APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a...

54
APPUNTI DI CHIMICA APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese Prof. Salvatore Leccese Istituto Tecnico “ G. Caboto” - Gaeta Istituto Tecnico “ G. Caboto” - Gaeta

Transcript of APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a...

Page 1: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

APPUNTI DI CHIMICAAPPUNTI DI CHIMICA

• legami chimicilegami chimici

• modelli atomicimodelli atomici

Presentazione a cura delPresentazione a cura del

Prof. Salvatore LecceseProf. Salvatore LecceseIstituto Tecnico “ G. Caboto” - GaetaIstituto Tecnico “ G. Caboto” - Gaeta

Page 2: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

L’evoluzione storica del modello atomico

~ 500 AC~ 500 AC DemocritoDemocrito (concetto filosofico di atomo)(concetto filosofico di atomo)

18001800 DaltonDalton (la teoria atomica) (la teoria atomica)

19001900 ThomsonThomson (modello a panettone)(modello a panettone)

19101910 RutherfordRutherford (modello planetario)(modello planetario)

19131913 BohrBohr (modello a orbite quantizzate)(modello a orbite quantizzate)

19261926 SchrodingerSchrodinger (Meccanica Quantistica (Teoria dualistica)(Meccanica Quantistica (Teoria dualistica)

Page 3: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

L’atomo nell’antichità

Già dal IV secolo a.C. alcuni filosofi greci (Leucippo, Già dal IV secolo a.C. alcuni filosofi greci (Leucippo, Democrito ed Epicuro) e romani (Lucrezio), i Democrito ed Epicuro) e romani (Lucrezio), i cosiddetti atomisti, ipotizzarono che la materia non cosiddetti atomisti, ipotizzarono che la materia non fosse continua, ma costituita da particelle minuscole e fosse continua, ma costituita da particelle minuscole e indivisibili. indivisibili.

Queste considerazioni derivavano però da semplici intuizioni filosofiche. I diversi atomi erano supposti differire per forma e dimensioni. L'idea atomistica fu poi avversata da Aristotele il cui pensiero, successivamente, fu adottato dalla Chiesa cattolica: per questo motivo bisogna aspettare fino al XIX secolo perché gli scienziati riprendessero in considerazione l'ipotesi atomica.

DEMOCRITODEMOCRITO

Page 4: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Modello atomico di Dalton

Per Dalton la materia è formata da queste piccole particelle chiamate atomi, che interagiscono tra loro legandosi per formare le molecole

Page 5: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Modello atomico di Thomson

Durante tutto il 1800 la chimica e la fisica fanno grandi progressi nella conoscenza delle proprietà della materia

Le tappe più importanti sono state:

• La scoperta delle cariche elettriche e delle loro caratteristiche• La scoperta di nuovi elementi chimici• La determinazione della struttura molecolare di numerosi composti

Nonostante tutti questi progressi non si aveva però ancora una idea precisa di che cosa fossero costituiti gli atomi.

Solamente verso la fine del secolo (1897) un fisico inglese J. J. Thomson esegue una serie di esperimenti relativa alla scarica elettrica in un tubo sottovuoto, e scopre che dal polo negativo (CATODO) partono dei raggi invisibili che si rivelano formati di piccolissime particelle di carica negativa, queste particelle vennero chiamate ELETTRONI

Page 6: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Modello atomico di Thomson

Anche modificando il materiale che formava il catodo, si ottenevano sempre le stesse particelle, ciò indusse Thomson ad immaginare che gli elettroni dovevano essere almeno uno dei componenti che formavano l’atomo

Ma se la materia era normalmente priva di carica (NEUTRA) allora all’interno dell’atomo doveva trovarsi qualcosa di carica opposta che neutralizzava gli elettroni

Questo tipo di deduzioni portò Thomson agli inizi del 1900 a formulare un primo modello di atomo, secondo questo modello gli elettroni (-) dovevano trovarsi immersi in una densa sfera di carica positiva, in modo che complessivamente tutto risultava neutro

Questo modello per la sua particolare struttura venne detto MODELLO A PANETTONE

Page 7: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Modello atomico di Thomson (panettone)

Page 8: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Il modello atomico di Rutherford (esperienza con particelle

Nel 1911 E. Rutherford fece un esperimento fondamentale per verificare il modello di Thomson. Bombardò un sottilissimo foglio di oro, posto fra una sorgente di particelle due cariche positive) e uno schermo al solfuro di zinco.

sorgente raggi sorgente raggi

schermo al ZnSschermo al ZnS

lamina d’orolamina d’oro

Schermo di PbSchermo di Pb

Page 9: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Il modello atomico di Rutherford (esperienza con particelle

Le particelle passavano quasi tutte senza modificare la loro traiettoria, solamente alcune (1:8000 circa) venivano deviate di un certo angolo che poteva essere anche maggiore di 90°

traccia particella traccia particella

particella particella deviata deviata

Page 10: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Il modello atomico di Rutherford (interpretazione atomica

Secondo Rutherford il motivo Secondo Rutherford il motivo per cui la maggior parte delle per cui la maggior parte delle le particelle le particelle passa passa attraverso la lamina d’oro attraverso la lamina d’oro senza alcuna deviazione, è senza alcuna deviazione, è dovuto al fatto che gli atomi dovuto al fatto che gli atomi sono praticamente vuotisono praticamente vuoti

