APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un...

66
1 APPUNTI del CORSO di MACCHINE I A cura del dott. ing. Romano Impero Abenavoli, dalle lezioni del prof. Cinzio Arrighetti

Transcript of APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un...

Page 1: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

1

APPUNTI del CORSO di

MACCHINE I

A cura del dott. ing. Romano Impero Abenavoli,

dalle lezioni del prof. Cinzio Arrighetti

Page 2: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

IRA 2

INTRODUZIONE ALLO STUDIO DELLE MACCHINE A FLUIDO

MACCHINE

Si può definire macchina, in senso lato, un qualsiasi convertitore di energia cioè, in generale, una scatola chiusa

in cui entra energia ed esce energia di tipo diverso da quella entrante.

In questa definizione rientra qualsiasi congegno capace di effettuare una conversione energetica, dallo

schiaccianoci alla pila a combustibile.

Il campo di nostro specifico interesse é quello delle macchine a fluido, ovvero le macchine che necessitano per il

loro funzionamento dell’intervento di un fluido per effettuare la conversione di energia a cui sono destinate.

Le macchine a fluido, di cui ci occupiamo, convertono una parte del patrimonio energetico del fluido

operante in energia meccanica oppure viceversa.

Le macchine a fluido si possono suddividere quindi in due tipi fondamentali:

MACCHINE MOTRICI convertono l’energia (spesso prevalentemente potenziale) posseduta da un

fluido in energia meccanica utile all’esterno

MACCHINE OPERATRICI convertono energia meccanica spesa dall’esterno in energia (spesso

prevalentemente potenziale) di un fluido.

Un’ulteriore classificazione delle macchine può farsi dividendole in:

MACCHINE VOLUMETRICHE e TURBOMACCHINE .

Le macchine volumetriche sono caratterizzate dal fatto che elaborano volumi finiti di fluido; necessitano di una

fase di ammissione e di una di scarico.

Le turbomacchine (o macchine dinamiche) elaborano invece una portata continua di fluido (costante nel tempo

se il funzionamento è a regime). Sia le macchine volumetriche che le turbomacchine possono essere motrici

oppure operatrici.

Le macchine volumetriche possono, a loro volta, suddividersi nelle macchine ALTERNATIVE e nelle macchine

ROTATIVE.

Le macchine volumetriche alternative sono fondate sul cinematismo biella/manovella: un esempio di operatrice è

il compressore alternativo; di motrice, un motore a combustione interna a pistoni.

Le macchine volumetriche rotative operatrici comprendono una vasta gamma (macchine ad ingranaggi, a lobi, a

“palette”, a viti, etc.), mentre un esempio di volumetrica rotativa motrice è il motore Wankel1.

La turbomacchina è attraversata con continuità dal fluido evolvente e non presenta, quindi, valvole o luci che

vengano periodicamente aperte e chiuse. A regime le portate massiche entrante ed uscente sono uguali, possono

differire invece tra loro durante i transitori.

Le turbomacchine possono suddividersi in ASSIALI e RADIALI, ma possono essere in genere ad architettura

mista ( ASSIO-RADIALI ).

In una macchina volumetrica la conversione di energia avviene in maniera diretta, cioè essa viene ceduta od

assorbita dal fluido durante la fase di espansione o di compressione del fluido stesso.

1 Dr Felix Wankel, (1902-1988), inventore tedesco.

Page 3: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

Appunti di Macchine 3

Nelle turbomacchine la conversione avviene invece per mezzo di un passaggio intermedio, che comporta

sempre una variazione di energia cinetica del fluido.

La turbomacchina è formata, in genere, da una serie di “stadi”; il singolo stadio è, ordinariamente, costituito da

uno STATORE (parte fissa) e da un ROTORE (parte mobile).

Nelle turbomacchine motrici il fluido, nel suo percorso, attraversa prima lo STATORE e poi il ROTORE. Nello

statore si opera una conversione di energia potenziale del fluido in energia cinetica dello stesso; nel rotore si opera

una conversione di tale energia cinetica in lavoro meccanico utile.

