Calcolo del momento d’inerzia di un braccio robotico · modellato come un prisma avente centro di...

19
Calcolo del momento d’inerzia di un braccio robotico Basilio Bona Dipartimento di Automatica e Informatica Politecnico di Torino [email protected] Internal Report: DAUIN/BB/2006/09.01 Versione: 3 ottobre 2006 ”Momento inerzia”.tex

Transcript of Calcolo del momento d’inerzia di un braccio robotico · modellato come un prisma avente centro di...

Page 1: Calcolo del momento d’inerzia di un braccio robotico · modellato come un prisma avente centro di massa nel centro del riferimento R0(x;y;z), con – alle estremit `a – due motori

Calcolo del momento d’inerzia di unbraccio robotico

Basilio BonaDipartimento di Automatica e Informatica

Politecnico di Torino

[email protected]

Internal Report: DAUIN/BB/2006/09.01

Versione: 3 ottobre 2006

”Momento inerzia”.tex

Page 2: Calcolo del momento d’inerzia di un braccio robotico · modellato come un prisma avente centro di massa nel centro del riferimento R0(x;y;z), con – alle estremit `a – due motori
Page 3: Calcolo del momento d’inerzia di un braccio robotico · modellato come un prisma avente centro di massa nel centro del riferimento R0(x;y;z), con – alle estremit `a – due motori

Capitolo 1

1.1 Introduzione

Questa breve dispensa ha lo scopo di presentare un esercizio completo di calcolo delmomento d’inerzia del braccio del robot planare illustrato in Fig.1. Il braccio vienemodellato come un prisma avente centro di massa nel centro del riferimentoR0(x, y, z),con – alle estremita – due motori schematizzabili con due cilindri aventi entrambi asseparallelo all’assez, come illustrato in Fig.2.

I parametri che verranno usati nei calcoli sono raccolti nella Tabella seguente:

Parametro Significato

a emi-lunghezza prismab emi-larghezza prismac emi-altezza prismaa1 distanza tra l’assez e l’asse del primo cilindroa2 distanza tra l’assez e l’asse del secondo cilindror1 raggio del primo cilindror2 raggio del primo cilindroh1 altezza del primo cilindroh2 altezza del secondo cilindroM massa del prismam1 massa del primo cilindrom2 massa del secondo cilindro

V = 8abc volume del prima

ρ =M

8abcdensita del prisma

Tabella 1.1:Parametri del prisma assunto come braccio.

2

Page 4: Calcolo del momento d’inerzia di un braccio robotico · modellato come un prisma avente centro di massa nel centro del riferimento R0(x;y;z), con – alle estremit `a – due motori

Basilio Bona - Calcolo del momento d’inerzia 3

1.2 Momento angolare e momenti d’inerzia

Prima di procederee opportuno richiamare i concetti che definiscono il momento ango-lare di un corpo e i relativi momenti d’inerzia.

1.2.1 Sistema di masse puntiformi

Iniziamo a considerare un sistema din masse puntiformimi, (coni = 1, · · · , n), comeindicato schematicamente in Fig.3.

Consideriamo un moto di pura rotazione intorno al punto fissoO definito dall’originedel sistema di riferimento cartesianoR0, rispetto al quale andremo a rappresentare tutti ivettori che ci servono. Lai-esima massami si trova in una posizione definita dal vettore

ri =(xi yi zi

)T. Se la velocita istantanea di rotazione del sistema di masse viene

definita dal vettoreω, risulta evidente che ogni massa verra ad assumere una velocitalinearevi per effetto della rotazione; il valore di tale velocita si ricava dalla ben notarelazione

vi = ω × ri (1.1)

dove il simbolo× indica il prodottoesternoo vettoriale, definito solo per vettori tridi-mensionali. Le proprieta del prodotto esterno sono riassunte in [1, pag. 64]

Sappiamo che quando un corpo si muove di moto rotatorio rispetto ad un punto fissoO,acquista unmomento (della quantita di moto) angolare totalerispetto a tale punto;tale momentoe un vettore, che chiameremoh, che viene formalmente definito dallarelazione

h =∑

i

hi =∑

i

mi(ri × vi)