La massa e la carica positiva La massa e la carica positiva devono essere concentrate in devono essere concentrate in uno spazio molto piccolo al uno spazio molto piccolo al centro dell’atomocentro dell’atomo

Solo quando le particelle Solo quando le particelle si si avvicinano al nucleo (+) avvicinano al nucleo (+) vengono deviatevengono deviate

Gli elettroni in movimento Gli elettroni in movimento attorno al nucleo non attorno al nucleo non influenzano la traiettoria influenzano la traiettoria delle particelle delle particelle essendo essendo la loro massa trascurabilela loro massa trascurabile

Page 11: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Il modello atomico di Rutherford (modello planetario)

Le conclusioni di Rutherford furono che l’atomo doveva essere formato da:Le conclusioni di Rutherford furono che l’atomo doveva essere formato da:

1) Un nucleo centrale estremamente piccolo 1) Un nucleo centrale estremamente piccolo contenente tutta la carica positiva e la massacontenente tutta la carica positiva e la massa

2) Attorno al nucleo si muovevano gli 2) Attorno al nucleo si muovevano gli elettroni caricati negativamente di massa elettroni caricati negativamente di massa trascurabile rispetto al nucleotrascurabile rispetto al nucleo

In pratica si trattava di un modello che In pratica si trattava di un modello che assomigliava al sistema solare, al centro assomigliava al sistema solare, al centro una massa molto grande (sole) e all’esterno una massa molto grande (sole) e all’esterno dei piccoli corpi in movimento (pianeti). dei piccoli corpi in movimento (pianeti). Per tale motivo il modello prese il nome di Per tale motivo il modello prese il nome di modello atomico PLANETARIOmodello atomico PLANETARIO

nucleonucleo

Page 12: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Il modello atomico di Rutherford (critiche)

Il modello di Rutherford aveva incontrato una evidente contraddizione con le Il modello di Rutherford aveva incontrato una evidente contraddizione con le leggi della fisica classica: secondo la teoria elettromagnetica era noto che una leggi della fisica classica: secondo la teoria elettromagnetica era noto che una carica quando subisce una accelerazione emette energia sotto forma di carica quando subisce una accelerazione emette energia sotto forma di radiazione elettromagneticaradiazione elettromagnetica

Essendo gli elettroni in movimento Essendo gli elettroni in movimento rotatorio (quindi accelerato), avrebbero rotatorio (quindi accelerato), avrebbero dovuto emettere onde elettromagnetiche e dovuto emettere onde elettromagnetiche e perdere energia fino a cadere sul nucleo perdere energia fino a cadere sul nucleo in un tempo che venne calcolato essere in un tempo che venne calcolato essere dell’ordine di 10 dell’ordine di 10 -9-9 secondi secondi

Ma ciò evidentemente non accade;Ma ciò evidentemente non accade; a a questo punto si questo punto si richiedeva una ulteriore modifica al modello atomico richiedeva una ulteriore modifica al modello atomico proposto da Rutherfordproposto da Rutherford

Page 13: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Il neutrone

Nel 1932 si scopre che nei nuclei atomici è presente una particella priva di carica con massa simile a quella del protone si trattava del NEUTRONE

Questa particella subatomica era presente in tutti i nuclei (escluso l’idrogeno) e contribuiva a determinare la massa atomica degli elementi

Si comprese che un nucleo di un certo elemento era caratterizzato da un numero di protoni (p+) e da un numero variabile di neutroni (n°) ciò significava che un elemento poteva in realtà essere formato da una miscela di atomi con masse atomiche differenti

Questi elementi aventi stesso numero di protoni ma differente numero di neutroni vennero chiamati ISOTOPI (iso topos in greco significa stesso posto, infatti occupavano lo stesso posto nella tavola periodica)

Page 14: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Gli isotopi

L’idrogeno in realtà è una miscela di due isotopi, uno con un solo protone nel nucleo (99.984%), l’altro chiamato DEUTERIO (D) (0.0156%) con massa doppia, ha nel nucleo un protone ed un neutrone

1H 2H (D) 3H (T)

Esiste un terzo tipo di idrogeno con massa 3 chiamato anche TRIZIO (T) formato da un protone e due neutroni, si tratta però di un isotopo instabile.

Page 15: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Gli isotopi

Conoscendo la massa atomica di un certo elemento è possibile risalire alla sua composizione in termini di particelle sub-atomiche (elettroni, protoni, neutroni)

Consideriamo ad esempio l’isotopo dell’uranio U235 la sua composizione si può dedurre partendo dal numero atomico (tavola periodica) che è 92 ciò significa che questo particolare atomo di uranio contiene 92 elettroni (-) e 92 protoni(+), ma essendo la massa atomica 235, nel suo nucleo saranno presenti neutroni in numero:

235 - 92 = 143 (neutroni)

L’elemento ferro in natura esiste come una miscela di diversi isotopi stabili:

54Fe 5.82%56Fe 91.66%57Fe 2.19%58Fe 0.33%

Page 16: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

La materia e la luce: teoria corpuscolare

Lo studio e la comprensione della natura della luce ha avuto una importanza fondamentale per lo Lo studio e la comprensione della natura della luce ha avuto una importanza fondamentale per lo sviluppo delle conoscenze sulla struttura atomica della materiasviluppo delle conoscenze sulla struttura atomica della materia