Nelle macchine operatrici il fluido attraversa prima il ROTORE e poi lo STATORE. Nel rotore l’energia

meccanica (lavoro speso) viene convertita in energia cinetica del fluido; nello statore questa viene convertita in

energia potenziale.

Ogni conversione energetica avviene attraverso un certo rendimento, di regola inferiore all’unità.

Page 4: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

IRA 4

Schematizziamo una prima classificazione delle macchine a fluido.

L’energia disponibile in un impianto motore può provenire da fonti tradizionali (idraulica, chimica, geotermica,

nucleare) o da fonti non tradizionali (quali le fonti rinnovabili, in primo luogo l’eolica e la solare).

In definitiva

potenziale energetico del fluido

Macchina motrice

energia meccanica

(lavoro utile)

energia meccanica

(lavoro speso)

Macchina operatrice

potenziale energetico del fluido

motrici (producono energia utilizzabile

dall’utente sfruttando il patrimonio

energetico del fluido entrante)

Il patrimonio energetico del fluido diminuisce nel caso di macchina motrice

Macchine

operatrici (elevano il patrimonio energetico del

fluido attraverso la somministrazione

dall’esterno di energia meccanica)

IMPIANTI

idroelettrici 25%

termoelettrici 72%

geotermoelettrici 3%

energia

disponibile

energia

meccanica

disponibile alla flangia di

accoppiamento fra

macchina produttrice ed

utilizzatore (ad es. un

alternatore)

patrimonio energetico del fluido

aumenta nel caso di macchina operatrice

Page 5: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

Appunti di Macchine 5

Possiamo costruire una “matrice di esistenza e di connessione” delle varie classificazioni possibili delle

macchine a fluido secondo 5 criteri distinti:

1°°°° criterio: basandosi sulla direzione della conversione energetica, dividiamo le macchine in

motrici operatrici

2°°°° criterio: basandosi sulla caratteristica fisica del fluido evolvente, dividiamo le macchine in

macchine idrauliche

macchine termiche

a seconda che il fluido evolvente sia un liquido o un aeriforme;

3°°°° criterio: basandosi sul moto dell’ organo predisposto al trasferimento di lavoro (alternativo o rotatorio) le dividiamo in

macchine alternative

macchine rotative

4°°°° criterio: basandosi sull’andamento nel tempo del flusso del fluido (pulsante o continuativo), le dividiamo in

macchine volumetriche

macchine dinamiche

o turbomacchine

Questo tipo di macchina elabora un volume (o massa) finito di fluido che, una volta elaborato, viene espulso (motori a combustione interna, compressori alternativi, etc.)

Questo tipo di macchina elabora il fluido con portata massica costante in esercizio a regime

5°°°° criterio: basandosi sul tipo di traiettoria del fluido evolvente (cioè del suo percorso all’interno della macchina), le sole macchine dinamiche si possono dividere in

assiali radiali assio-radiali

È opportuno precisare che il 5° criterio si basa sulla componente fondamentale della velocità del fluido, ovvero

su quella componente del vettore velocità che garantisce lo smaltimento della portata del fluido attraverso la

macchina: se tale componente è quella assiale la macchina è detta assiale, se è quella radiale la macchina è detta

radiale. Da notare che le macchine alternative possono essere solo volumetriche, ma non viceversa.

Page 6: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

IRA 6

In base a quanto esposto è possibile disegnare la MATRICE di CONNESSIONE

motrici operatrici

idrauliche termiche

alternative rotative

volumetriche dinamiche

assiali radiali

assio-radiali

componente radiale

della velocità

rotore

statore

turbomacchina assiale

(pluristadio)

direzione della velocità assiale

(parallela all’asse di rotazione della

macchina)

turbomacchina radiale

(rotore di uno stadio)

Page 7: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

Appunti di Macchine 7

Richiami di termodinamica tecnica

È opportuno svolgere alcuni richiami fondamentali di Termodinamica tecnica, fondati sul 1° e sul 2° Principio

della termodinamica, rivisitati in chiave applicativa, con riferimento alle macchine a fluido ed ai relativi impianti.

