Il t8H:~~U 18Il ~81J:917 40 37 4014 3044.1931 4014 4044.6737 4014 5045.08

37 401545.4737 4015 lO44.2637 4015 2042.86

37 40l~3040.9637 40r; 4039.7337 40

15 5038.57

37 4031.4537 406 lO36.3837 406 2035.41

37 4016 3034.5837 4016 4033.9437 4016 SO33.49

37 401733.19~7 4017 lO33.0037 4017 2032.84

37 4017 3032.6537 301245.1837 3012 lO45•.02

37 3012 2044.7937 3012 3044.5437 3012 4044.27

37 30125043.9237 30ì343.5937 3013 lO43.19

37 3013 2042.7237 3011 3042.2137 3013 4041.6~

373013 SO41.5837 301441.6517 3014 lO4-2.04

37·3014 204t.7337 3'014 .30"3.4837 3014 4044.27

37 3014 5044.603730.1544.6037 3015 lO43.83

37 3015 .2042.4637 30.15'3040.1137 3015 4038.79

37 3015 SO37.543730l"36.3737 3016 lO313.42

37 30162034.5637 301" 3033.8637 31)16 403:h34 ,

37 30. 16 5032.9937 301732.7737 3D11 lO32.63

37 30172032.5237 3017 3032.3737 201244.84

31 2012 .lO44.62J7 2012 2044.3337 20123043.98

372012 4043.5837 2012 5043.1437 201342.69

37 2013 lO42.2337 2'011 20 .41.7937 2013 3041.36

37 2013 4041.0537 2013 5040.9637 201441.12

37 2014 lO41.73372014 20.2.7137 2014 -3043.7.

37 2014 4044.6437,2014 5044.9637 201544.72

37 20151043,853720152042.3237 20.15·3040••6

372015 403a.S8372015.S036.8237 201635.26

37 lO1244.5037 lO121044.2637 lO12 2043.91

37 11)12 3043.4937 lO12 4043.0137 lO12 5042.51

37 lO1342.0037 lO131041.5337 lO13 2041.12

3.7lO133040.8137 lO13.•040..7137 lO13 50 .40.83

37 lO1441.1237 lQ14 lO41.7737 lO14 2042.73

37 lO14 3043.9637 lO144-Ò4~.9S31 lO14 SO45.39

31 lO1544.8337 lO15 lO43.81]7 lO15 20.~.17

37 lO

15 3040.0937 lO15 4038.0537 lO155036.18

Page 30: Geoid Computations in the ltalian Area · 90 123450' 27 5 150 92232' (-2) 6 105230' 121 7 220 178122' 204 8 140 314237' 25 9 220 22'696 2 lO 160 28'3264 18 11 130 380037' (-2) 12

GEOID COMPUTATIONS IN THEITALIAN AREA 243

37 lO37373737373737373736 5036 5036 5036 5036 5036 403~ 4036 4036 4036 4036 4036 3036 3036 3036 3036 30

1612 20

12 50J 2013 5014 2014 SO15 2015 5016 2014 lO14 4015 lO15 4016 lO1414 3015}I; 301616 3014 2014 5015 2015 5016 20

34.5443.5642.0?­40.6540.6542.6745.0441.5935.6631.6241.4643.7842.1936.9932.3840.4442.1141.953A.1333.4830.5940.8041.1938.A434.7031.35

3737373737373737373736 5036 5036 5036 5036 5036 4036 4036 4036 4036 4(136 3036 3036 3036 3036 30

1212 301313 301414 301';15 301616 3014 2014 SO15 2015 5016 2014 lO14 4015 lO15 4016 lO1414 30ti;15 3016

44.2043.1041.0\940.0\441.0843.7444.4939.5534.0330.8842.2643.9140.6435.2431.3640.9642.4341.0136.50

32.2539.9941.1440.7531.5233.39

37373737373737373736 5036 5036 5036 5036 5036 So36 4036 4036 4036 4036,4036 30'36 30

. 36 3036 3036 30

12 lO12 4013 lO13 4014 lO14 4015 lO15 4016 lO1414 301515 301616 3014 2014 5015 2015 5016 2014 lO10\ 4015 lO15 4016 lO

43.9442.5741.0240.4441.7544.7643.2137.5332.6140.8343.1343.3238.8433.6830.6441.5642.4039.6834.92

31.2840.3841.3039.9536.1132.26