I primi esperimenti sulla luce furono fatti da Newton, mediante l’uso del PRISMA si rese conto I primi esperimenti sulla luce furono fatti da Newton, mediante l’uso del PRISMA si rese conto che in realtà la luce bianca era composta di luce di differenti coloriche in realtà la luce bianca era composta di luce di differenti colori

Egli interpretò il fenomeno immaginando che la luce fosse costituita di minuscole particelle Egli interpretò il fenomeno immaginando che la luce fosse costituita di minuscole particelle colorate che venivano deviate, nel loro percorso all’interno del prisma, secondo differenti angoli colorate che venivano deviate, nel loro percorso all’interno del prisma, secondo differenti angoli in modo da uscirne separate (teoria corpuscolare)in modo da uscirne separate (teoria corpuscolare)

Page 17: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

La materia e la luce: teoria Ondulatoria

Altri esperimenti mostravano però che la luce aveva le proprietà caratteristiche delle ondeAltri esperimenti mostravano però che la luce aveva le proprietà caratteristiche delle onde

Teoria ondulatoria: è formulata da Christiaan Huygens nel 1678 ma pubblicata solo nel 1690 nel Traité de la Lumière.

La luce viene vista come un'onda che si propaga (in maniera del tutto simile alle onde del mare o a quelle acustiche) in un mezzo, chiamato etere, che si supponeva pervadere tutto l'universo ed essere formato da microscopiche particelle elastiche.

La teoria ondulatoria della luce permetteva di spiegare un gran numero di fenomeni: oltre alla riflessione ed alla rifrazione.

Teoria elettromagneticaTeoria elettromagnetica: Proposta da James Maxwell alla fine del XIX : Proposta da James Maxwell alla fine del XIX secolo, sostiene che le onde luminose sono oscillazioni del campo secolo, sostiene che le onde luminose sono oscillazioni del campo elettrico e magnetico e non necessitano di un mezzo per la trasmissione. elettrico e magnetico e non necessitano di un mezzo per la trasmissione. Con la formulazione delle equazioni di Maxwell vennero completamente Con la formulazione delle equazioni di Maxwell vennero completamente unificati i fenomeni elettrici, magnetici ed ottici. Per la grandissima unificati i fenomeni elettrici, magnetici ed ottici. Per la grandissima maggioranza delle applicazioni questa teoria è ancora utilizzata al giorno maggioranza delle applicazioni questa teoria è ancora utilizzata al giorno d'oggi.d'oggi.

Page 18: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

La materia e la luce: onde elettromagnetiche

Secondo la teoria di Maxell la luce è una oscillazione del campo elettrico associato ad Secondo la teoria di Maxell la luce è una oscillazione del campo elettrico associato ad un campo magnetico, che si propaga nello spazio alla velocità di circa 300 000 Km/sun campo magnetico, che si propaga nello spazio alla velocità di circa 300 000 Km/s

Vettore campo elettricoVettore campo elettrico

Vettore campo magneticoVettore campo magnetico

E

M

ONDA ELETTROMAGNETICAONDA ELETTROMAGNETICA

Direzione propagazioneDirezione propagazione

Page 19: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

La materia e la luce: spettro delle onde elettromagnetiche

La luce percepita dall’occhio umano è in realtà formata da un insieme continuo di colori che vanno dal rosso fino al violetto.

Questo insieme colori prende il nome di spettro visibile ed è formato da radiazioni di lunghezza d’onda comprese tra circa 750 nm (ROSSO) fino a 400 nm (VIOLETTO)

750nm750nm 400nm400nm

Spettro visibile

Ulteriori studi sulle radiazioni elettromagnetiche dimostrarono che agli estremi dello Ulteriori studi sulle radiazioni elettromagnetiche dimostrarono che agli estremi dello spettro visibile, esistevano delle radiazioni elettromagnetiche non percepite dall’occhio spettro visibile, esistevano delle radiazioni elettromagnetiche non percepite dall’occhio umanoumano

Lo spettro oltre il violetto, venne indicato come ultravioletto (UV), mentre le radiazioni che precedevano il rosso, vennero denominate infrarosso (IR)

Page 20: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

La materia e la luce: spettro delle onde elettromagnetiche

In seguito si trovarono numerosi altri tipi di radiazioni elettromagnetiche e lo spettro si ampliò ulteriormente

Attualmente lo spettro conosciuto è suddiviso in vari campi a seconda delle applicazioni che hanno trovato i diversi tipi di radiazioni elettromagnetiche, nelle moderne tecnologie

Onde radio Onde radio Onde Onde IRIR

VISIBILEVISIBILE

UVUV Raggi XRaggi X Raggi Raggi

UVAUVA

UVBUVBUVCUVC

Onde Lunghe Onde Lunghe (OL)(OL)

Onde Medie Onde Medie (OM)(OM)

Onde corte Onde corte (OC)(OC)

Alcuni campi sono ulteriormente suddivisiAlcuni campi sono ulteriormente suddivisi

Page 21: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

La rivoluzione quantistica: Niels Bohr

Nel 1913 Bohr (fisico danese) propose una modifica Nel 1913 Bohr (fisico danese) propose una modifica concettuale al modello atomico di Rutherford. concettuale al modello atomico di Rutherford.