Il primo concetto che occorre puntualizzare è quello di sistema, ovvero una determinata massa di fluido, liquido

od aeriforme, spesso (ma non sempre) unitaria, contenuta in una superficie di controllo chiusa, fissa o mobile, a

seconda dei casi.

Contemporaneamente l’esterno al sistema è tutto ciò che non è incluso nel sistema, ovvero non ne fa parte. Ai

fini pratici, l’esterno si limita a quella parte che “dialoga” col sistema attraverso scambi energetici.

Questi scambi, per le nostre applicazioni, sono essenzialmente termici (calore) e meccanici (lavoro).

I fluidi utilizzati nelle macchine possono essere vapori (in particolare vapore d’acqua), gas (in particolare aria) e

liquidi (in particolare acqua); questi fluidi appartengono alla classe dei fluidi termodinamici, ovvero quei fluidi la cui

equazione di stato, in forma generale implicita, è scritta in tre variabili di stato ed il fluido possiede quindi 2 gradi di

libertà termodinamici (la terza variabile è calcolabile in funzione dei valori delle altre due).

La scelta di queste 3 variabili di stato è libera: F(X, Y, Z) = 0

ad esempio: pressione, temperatura e volume specifico (ovvero il suo reciproco, cioè la densità).

Questa libertà è assoluta, salvo nei casi in cui, come nei passaggi di stato, un parametro sia univocamente

legato ad un altro; ricordiamo infatti che per un vapore saturo, all’interno della campana di Andrews2, pressione e

temperatura sono due parametri non indipendenti ma fra loro biunivocamente vincolati.

Per il cosiddetto gas perfetto, si avrà, assumendo, X = p , Y = ρ , Z = T (temperatura assoluta)

l’equazione di stato nella forma: F= 0RTp =−ρ

dove R è la costante del gas (diversa per ciascun gas)

Mℜ=R

è pari al rapporto fra la costante universale R dei gas e la massa molecolare dello specifico gas in questione.

2 Thomas Andrews, (1813-1885), chimico e fisico inglese.

costante universale dei gas

8,314 [kJ/mol K]

massa molecolare

del gas

Page 8: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

IRA 8

Nella tabellina si riportano i valori di M e di R per alcuni gas di frequente impiego.

GAS M [kg/kmol ] R [kJ/kg K ] GAS M [kg/kmol ] R [kJ/kg K ]

H2 2,0158 4,196 H2O 18,016 0,462

O2 31,891 0,261 CH4 16,044 0,518

N2 28,14 0,297 Aria 28,968 0,287

CO2 44,012 0,189 He 4,0028 2,078

Le funzioni di stato, o parametri termodinamici, possono essere di tipo estensivo (o additivo), come l’energia

interna u, l’entalpia h, l’entropia S, etc., oppure di tipo intensivo, come la pressione p e la temperatura T.

Le quantità estensive sono proporzionali alla massa del fluido; i simboli usati (u, h, S etc.) si riferiscono sempre

all’unità di massa e sono quindi relativi alle grandezze specifiche (energia interna specifica, entalpia specifica,

entropia specifica, etc.).

Parlare di un fluido termodinamico equivale a parlare di un fluido il cui stato termodinamico è univocamente

determinato quando siano assegnati i valori numerici di 2 parametri (ad es. 2 dei 3 che figurano nell’eq.ne di stato

del fluido stesso).

Per un gas perfetto, i calori specifici dipendono solo dalla temperatura

cp = cp(T) cv = cv(T)

ed anche cp = cp0 + f(T) cv = cv0 + f(T)

da cui cp - cv = cp0 - cv0 = R = cost

Se i calori specifici cp e cv sono costanti, cioè indipendenti dalla temperatura, il gas perfetto in questione è anche

ideale (è il caso in natura dei gas monoatomici).

I gas non monoatomici sono spesso assimilabili, con buona approssimazione, ad un gas perfetto (ma non

ideale). Può accadere che entro un determinato “range” di temperatura, non molto esteso, caratteristico di una

certa macchina, il cp ed il cv del gas che in essa è impiegato siano approssimativamente costanti; in questo caso

varrà la schematizzazione del gas ideale ai fini dei calcoli, che risulteranno particolarmente semplificati.