Sostituendo questa espressione in (1), si ha

h =∑

i

mi(ri × (ω × ri)) (1.2)

Ricordando la proprieta del prodotto triplo [1, pag. 161]

a× (b× c) = (aTc)b− (aTb)c,

doveaTc eaTb sono prodotti scalari, segue che il momento angolare si scrive come

h =∑

i

mi

((rT

i ri)ω − (rTi ω)ri

)

Page 5: Calcolo del momento d’inerzia di un braccio robotico · modellato come un prisma avente centro di massa nel centro del riferimento R0(x;y;z), con – alle estremit `a – due motori

Basilio Bona - Calcolo del momento d’inerzia 4

Se indichiamo conr2i la norma‖ri‖2 = (rT

i ri) = (x2i + y2

i + z2i ) ed rappresentiamoh

secondo le sue tre componenti cartesiane, otteniamo

h =∑

i

mi

r2i ωx

r2i ωy

r2i ωz

− (xiωx + yiωy + ziωz)

xi

yi

zi

ovvero

h =

hx

hy

hz

=

i

mi(r2i − x2

i )ωx −mixiyiωy −mixiziωz

−mixiyiωx + mi(r2i − y2

i )ωy −miyiziωz

−mixiziωx −miyiziωy + mi(r2i − z2

i )ωz

(1.3)

Questa relazione puo venire riscritta nella forma matriciale seguente

h =∑

i

Γxx,i Γxy,i Γxz,i

Γyx,i Γyy,i Γyz,i

Γzx,i Γzy,i Γzz,i

ωx

ωy

ωz

(1.4)

dove

Γxx,i = mi(r2i − x2

i ) = mi(y2i + z2

i )

Γyy,i = mi(r2i − y2

i ) = mi(x2i + z2

i )

Γzz,i = mi(r2i − z2

i ) = mi(x2i + y2

i )

Γxy,i = Γyx,i = −mixiyi

Γxz,i = Γzx,i = −mixizi

Γyz,i = Γzy,i = −miyizi

Se nella (4) raccogliamo il simbolo di sommatoria, avremo

h =

Γxx Γxy Γxz

Γyx Γyy Γyz

Γzx Γzy Γzz

ωx

ωy

ωz

= Γω (1.5)

dove la matriceΓ e chiamatamatrice o tensore d’inerzia ed ha come componenti imomenti d’inerzia

Γxx =∑

i

mi(r2i − x2

i ) =∑

i

mi(y2i + z2

i )

Γyy =∑

i

mi(r2i − y2

i ) =∑

i

mi(x2i + z2

i ) (1.6)

Γzz =∑

i

mi(r2i − z2

i ) =∑

i

mi(x2i + y2

i )

Page 6: Calcolo del momento d’inerzia di un braccio robotico · modellato come un prisma avente centro di massa nel centro del riferimento R0(x;y;z), con – alle estremit `a – due motori

Basilio Bona - Calcolo del momento d’inerzia 5

e i prodotti d’inerzia

Γxy = Γyx = −∑

i

mixiyi

Γxz = Γzx = −∑

i

mixizi (1.7)

Γyz = Γzy = −∑

i

miyizi

La relazione (5) e qualitativamente simile all’espressione del momento lineare totalemvdi un solido, che sappiamo essere il prodotto della sua massa totalem per la sua velocitalinearev. La matriceΓ rappresenta quindi le proprieta inerziali complessive rispetto allarotazione, cosı come la massa di un corpo rappresenta le proprieta inerziali rispetto allatraslazione.

Momenti d’inerzia

Come si puo osservare, i momenti d’inerzia sono ottenuti sommando i contributidel prodotto di ogni massa per la distanza euclidea rispettivamente dagli assix, yez.