Pur accettandone l'idea di modello planetario, postulò che Pur accettandone l'idea di modello planetario, postulò che gli elettroni avessero a disposizione orbite fisse nelle quali gli elettroni avessero a disposizione orbite fisse nelle quali non emettevano né assorbivano energia; un elettrone non emettevano né assorbivano energia; un elettrone emetteva od assorbiva energia sottoforma di onde emetteva od assorbiva energia sottoforma di onde elettromagnetiche solo se effettuava una transizione da elettromagnetiche solo se effettuava una transizione da un'orbita all'altraun'orbita all'altra

Se E° è l’energia dello stato fondamentale e E’ è l’energia di uno stato Se E° è l’energia dello stato fondamentale e E’ è l’energia di uno stato eccitato, allora quando un elettrone passa dallo stato eccitato a quello eccitato, allora quando un elettrone passa dallo stato eccitato a quello fondamentale emette un quanto ( chiamato anche fotone) di energia pari a:fondamentale emette un quanto ( chiamato anche fotone) di energia pari a:

E’-E° = hE’-E° = h

Page 22: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

La rivoluzione quantistica: L’atomo di H secondo Bohr

E°E°

E’E’

E’’E’’

E’’’E’’’

Gli stati eccitati hanno una vita media molto breve, dopo di che l’elettrone ritorna allo stato Gli stati eccitati hanno una vita media molto breve, dopo di che l’elettrone ritorna allo stato fondamentale riemettendo l’energia assorbita sottoforma di onde luminose fondamentale riemettendo l’energia assorbita sottoforma di onde luminose

Quando viene somministrata energia agli atomi di H è l’elettrone che assorbe l’energia Quando viene somministrata energia agli atomi di H è l’elettrone che assorbe l’energia E e passa a uno degli stati eccitati E e passa a uno degli stati eccitati

nucleonucleo

elettroneelettrone

Page 23: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Meccanica Quantistica: La nascita della nuova meccanica

Tra il 1925-26 in modo del tutto indipendente, e seguendo linee di pensiero Tra il 1925-26 in modo del tutto indipendente, e seguendo linee di pensiero completamente diverse, due fisici Heisenberg (tedesco) e Schrödinger completamente diverse, due fisici Heisenberg (tedesco) e Schrödinger (austriaco) arrivano a formulare le basi della MECCANICA QUANTISTICA(austriaco) arrivano a formulare le basi della MECCANICA QUANTISTICA

Tra il 1925-26 in modo del tutto indipendente, e seguendo linee di pensiero Tra il 1925-26 in modo del tutto indipendente, e seguendo linee di pensiero completamente diverse, due fisici Heisenberg (tedesco) e Schrödinger completamente diverse, due fisici Heisenberg (tedesco) e Schrödinger (austriaco) arrivano a formulare le basi della MECCANICA QUANTISTICA(austriaco) arrivano a formulare le basi della MECCANICA QUANTISTICA

Heisenberg, si rende conto che è impossibile cercare di Heisenberg, si rende conto che è impossibile cercare di comprendere gli atomi come se fossero dei sistemi planetari in comprendere gli atomi come se fossero dei sistemi planetari in miniatura. miniatura.

Schrödinger invece segue un approccio completamente Schrödinger invece segue un approccio completamente diverso, riprendendo l’idea delle onde di de Broglie, arriva a diverso, riprendendo l’idea delle onde di de Broglie, arriva a formulare una teoria (MECCANICA ONDULATORIA) in formulare una teoria (MECCANICA ONDULATORIA) in cui ad ogni particella in movimento viene associata una cui ad ogni particella in movimento viene associata una “equazione d’onda”; è questa l’equazione di Schrödinger, la “equazione d’onda”; è questa l’equazione di Schrödinger, la più famosa delle equazioni nella storia della fisicapiù famosa delle equazioni nella storia della fisica

Page 24: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Meccanica Quantistica: L’equazione di SchrödingerSchrödinger

L’equazione proposta da Schrödinger per descrivere il comportamento di un L’equazione proposta da Schrödinger per descrivere il comportamento di un elettrone può essere indicata come:elettrone può essere indicata come:

H = E La semplicità di questa espressione non deve trarre in inganno, in realtà la sua La semplicità di questa espressione non deve trarre in inganno, in realtà la sua risoluzione è una operazione abbastanza complessa che implica la conoscenza risoluzione è una operazione abbastanza complessa che implica la conoscenza di quella parte della matematica nota come “analisi matematica”di quella parte della matematica nota come “analisi matematica”

Senza voler entrare nel dettaglio, diremo che si tratta di una equazione Senza voler entrare nel dettaglio, diremo che si tratta di una equazione differenziale e la sua soluzione non è un valore numerico (come nelle comuni differenziale e la sua soluzione non è un valore numerico (come nelle comuni equazioni algebriche) ma una funzione (equazioni algebriche) ma una funzione () che dipende dalle variabili ) che dipende dalle variabili indipendenti x, y, z che rappresentano le coordinate dello spazio in cui si indipendenti x, y, z che rappresentano le coordinate dello spazio in cui si muove l’elettronemuove l’elettrone