Se variano nel tempo le condizioni termodinamiche del fluido considerato, si può verificare una successione di

stati termodinamici del fluido, descrivibili con continuità, che rappresentano una trasformazione termodinamica;

essa, a rigore, dovrebbe venir descritta, come successione di stati di equilibrio, in condizioni di reversibilità, mentre

nella realtà ciò non avviene, e le varie condizioni termodinamiche fuori equilibrio del fluido vengono

“statisticamente” assimilate a stati di equilibrio “equivalenti”.

Quando un fluido termodinamico evolve in una macchina, si può rappresentare ogni trasformazione

termodinamica su di un piano termodinamico (ad es. il piano X, Y) dove si fa riferimento all’equazione di stato F(X,

Y, Z) = 0 e all’equazione della trasformazione Φ(X,Y,Z) = 0.

LEGGE DI MAYER

Page 9: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

Appunti di Macchine 9

Dal sistema tra le due, può dedursi, ad es. eliminando Z : ϕ(X, Y) = 0

rappresentabile come equazione della trasformazione nel piano (X, Y).

ad es.: la politropica di un gas perfetto sarà, assumendo X = p, Y = υ = 1/ρ:

Introduciamo il 1° principio della Termodinamica (o principio dell’equivalenza o della conservazione

energetica, rivisitato in chiave macchinistica ed impiantistica) riferendoci all’unità di massa e, quindi, all’energia

specifica. Questo principio fu stabilito da James Prescott JOULE3 nel 1840 e dimostrato con l’esperienza del

famoso mulinello a pale.

Considerando una superficie chiusa (fisica e matematica) contenente una certa quantità di fluido (ad es. l’unità

di massa), in termini differenziali e specifici (ovvero riferiti all’unità di massa) si può scrivere

dQ + dL = du� (1)

trascurando eventuali variazioni di energia potenziale e cinetica del sistema, altrimenti

dQ + dL = du + dEpot + dEcin (2)

3 James PRESCOTT JOULE, (1818-1889), fisico inglese.

p

V=1/�

ρ==

ρ== mm

mm tcosvtcosv0

000

pp:ovvero pp

2

percorso descritto dal fluido durante la trasformazione (evoluzione di un fluido in una macchina od in un elemento di impianto)

1

z = cost

Y

X

ϕ(X, Y) = 0

Page 10: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

IRA 10

La (2) esprime l’eq.ne dell’energia per sistemi chiusi, ovvero il 1° principio generalizzato

dove dEpot = gdz è la variazione di energia geodetica del fluido calcolata rispetto ad un asse z

orientato verso l’alto;

dEcin = d2

2c���

�� = cdc è l’energia cinetica del fluido, dove c è il modulo della sua velocità;

dQ è la quantità elementare di calore che l’unità di massa scambia con l’esterno (effettivamente);

dL è il lavoro termodinamico elementare che l’unità di massa scambia con l’esterno;

du è la corrispondente variazione elementare di energia interna dell’unità di massa del fluido.

Gli scambi energetici avvengono tutti nel medesimo intervallo di tempo dt.

La convenzione moderna (qui adottata) dei segni delle energie scambiate prevede che le energie (calore e lavoro) siano entrambe intese positive se “entranti” nel sistema e negative se “uscenti” (ricordiamo che questa convenzione è diversa da quella adottata nella Termodinamica classica, in cui dQ è considerato positivo se

entrante, mentre dL è considerato positivo se uscente).

Con la (1) si afferma che sia il calore sia il lavoro ricevuti dal fluido ne arricchiscono il patrimonio energetico,

costituito dall’energia interna e dalle energie “macroscopiche” (potenziale e cinetica).

In ogni stato termodinamico il fluido possiede una sua energia interna dovuta ai movimenti di traslazione,

rotazione e vibrazione molecolari, che si annulla soltanto allo zero assoluto di temperatura. In ogni processo

termodinamico all’energia interna (integrata) del fluido si aggiunge (o si sottrae) un importo pari alle quantità di

calore e/o lavoro ad esso fornite (o da esso sottratte).