Prodotti d’inerzia

Se i prodotti d’inerzia sono tutti nulli, la matrice d’inerzia risulta diagonale

Γ =

Γxx 0 00 Γyy 00 0 Γzz

e gli assi del sistema di riferimento sono allineati con quelli che vengono chia-mati assi principali d’inerzia del corpo e la matrice si dicematrice principaled’inerzia .

1.2.2 Sistema di masse distribuite

Si suppone ora che il corpo di cui si vuole calcolare il momento angolare sia costituitoda una distribuzione continua di masse infinitesime dm aventi densita puntualeρ(r) =ρ(x, y, z) funzione della posizioner, con dm = ρ(x, y, z)dV , dove dV e il volumeinfinitesimo.

La coordinatar assume i suoi valori inV, doveV e una regione finita dello spazio, aventevolume complessivoV =

∫V dV e massa totalemtot =

∫V dm =

∫V ρ(x, y, z)dV .

Page 7: Calcolo del momento d’inerzia di un braccio robotico · modellato come un prisma avente centro di massa nel centro del riferimento R0(x;y;z), con – alle estremit `a – due motori

Basilio Bona - Calcolo del momento d’inerzia 6

I ragionamenti fatti in precedenza, relativamente al caso din masse concentrate, si pos-sono applicare anche ora, sostituendo al simbolo di sommatoria il simbolo di integraledefinito nel volumeV, per cui risulta:

h = Γω, conΓ =∫

Vρ(x, y, z)

y2 + z2 −xy −xz−xy x2 + z2 −yz−xz −yz x2 + y2

dV (1.8)

ottenendo imomenti d’inerzia, analoghi a (6)

Γxx =∫

Vρ(r)(y2 + z2) dV

Γyy =∫

Vρ(r)(x2 + z2) dV (1.9)

Γzz =∫

Vρ(r)(x2 + y2) dV

e i prodotti d’inerzia , analoghi a (7)

Γxy = Γyx = −∫

Vρ(r)xy dV

Γxz = Γzx = −∫

Vρ(r)xz dV (1.10)

Γyz = Γzy = −∫

Vρ(r)yz dV

1.2.3 Osservazioni

Va fatto osservare che la matrice d’inerzia viene definita implicitamente quando si de-finisce il momento angolareh; quest’ultimo a sua volta fa riferimento ad una rotazionerispetto a un punto fissoO.

Nello svolgimento dei calcoli si osserva che le componenti cartesiane del momentohsono date in funzione del riferimento scelto, che si assume avere l’origine coincidente nelpunto fisso di cui sopra; il tensore d’inerzia descrive il modo in cui la massae distribuitarispetto agli assi del riferimentoR0(O;x, y, z).

Ecco perche spesso si dice, alternativamente, momento d’inerziarispetto ad un puntoematrice o momenti d’inerziarispetto agli assi. Cio non deve ingenerare confusione; sitratta solo di un uso un po’ disinvolto dei termini matematici, che una volta capiti, nondebbono presentare un problema.

Se il riferimentoe solidale al corpo, il tensore d’inerzia rimane invariante nel tempo. Sesi sceglie un diverso riferimento solidale al corpo, pur con l’origine nello stesso punto

Page 8: Calcolo del momento d’inerzia di un braccio robotico · modellato come un prisma avente centro di massa nel centro del riferimento R0(x;y;z), con – alle estremit `a – due motori

Basilio Bona - Calcolo del momento d’inerzia 7

O, cambiano le componenti dih, e conseguentemente anche le componenti diΓ, checomunque restano tempo-invarianti.

Se si trasla in un altro punto l’origine del sistema di riferimento, che pero resta solidaleal corpo, la matriceΓ cambia, obbedendo al teorema degli assi paralleli (vedi oltre).

Se invece il corpo ruota rispetto al riferimento, le componenti diΓ variano nel tempo,introducendo una maggior complicazione, che non verra trattata qui, ma che apparequando, per ricavare le equazioni (dinamiche) di Eulero, si deriva nel tempo il momentodella quantita di moto angolare.