Quello che è importante è il significato che assume la funzione (Quello che è importante è il significato che assume la funzione (); tale ); tale funzione elevata al quadrato risulta essere proporzionale alla probabilità di funzione elevata al quadrato risulta essere proporzionale alla probabilità di trovare l’elettrone in uno dei punti dello spazio attorno al nucleo dell’atomotrovare l’elettrone in uno dei punti dello spazio attorno al nucleo dell’atomo

P (x,y,z)= K 2

Page 25: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Meccanica Quantistica: L’orbitale

Queste soluzioni che, ricordiamolo sono delle funzioni matematiche, Queste soluzioni che, ricordiamolo sono delle funzioni matematiche, prendono il nome di ORBITALI e permettono di calcolare come varia la prendono il nome di ORBITALI e permettono di calcolare come varia la distribuzione di probabilità di trovare l’elettrone nello spazio attorno al distribuzione di probabilità di trovare l’elettrone nello spazio attorno al nucleo nucleo

Quindi in Meccanica Quantistica non si parlerà più di orbite percorse dagli Quindi in Meccanica Quantistica non si parlerà più di orbite percorse dagli elettroni, ma di probabilità di trovare l’elettrone in un certo punto.elettroni, ma di probabilità di trovare l’elettrone in un certo punto.

Spesso queste probabilità sono rappresentate con delle figure grafiche che Spesso queste probabilità sono rappresentate con delle figure grafiche che vogliono solo essere delle semplificazioni utili per visualizzare l’andamento vogliono solo essere delle semplificazioni utili per visualizzare l’andamento della probabilitàdella probabilità

Page 26: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Meccanica Quantistica: Forme degli orbitali

La prima soluzione dell’equazione di Schrödinger per l’atomo di idrogeno, La prima soluzione dell’equazione di Schrödinger per l’atomo di idrogeno, graficamente può essere rappresentata come una sfera con una diversa graficamente può essere rappresentata come una sfera con una diversa densità a seconda della probabilità di trovare l’elettrone in un certo puntodensità a seconda della probabilità di trovare l’elettrone in un certo punto

xx

zz

yy

orbitale 1sorbitale 1s

Page 27: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Meccanica Quantistica: Numeri quantici

Le varie soluzioni dell’equazione di Schrödinger (orbitali) contengono al loro Le varie soluzioni dell’equazione di Schrödinger (orbitali) contengono al loro interno dei numeri interi che prendono il nome di interno dei numeri interi che prendono il nome di numeri quanticinumeri quantici

Ciascuno di questi numeri definisce una proprietà caratteristica dell’orbitaleCiascuno di questi numeri definisce una proprietà caratteristica dell’orbitale

Numero quantico principale (n)Numero quantico principale (n):: Può assumere valori interi a partire da Può assumere valori interi a partire da

n = 1, 2, 3, 4 …………n = 1, 2, 3, 4 …………

Definisce l’energia dell’orbitaleDefinisce l’energia dell’orbitale

Numero quantico magnetico (m)Numero quantico magnetico (m):: Per ogni valore di l può assumere i Per ogni valore di l può assumere i seguenti valori:seguenti valori:

m = 0, ±1, ±2 ….. ±lm = 0, ±1, ±2 ….. ±l

Definisce le possibili orientazioni nello spazio dell’orbitaleDefinisce le possibili orientazioni nello spazio dell’orbitale

Numero quantico secondario (l)Numero quantico secondario (l):: Per ogni valore del numero n può assumere Per ogni valore del numero n può assumere i seguenti valori:i seguenti valori:

l = 0, 1, ….. n-1l = 0, 1, ….. n-1

Definisce la forma dell’orbitaleDefinisce la forma dell’orbitale

Page 28: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Meccanica Quantistica: Dimensioni e forme degli orbitali

La forma degli orbitali è definita dal numero quantico “l” che come detto può assumere tutti i valori interi a partire da 0 ……. fino a n-1

Al primo livello energetico (n=1) il numero quantico secondario può assumere solo il valore l=0 ciò significa che esiste un solo tipo di orbitale che ha la forma di una sfera e viene indicato con il simbolo “s”, in particolare essendo n=1 si indicherà come “1s”

Al secondo livello (n=2) sono possibili 2 valori di l cioè l = 0 e l = 1 il che significa che possono esistere due forme differenti di orbitali, il primo (l = 0) ha come nel caso precedente forma sferica, solo che dimensionalmente è più grande, il secondo invece è formato da due lobi allungati lungo un asse. Viene indicato come orbitale di tipo “p”

orbitale 2s orbitale 2p

orbitale 1s

Page 29: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Meccanica Quantistica: Dimensioni e forme degli orbitali

Al livello energetico con n = 3 sono possibili tre differenti valori di numero quantico secondario l = 0 ; l = 1 ; l = 2 questo significa che potranno esistere tre diversi tipi di orbitali (in pratica salendo nei livelli energetici, si trova ogni volta un nuovo tipo di orbitale) i primi due sono, come nei livelli precedenti di tipo s e p mentre il nuovo orbitale è di tipo “d” ed ha una struttura formata da quattro lobi collegati al centro dell’atomo

orbitale 3d

Nei livelli successivi sono possibili altre forme di orbitali sempre più complesse; nel livello n = 4 ci sono oltre alle solite forme (s, p, d) dei nuovi orbitali di tipo “f” (con otto lobi). Oltre non è necessario andare perché vedremo che con questi orbitali si riuscirà a descrivere la configurazione di tutti gli elementi della tavola periodica