L’energia interna di un fluido, che non sia sede di reazione chimica, non può che essere valutata in base allo

stato termodinamico del fluido stesso; essa è dunque una “funzione di stato”, dato che il suo valore dipende

esclusivamente dallo stato del fluido, a meno di una costante arbitraria il cui valore è associabile ad uno stato di

riferimento.

L’energia interna è un’importante funzione di stato descrivibile, per un fluido termodinamico, ad es. in termini di p, v:

vvuuu

vd + Td

Td

T��

��

��

��

�= ∂

∂∂∂ (3)

ovvero secondo la scelta più conveniente delle variabili indipendenti utili a definire l’energia interna; in particolare, per un gas perfetto, la 1a derivata parziale è uguale a cv , mentre la 2a derivata è nulla (cv dipende solamente dalla

temperatura, così come cp.ed anche u e h dipendono dalla sola T.

Page 11: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

Appunti di Macchine 11

Si supponga di avere un fluido OMOGENEO 4.

Nella (2) il termine du è esaustivo della totale variazione di energia interna (ovvero la (2) è veramente

generale) a patto che in seno al fluido non avvenga una trasformazione chimica in quanto, in questo caso, du non esprimerebbe più la variazione della sola energia interna termodinamica. In questi casi, infatti, dovremmo

sostituire du con la variazione di energia interna totale (dut ), che ha l’espressione seguente

d+ d= d chimtermt uuu

(4)

dove termdu è il precedente ud termodinamico, riferito alla composizione chimica corrente, e la (4) si può

sviluppare in funzione dei tre parametri (T, ν, ξ)

�

��

�

��

��

��

∂∂

∂∂

∂∂

ξξ

d + d + Td T

= d T,

t

T,

t

,

tt

vv

uvvuuu (5)

dove ξ è il grado di avanzamento della reazione chimica (variabile da 0 ad 1).

Quando ξ passa da 0 ad 1, ovvero mentre la reazione chimica si sviluppa completamente dall’inizio alla fine, il fluido non si può definire termodinamico perché il suo stato dipende da tre variabili; nel momento in cui la reazione chimica si completa, si torna ad avere un fluido termodinamico che non è più, tuttavia, quello iniziale; (ad es. una miscela di gas combusti diversa dalla miscela reagente iniziale).

Un caso particolare delle trasformazioni termodinamiche (le sole, a rigore, rappresentabili come successione di

stati di equilibrio su un piano termodinamico) è quello delle trasformazioni reversibili.

In una trasformazione reversibile dLrev = - pdv = - pd

1ρ�

���

�� dove ρ è la massa specifica o densità.

Si ricorda che per l’espansione il lavoro termodinamico reversibile

risulterà, per la nostra convenzione dei segni, negativo; l’area

tratteggiata in figura:

a = |Lrev|

sarà uguale al valore assoluto di tale lavoro, essendo l’area sottesa

dalla trasformazione sull’asse v nel piano (p, v).

4 Ovvero, se si esegue la misura in diversi punti della massa fluida considerata, di alcune grandezze termodinamiche, quali temperatura,

pressione, densità, ecc. si ottengono, per una stessa grandezza, nei diversi punti, gli stessi valori numerici.

p

p1

p2

v1 v

2 v

1

2

a

Page 12: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

IRA 12

Se il sistema è chiuso, cioè privo di scambi di massa con l’esterno e, se si possono trascurare i termini, dEpot ,

dEcin : dEpot ≅ dEcin ≅ 0

per una trasformazione irreversibile si potrà scrivere

dL = -pdv + (dQi)I

dove con (dQi)I > 0 si indica il calore d’irreversibilità di 1a specie.