Trasformazioni tra matrici d’inerziaEsplicitiamo quanto detto sopra nei due casi piu comuni di trasformazione tra sistemi diriferimento.

• DettiR1b/O(O, i1, j1, k1) eR2

b/O(O, i2, j2, k2) due generici sistemi di riferimen-to, entrambi solidali al corpob, con origineO comune, legati tra loro da una tra-sformazione di rotazione pura, data dalla matrice (di rotazione)R1

2 e detteΓ1b/O e

Γ2b/O le relative matrici d’inerzia, si avranno tra queste le seguenti relazioni:

Γ1b/O = R1

2Γ2b/O(R1

2)T = R1

2Γ2b/OR2

1 (1.11)

Γ2b/O = R2

1Γ1b/O(R2

1)T = R2

1Γ1b/OR1

2 (1.12)

• (Teorema degli assi paralleli)– Detti Rb/A(A, i, j, k) e Rb/O(B, i, j,k) duegenerici sistemi di riferimento, entrambi solidali al corpob e paralleli tra loro, condiverse originiA eB, legati dalla traslazione relativa

−→AB= tAB =

txtytz

=

xB − xA

yB − yA

zB − zA

e detteΓb/A e Γb/B le relative matrici d’inerzia, si avra tra queste la seguenterelazione:

Γb/A = Γb/B + mtot

{‖tAB‖2 I − tABtT

AB

}(1.13)

Piu semplicemente avremo una nuova matrice d’inerzia

Γ′ ≡ Γb/A =

Γ ′xx Γ ′xy Γ ′xz

Γ ′yx Γ ′yy Γ ′yz

Γ ′zx Γ ′zy Γ ′zz

Page 9: Calcolo del momento d’inerzia di un braccio robotico · modellato come un prisma avente centro di massa nel centro del riferimento R0(x;y;z), con – alle estremit `a – due motori

Basilio Bona - Calcolo del momento d’inerzia 8

con

Γ ′xx = Γxx + mtot(t2y + t2z)

Γ ′yy = Γyy + mtot(t2x + t2z)

Γ ′zz = Γzz + mtot(t2x + t2y)

Γ ′xy = Γxy + mtottxty

Γ ′xz = Γzx + mtottxtz

Γ ′yz = Γzy + mtottytz

Le trasformazioni valgono in generale, sia per sistemi di masse puntiformi, dovemtot =∑i mi sia per corpi di massa distribuita, dovemtot =

∫V dm =

∫V ρdV .

Concludiamo le osservazioni ricordando che viene chiamatocentro di massao bari-centro del corpo (sia esso formato da masse puntiformi sia da masse distribuite) quelparticolare punto geometricoC di coordinaterc per il quale vale la relazione

rcmtot =∫

Vrρ(r)dV

ossia quello in cui, ai fini inerziali, si puo pensare di concentrare la massa totale delcorpo.

Infine ricordiamo chee spesso utile e conveniente calcolare il momento o la matri-ce d’inerzia rispetto agli assi di un riferimentoRC(C; x∗, y∗, z∗) allineato lungo gliassi principalid’inerzia e con l’origine nel centro di massadel corpo.

1.3 Calcolo del momento d’inerzia del braccio

Facendo riferimento al braccio considerato come un prisma e ai parametri dimensionaliindicati precedentemente, possiamo fissare i seguenti insiemi di integrazione per le trevariabili spaziali

X : −a ≤ x ≤ a

Y : −b ≤ y ≤ b

Z : −c ≤ z ≤ c

V : X × Y × Z

Possiamo scrivere l’integrale di volume (8) come integrale triplo

Γ =∫∫∫

X,Y,Zρ(x, y, z)

y2 + z2 −xy −xz−xy x2 + z2 −yz−xz −yz x2 + y2

dx dy dz (1.14)

Page 10: Calcolo del momento d’inerzia di un braccio robotico · modellato come un prisma avente centro di massa nel centro del riferimento R0(x;y;z), con – alle estremit `a – due motori

Basilio Bona - Calcolo del momento d’inerzia 9

dove l’ordine di integrazionee ininfluente, essendo l’integrazione un operatore lineare.