Page 30: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Meccanica Quantistica: Orientamento degli orbitali

L’orientamento di un orbitale è indicato dal valore del numero quantico magnetico (m) che per un certa forma di orbitale definita dal numero “l”, può assumere tutti i valori da

m = 0, ±1……. ±l

Se l’orbitale ha forma sferica (l = 0) è possibile un solo orientamento perché si ha solo il valore: m = 0 (la sfera per la sua forma anche se ruotata non cambia la posizione nello spazio) quindi esiste una sola orientazione per gli orbitali di tipo “s”

Invece per gli orbitali di tipo p (l = 1) sono possibili tre differenti valori di m:

m = -1 m = 0 m = 1

Significa che sono possibili 3 diverse orientazioni nello spazio lungo gli assi x, y, z

Orbitale px Orbitale py Orbitale pz

Page 31: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Meccanica Quantistica: Diagramma energetico degli orbitali

Risulta utile poter conoscere la disposizione dal punto di vista energetico dei vari orbitali presenti in ogni livello energetico. Si costruiscono quindi dei diagrammi unidimensionali in cui l’unica funzione rappresentata è l’energia (E) e ciascun orbitale viene indicato con un segmento orizzontale

EE

n = 1n = 1

n = 2n = 2

n = 3n = 3

n = 4n = 4

1s1s

2s2s 2p2p

3s3s 3p3p 3d3d

4p4p4s4s 4d4d 4f4f

Page 32: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Meccanica Quantistica: Diagramma dell’idrogeno

Vediamo come si presenta l’idrogeno, il più semplice degli elementi, secondo la meccanica quantistica utilizzando il diagramma energetico degli orbitali

EE

n = 1n = 1

n = 2n = 2

n = 3n = 3

n = 4n = 4

1s1s

2s2s 2p2p

3s3s 3p3p 3d3d

4p4p4s4s 4d4d 4f4f

L’idrogeno ha un solo elettrone esso va ad occupare l’orbitale a più bassa energia (più stabile) Questo fatto lo indicheremo con una piccola freccia posizionata sull’orbitale 1s

Questa sarà una regola generale valida per tutti gli elementi

Quello che abbiamo ottenuto è la configurazione elettronica dell’idrogeno che verrà indicata come: 1s1

Lo stato stabile 1s1 (fondamentale) ha la più bassa energia. Se l’atomo assorbe energia (formazione di uno spettro), l’elettrone passa ad un orbitale superiore e poi ritorna emettendo un fotone

Page 33: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Meccanica Quantistica: configurazioni elettronicheCostruiamo le configurazioni elettroniche dei primi 10 elementi della tavola periodica applicando il principio di Pauli e di Hund

H (1) = 1s1

He (2) = 1s2

Li (3) = 1s2 – 2s1

Be (4) = 1s2 – 2s2

B (5) = 1s2 – 2s2 2p1

C (6) = 1s2 – 2s2 2p2

N (7) = 1s2 – 2s2 2p3

O (8) = 1s2 – 2s2 2p4

F(9) = 1s2 – 2s2 2p5

Ne(10) = 1s2 – 2s2 2 p6

EE

1s1s

2s2s2p2p

3s3s3p3p

3d3d

4p4p

4s4s

4d4d

Page 34: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

LEGAMI CHIMICILEGAMI CHIMICI

Page 35: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Legami: introduzione

La descrizione fatta fino ad ora è stata relativa a singoli atomi isolati, in realtà esistono delle condizioni in cui questo può avvenire come negli stati ad alte temperature o di estrema rarefazione (spazio cosmico)

Ma nella parte di universo in cui vive l’uomo (terra), gli atomi si trovano a temperature relativamente basse e in fasi non rarefatte

Quando si realizzano queste condizioni è estremamente difficile trovare singoli atomi isolati (tranne l’eccezione dei gas nobili) perché essi tendono a formare tra loro dei legami, ciò comporta la liberazione di energia e la formazione di aggregati atomici (molecole o reticoli cristallini)

Gli atomi quindi tendono ad esercitare tra loro delle forze dette LEGAMI CHIMICI che vedremo essere essenzialmente di natura elettrica, cioè forze esercitate tra cariche

Page 36: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Legami: classificazione dei legami

Per una razionale comprensione dei legami, in chimica si tende a fare una classificazione che porta alla seguente suddivisione:

LEGAME IONICOLEGAME IONICO

LEGAME COVALENTELEGAME COVALENTE

LEGAME METALLICOLEGAME METALLICO

Page 37: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Legami: LEGAME IONICO

Il legame ionico si forma quando ad interagire sono atomi che si trovano agli estremi della tavola periodica, quindi come regola generale, si forma un legame ionico quando si legano metalli alcalini e alcalino-terrosi (1°/2° gruppo) con elementi del 6°/7° gruppo