Le irreversibilità termodinamiche possono essere di due tipi, di prima o di seconda specie

dQi = (dQi)I + (dQi)II

dove le irreversibilità di prima specie sono causate da uno o più dei seguenti tre fattori

(dQi)I > 0 sempre! - attriti (dovuti alla viscosità del fluido e alla rugosità delle pareti a contatto con

esso);

- differenze (variazioni) finite di pressione ∆p in seno al fluido; - differenze (variazioni) finite di temperatura ∆T in seno al fluido;

mentre quelle di seconda specie sono dovute solo alla presenza di una reazione chimica e non ai precedenti fattori

(dQi)II > 0, reazione esotermica

< 0, reazione endotermica.

Il (dQi)I figura direttamente nel bilancio energetico dell’energia meccanica, dove

dL = - pdv + (dQi)I

Il (dQi)II influenza direttamente, invece, soltanto i bilanci termici e può, infine, esprimersi come

(dQi)II = - ξξ

d T,v

u��

��

∂∂ t

La distinzione tra i due tipi di calori d’irreversibilità è fondamentale.

Ciò non solo per la diversità delle cause che generano il (dQi)I e il (dQi)II e le diverse possibilità di segno

(sempre (dQi)I > 0, mentre (dQi)II >< 0 ), ma anche perché – come già accennato e come vedremo meglio in

seguito – (dQi)I altera direttamente, con la sua presenza, il bilancio del lavoro meccanico mentre (dQi)II , quando è

presente, altera invece quello del calore.

Parlando di attrito non si intende soltanto quello tra il fluido e le superfici di contatto (rugosità delle pareti) ma

anche quello dovuto alla viscosità del fluido stesso, da cui dipende l’energia dissipata nel moto relativo tra particella

e particella a contatto fra loro.

Page 13: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

Appunti di Macchine 13

Conviene esaminare l’equazione dell’energia con riferimento ai sistemi che solitamente sono oggetto del Corso

di Macchine. Nel campo delle macchine e degli impianti che le utilizzano, le equazioni (1) o (2) sono utili

ogniqualvolta si abbia a che fare con un sistema chiuso ovvero senza ricambio di massa (ciò implica impermeabilità

del fluido rispetto alla superficie di contorno fissa o mobile, ma sempre chiusa, che lo contiene). In questo caso, i

termini dEpot

e dEcin

sono il più delle volte trascurabili. Ad es., il sistema può essere costituito dalla miscela

carburante in un motore a combustione interna; dEpot

e dEcin

possono trascurarsi globalmente nelle fasi di

compressione ed espansione e non in quelle di ingresso dell’aria o della miscela e di uscita dei gas combusti; in

tali fasi, necessarie al funzionamento della macchina volumetrica, la variazione di dEcin

non è trascurabile, ma è

fondamentale ai fini dei bilanci energetici.

Molto spesso ci occuperemo di sistemi aperti, ovvero di sistemi come quello descritto da un fluido che scorre

all’interno di un condotto e che viene in contatto con una superficie mobile, ad esempio quella di un’elica, attraverso

la quale si scambia energia meccanica.

NB. Il volume fluido delimitato dalla superficie laterale e compreso tra le sezioni A e B (prefissate) costituisce il Sistema Fisico (o meglio il

volume controllato) in studio.

Se questo sistema opera a regime, per le portate in massa vale la MA = MB = M = cost.

Consideriamo due sezioni (piane o non) A e B; in un certo istante il volume fluido compreso tra A e B costituisce il sistema cui si riferisce il nostro studio. Si può “seguire” un kg di fluido da A a B registrandone le vicissitudini

termodinamiche con opportuni strumenti di misura e, di solito, i termini dEpot

e dEcin

non sono trascurabili. Per quanto concerne la trasmissione di calore verso l’esterno o l’interno, attraverso le pareti, si può utilizzare la (2).

Il lavoro termodinamico elementare è, sempre, dL. Questo, integrato da A a B, è uguale a quello che possiamo misurare sulla superficie mobile a contatto con il fluido (ad es. quella dell’elica in figura)?

La risposta è NO. Vi è una differenza, come vedremo, che può, in certi casi, essere dell’infinito per cento!