Per semplicita e brevita sviluppiamo completamente solo il primo elemento della matriceΓ, ossia

Γ11 ≡ Γxx =∫∫∫

X,Y,Zρ(x, y, z)(y2 + z2)dx dy dz (1.15)

Possiamo inizialmente scegliere il seguente ordine di integrazione

Γxx =∫

Z

[∫

Y

[∫

Xρ(x, y, z)(y2 + z2)dx

]dy

]dz

=∫ +c

−cdz

∫ +b

−bdy

∫ +a

−aρ(x, y, z)(y2 + z2)dx

Sviluppiamo ora il primo integrale∫ +a

−aρ(x, y, z)(y2 + z2)dx =

∫ +a

−a

M

8abc(y2 + z2)dx

che risulta essere semplicemente∫ +a

−a

M

8abc(y2 + z2)dx =

M

8abc

(∫ +a

−ay2dx +

∫ +a

−az2dx

)

=M

8abc

(xy2

∣∣+a

−a+ xz2

∣∣+a

−a

)

=M

8abc

(ay2 − (−a)y2 + az2 − (−a)z2

)

=M

8abc2a(y2 + z2)

=M

4bc(y2 + z2)

Ora abbiamo da integrare

Γxx =∫ +c

−cdz

∫ +b

−b

M

4bc(y2 + z2)dy

il cui termine in dy risulta essere:∫ +b

−b

M

4bc(y2 + z2)dy =

M

4bc

∫ +b

−by2dy +

M

4bc

∫ +b

−bz2dy

=M

4bc

(13

y3∣∣+b

−b+ z2y

∣∣+b

−b

)

=M

4bc

(2b3

3+ 2bz2

)

=M

2c

(13b2 + z2

)

Page 11: Calcolo del momento d’inerzia di un braccio robotico · modellato come un prisma avente centro di massa nel centro del riferimento R0(x;y;z), con – alle estremit `a – due motori

Basilio Bona - Calcolo del momento d’inerzia 10

Ora non ci resta che integrare il termine restante, nel modo seguente:

Γxx =∫ +c

−c

M

2c

(13b2 + z2

)dz

=M

2c

(∫ +c

−c

13b2dz +

∫ +c

−cz2dz

)

=M

2c

(13b2 z|+c

−c +13

z3∣∣+c

−c

)

=M

2c

(23b2c +

23c3

)

=M

3(b2 + c2

)

Lasciamo al lettore di verificare che si otterrebbe lo stesso risultato integrando in unordine diverso, ad esempio

∫ +b

−bdy

∫ +a

−adx

∫ +c

−cρ(x, y, z)(y2 + z2)dz

Possiamo riassumere ora tutti i termini della matrice d’inerziaΓPr del prisma:

ΓPr =M

3

(b2 + c2) 0 00 (a2 + c2) 00 0 (a2 + b2)

(1.16)

1.4 Calcolo del momento d’inerzia dei due cilindri

Si tratta ora di calcolare il momento d’inerzia dei due cilindri con assi paralleli all’assez e posti ad una distanza da esso dia1 e a2 rispettivamente. Per fare questo, primacalcoliamo il momento d’inerzia di un cilindro generico intorno al suo asse di rotazionee poi, applicando il teorema degli assi paralleli, calcoliamo il momento d’inerzia rispettoall’assez.