Questa regola generale ammette numerose eccezioni, osserviamo che tra gli elementi del 1° gruppo non deve essere considerato l’idrogeno (che in effetti non è un metallo), inoltre ci possono essere delle situazioni particolari tra elementi di transizione e non metalli in cui si formano dei legami ionici (o con forte carattere ionico)

Page 38: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Legami: ENERGIA DI IONIZZAZIONE

Per comprendere come si formi un legame ionico è opportuno prendere in considerazione definire due grandezze caratteristiche di ogni elemento della tavola periodica:

ENERGIA DI IONIZZAZIONE

È l’energia che occorre fornire ad un atomo per allontanare uno dei suoi elettroni, il processo può essere schematizzato come:

A A AA++ + e + e-- -EI-EI

Si definisce l’energia di 1°, 2°, 3° … a seconda di quale elettrone viene allontanato, è evidente che gli elettroni più esterni trovandosi ad una maggiore distanza dal nucleo, risentono di una forza attrattiva minore, pertanto l’energia di ionizzazione va aumentando con il numero di elettroni interessati nel processo

Page 39: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Legami: ENERGIE DI IONIZZAZIONE

É opportuno osservare che per elementi differenti ad esempio lungo un periodo della tavola periodica, le energie di 1° ionizzazione, aumentano da sxdx questo perché diminuiscono le dimensioni degli atomi (nonostante aumentino gli elettroni, l’aumento del numero di protoni nel nucleo, provoca una contrazione complessiva del raggio atomico)

Page 40: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Legami: AFFINITÁ ELETTRONICA

Un’altra grandezza che occorre prendere in considerazione, nel processo che porta alla formazione di un legame ionico è l’ AFFINITÁ ELETTRONICA

L’ affinità elettronica è l’energia liberata da un atomo quando acquista uno o più elettroni, il processo può essere così schematizzato:

A + eA + e-- A A-- +AE+AE

Elementi con alta affinità elettronica si trovano nella parte destra della tavola periodica (6°/7° gruppo) e sono caratterizzati da una configurazione incompleta rispetto a quella del gas nobile che termina il periodo

Page 41: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Legami: Formazione del legame ionico

Quando interagiscono elementi a bassa energia di ionizzazione (EI) con elementi ad alta affinità elettronica, allora si realizzano le condizioni per cui può intervenire un trasferimento di elettroni da un elemento all’altro con la formazione di ioni

L’intero processo di formazione del legame ionico può essere schematizzato in tre stadi, ( esempio della formazione del composto KCl):

K K+ + e-

Cl + e- Cl-

K+ + Cl- K+Cl-

L’ultimo passaggio è quello che descrive la formazione del legame ionico, uno ione positivo (K+) attrae lo ione negativo (Cl-) e si forma una molecola di KCl

Page 42: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Legami: Reticoli cristallini

Se il reticolo ha forma cubica, ogni ione positivo è circondato da otto ioni negativi e viceversa

È da notare che per questi composti di tipo ionico non esiste una molecola, per cui il significato delle formule, è quello di indicare solamente il rapporto tra ioni positivi e negativi

Page 43: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Legami: Legame covalente

Il legame covalente si forma quando tra due atomi c’è la possibilità i condividere una coppia di elettroni, in modo schematico:

A + B A-B

La condizione necessaria perché si formi un legame covalente è che ciascuno dei due atomi presenti nella sua configurazione elettronica, un orbitale con un elettrone spaiato.

Come regola generale, diremo che gli elementi che formano legami covalenti, sono quelli la cui differenza di elettronegatività non supera 1,7 (HCl, NO2 PCl3)

Page 44: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Legami: Legame covalente – molecola di H2

Che cosa succede a livello atomico: possiamo pensare che le nuvole elettroniche degli orbitali 1s1 ciascuno con un elettrone, si sovrappongano creando un nuovo orbitale contenente i due elettroni con spin opposti; si è formato un orbitale molecolare:

HHHH

HHHH

Page 45: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Legami: Legame covalente

La formazione di legami covalenti tra atomi può avvenire anche per sovrapposizione di orbitali di forma differente, i casi più semplici sono le combinazioni s-s (caso dell’idrogeno), s-p e p-p

La formazione della molecola di HCl è un esempio di legame tra orbitali s-p infatti il cloro ha un orbitale 3p1 non completo e l’idrogeno è 1s1

H Cl

Mentre la formazione della molecola del fluoro (F2) a partire da due atomi isolati, è un esempio di formazione di legami tra orbitali p-p

FF FF

Page 46: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Legami: Elettronegatività

La formazione di un legame covalente per messa in comune di una coppia di elettroni da parte di due atomi, molto spesso porta ad una condizione di non perfetta simmetria nella distribuzione della densità elettronica, cioè esistono atomi che esercitano una differente forza attrattiva nei confronti degli elettroni che formano il legame

Page 47: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Legami: Legame covalente polare

Tranne alcuni casi particolari di due elementi con la stessa elettronegatività, di solito i legami covalenti sono polarizzatipolarizzati, cio avviene a causa della differente elettronegatività. Si avrà un accumulo di carica negativa sull’elemento più elettronegativo e di carica positiva sull’elemento meno elettronegativo; in questo caso si parlerà quindi di legame covalente polarecovalente polare per distinguerlo da quello covalente apolarecovalente apolare