Senza addentrarci in calcoli del tutto analoghi a quelli visti nella Sezione precedente,possiamo affermare che il momento d’inerzia di un generico cilindro di raggior, altezza

h e densitaρ =m

πr2hrispetto all’asse di simmetria verticale, vale:

Γ ′zz =12mr2

Per completezza, il momento d’inerzia rispetto agli altri due assi ortogonali vale

Γ ′xx = Γ ′yy =12mh2 +

12mr2

Page 12: Calcolo del momento d’inerzia di un braccio robotico · modellato come un prisma avente centro di massa nel centro del riferimento R0(x;y;z), con – alle estremit `a – due motori

Basilio Bona - Calcolo del momento d’inerzia 11

Ora applichiamo il teorema degli assi “paralleli”, che ci permette di calcolare il momentod’inerzia rispetto ad un asse parallelo al precedente, ma spostato di una distanza pari ada; risulta quindi che il momento d’inerzia rispetto all’assez passante per il centro dimassa del prisma vale

Γzz = Γ ′zz + ma2

e, in particolare, essendo i due cilindri posti a distanze diverse, avremo

Γzz,1 =12m1r

21 + m1a

21,

Γzz,2 =12m2r

22 + m2a

22.

A conclusione di questi calcoli, risulta che il momento d’inerzia dell’intero corpo rigi-do rispetto all’asse di rotazionez risulta essere la somma (ricordiamo che l’operatoreintegralee additivo):

Γ totzz =

M

3(b2 + c2) +

12m1r

21 + m1a

21 +

12m2r

22 + m2a

22.

Page 13: Calcolo del momento d’inerzia di un braccio robotico · modellato come un prisma avente centro di massa nel centro del riferimento R0(x;y;z), con – alle estremit `a – due motori

Bibliografia

[1] B. Bona,Modellistica dei Robot Industriali, CELID, Torino, 2002.

12

Page 14: Calcolo del momento d’inerzia di un braccio robotico · modellato come un prisma avente centro di massa nel centro del riferimento R0(x;y;z), con – alle estremit `a – due motori

Basilio Bona - Calcolo del momento d’inerzia 13

Figure

Figura 1.1:Robot planare.

Page 15: Calcolo del momento d’inerzia di un braccio robotico · modellato come un prisma avente centro di massa nel centro del riferimento R0(x;y;z), con – alle estremit `a – due motori

Basilio Bona - Calcolo del momento d’inerzia 14

Figura 1.2:Braccio prismatico.

Figura 1.3:Un sistema din massemi puntiformi.

Page 16: Calcolo del momento d’inerzia di un braccio robotico · modellato come un prisma avente centro di massa nel centro del riferimento R0(x;y;z), con – alle estremit `a – due motori

Basilio Bona - Calcolo del momento d’inerzia 15

Figura 1.4:Momenti d’inerzia di solidi elementari.

Page 17: Calcolo del momento d’inerzia di un braccio robotico · modellato come un prisma avente centro di massa nel centro del riferimento R0(x;y;z), con – alle estremit `a – due motori

Basilio Bona - Calcolo del momento d’inerzia 16

Figura 1.5:Momenti d’inerzia di solidi elementari.

Page 18: Calcolo del momento d’inerzia di un braccio robotico · modellato come un prisma avente centro di massa nel centro del riferimento R0(x;y;z), con – alle estremit `a – due motori

Elenco delle figure

1 Robot planare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Braccio prismatico.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Un sistema din massemi puntiformi. . . . . . . . . . . . . . . . . . . 14

4 Momenti d’inerzia di solidi elementari.. . . . . . . . . . . . . . . . . 15

5 Momenti d’inerzia di solidi elementari.. . . . . . . . . . . . . . . . . 16

17

Page 19: Calcolo del momento d’inerzia di un braccio robotico · modellato come un prisma avente centro di massa nel centro del riferimento R0(x;y;z), con – alle estremit `a – due motori

Indice

0.1 Introduzione. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

0.2 Momento angolare e momenti d’inerzia. . . . . . . . . . . . . . . . . 2

0.2.1 Sistema di masse puntiformi. . . . . . . . . . . . . . . . . . . 2

0.2.2 Sistema di masse distribuite. . . . . . . . . . . . . . . . . . . 5

0.2.3 Osservazioni. . . . . . . . . . . . . . . . . . . . . . . . . . . 6

0.3 Calcolo del momento d’inerzia del braccio. . . . . . . . . . . . . . . . 8

0.4 Calcolo del momento d’inerzia dei due cilindri. . . . . . . . . . . . . 10

18