Naturalmente l’elettrone non potrà essere trasferito completamente sull’atomo più elettronegativo, altrimenti si formerebbero due ioni (+) e (-) e quindi avremo un legame ionico.La carica negativa accumulata sarà comunque sempre inferiore a 1 (intesa come unità di carica dell’elettrone), questo fatto viene indicato usando il simbolo (parziale carica)

Ad esempio consideriamo il legame nella molecola di HCl, dai valori di elettronegatività si deduce che deve trattarsi di un legame covalente polare, con accumulo di carica negativa sul cloro e di carica positiva sull’idrogeno:

H—Cl(-)(-)(+)(+)

Page 48: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Legami: Polarità delle molecole

Nelle molecole formate da due soli atomi, la polarità del legame coincide con la polarità della molecola, ma in molecole con più legami, per poter dedurre la polarità complessiva è necessario effettuare una operazione di somma delle polarità di tutti i legami

La polarità di un legame è una grandezza vettorialevettoriale, pertanto la polarità complessiva di una molecola, sarà la somma vettoriale delle polarità dei singoli legami. Naturalmente per poter fare questa operazione, è necessario conoscere come sono disposti nello spazio gli atomi, cioè conoscere la geometria della molecola

L’acqua contiene due legami covalenti polari O-H disposti secondo un angolo di ~105°, quindi per avere una indicazione della sua polarità complessiva, dovremo trasformare i legami in vettori di polarità e poi sommarli:

OO

HH HH

(-)

(+)(+)

Page 49: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

2s2s

Legami: Ibridizzazione

La possibilità che un certo elemento ha di formare legami e la loro disposizione spaziale, non è sempre deducibile dalla configurazione elettronica.

Consideriamo il caso del carbonio (C) la sua struttura elettronica è:

1s1s

2p2p

Questo è possibile se l’atomo assorbe una piccola quantità di energia; in questa nuova configurazione si spiegherebbe la formazione dei quattro legami ma non la loro equivalenza e l’angolo di legame

Per spiegare l’equivalenza dei legami si pensa a un processo di riorganizzazione degli orbitali, l’orbitale 2s si mescola con i tre orbitali 2p e si ottengono quattro nuovi orbitali uguali tra loro (sp3)

spsp33

Il processo descritto prende il nome di IBRIDIZZAZIONE e gli orbitali ottenuti sono indicati come orbitali ibridiorbitali ibridi sp3

ibridizzazioneibridizzazione

Page 50: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Legami: Ibridizzazione sp3

L’ibridizzazione è un processo matematico della Meccanica Quantistica, mediante il quale si combinano più funzioni (orbitali) con proprietà differenti in modo da ottenere delle nuove funzioni (orbitali ibridi)

Graficamente questi orbitali mostrano avere le caratteristiche sia degli orbitali s che degli orbitali p; vediamo il caso degli orbitali ibridi sp3

3 4

La disposizione nello spazio di questi quattro orbitali è dovuta alle forze di repulsione delle cariche elettriche, infatti in ogni orbitale si muove un elettrone e quindi tenderà ad allontanarsi il più possibile da tutti gli altri, questo porta a una disposizione spaziale in cui i legami si dispongono secondo i vertici di un solido detto tetraedro

Page 51: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Legami: La molecola del metano (CH4)

Pertanto la struttura della molecola del metano è tetraedrica

L’atomo di C è ibridizzato sp3 e ogni orbitale contiene un elettrone

Si formano quindi 4 legami covalenti con 4 atomi di H (1s1)

La molecola è perfettamente simmetrica, nonostante i singoli legami abbiano una piccola polarità, la somma vettoriale si annulla, quindi polarità complessiva zero

H

H

H

H

P = 0

Page 52: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Legami: Legame covalente dativo

Il legame covalente può formarsi, oltre che nel modo visto precedentemente, cioè quando sono disponibili nei due atomi degli orbitali non completi, anche in una situazione diversa

Può succedere che un atomo dopo aver formato dei legami covalenti per messa in comune di un elettrone, con un altro atomo, risulti avere nel livello elettronico esterno, degli orbitali completi

Ad esempio questo accade per l’azoto in NH3 e per l’ossigeno in H2O

H H

ONH

HH

Orbitali completi

Se questi atomi incontrano degli altri atomi, che al contrario, hanno un orbitale vuoto, allora è possibile anche in questo caso la formazione di un legame covalente, denominato covalente dativocovalente dativo perché un atomo “dona” entrambi gli elettroni necessari per formare il legame

Page 53: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

Legami: Legame covalente dativo

Un caso molto comune è quello dello ione H+ che si ottiene dalla perdita dell’unico elettrone dell’idrogeno (1s1), si viene quindi ad avere l’orbitale 1s vuoto e quindi disponibile ad accettare elettroni

Lo ione H+ infatti si lega all’azoto e all’ossigeno nelle reazioni:

H+ + NH3NH4+

H+ + H2O H3O+

Page 54: APPUNTI DI CHIMICA legami chimici legami chimici modelli atomici modelli atomici Presentazione a cura del Presentazione a cura del Prof. Salvatore Leccese.

FINE PRESENTAZIONE

Istituto Tecnico “G. Caboto” - Gaeta

Prof. Salvatore Leccese