Page 14: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

IRA 14

Si deve adottare, dunque, una espressione diversa dalla (2) se si vuole valutare il lavoro scambiato, in un

organo aperto, tra il fluido (per unità di massa) e la superficie mobile. Infatti, il lavoro termodinamico L globalmente

scambiato, tra A e B, dal kg di fluido, deve scriversi

� L = L + ( )L LA B* *− (6)

In definitiva, la (2) è ancora valida purché si tenga conto dell’espressione (6) del lavoro termodinamico5; la (2)

non è, dunque, conveniente nelle applicazioni ingegneristiche dei sistemi aperti, perché in questi interessa valutare

evidentemente il lavoro tecnico, mentre il problema non si pone in un sistema chiuso dove il lavoro che interessa

direttamente è quello termodinamico.

Il lavoro tecnico è il lavoro effettivamente scambiato tra il fluido e la superficie

mobile; quindi, per un sistema aperto si utilizza la (2) sviluppando L secondo la

(6), per un sistema chiuso la (2) è invece esaustiva poiché per un sistema chiuso il lavoro termodinamico coincide con il lavoro scambiato attraverso le superfici mobili a contatto con il fluido.

Facendo l’esempio di una macchina alternativa, non si hanno variazioni rilevanti di energia potenziale e cinetica se le valvole sono chiuse (sistema chiuso); nel caso contrario (sistema aperto) ciò non è più vero.

È utile ricordare la (2), che esprime nella forma più generale il principio di

conservazione per un sistema omogeneo:

dQ + dL = du + dEpot + dEcin (2)

Riprendiamo in esame il sistema aperto precedentemente considerato (condotto + elica): il lavoro che interessa

al tecnico, lavoro tecnico, non coincide con il lavoro termodinamico, ma è la differenza algebrica tra il lavoro

termodinamico e il lavoro di pulsione.

La strada più semplice per valutare il lavoro di pulsione è quella di seguire “lagrangianamente” il fluido nelle sue

successive posizioni, anche se esiste il punto di vista “Euleriano” che fissa l’attenzione su un volume di controllo

all’interno del quale si ha un continuo ricambio di materia (fluido).

5 È , pertanto, errato dire che la (1) o la (2) perdono di validità nel caso di sistemi termodinamici aperti !

i u

A S

lavoro termodinamico

lavoro tecnico; lavoro misurabile sull’albero dell’elica (scambiato tra fluido e superficie mobile)

differenza fra il lavoro che il fluido riceve attraverso le forze di pressione all’atto dell’ingresso nel condotto e quello che compie alla uscita dallo stesso (differenza dei lavori di pulsione all’ingresso e all’uscita).

Page 15: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

Appunti di Macchine 15

Si supponga che nel condotto avvenga un efflusso monodimensionale, ovvero i parametri termodinamici e fisici

siano uniformemente distribuiti su ciascuna sezione; ciò consente di estendere all’intera massa fluida il discorso

precedentemente riferito ad 1 kg. Immaginiamo un elemento fluido cilindrico (di sezione dA e spessore dx) che

attraversa una generica sezione del condotto; la forza che spinge l’elemento oltre la sezione in parola sarà in

modulo pdA ed il lavoro durante l’attraversamento della sezione sarà pdA × dx.

La massa dell’elementino fluido è ρ dA dx

ed il valore assoluto lavoro per unità di massa sarà pertanto:

vpp

dxdAdxpdA

massalavoro =

ρ=

⋅ρ⋅=

dove v è il volume specifico locale, cioè l’inverso della densità locale ρ.

Nell’attraversamento del condotto da A a B, il lavoro globale di pulsione sarà dato dalla differenza tra i valori

assoluti dei lavori di pulsione di ingresso e di uscita (ricordando la convenzione sui segni del lavoro, positivo se

esercitato sul fluido e negativo se esercitato dal fluido).

Pertanto:

)p(dp

dd *L v−=��

���

ρ−= LAVORO DI PULSIONE ELEMENTARE

da cui

L*AB

= BBAAB

B

A

A

A

A

B

B pppppp

vv −=ρ

−ρ

=���

����

ρ−

ρ−

Il lavoro termodinamico è dunque la somma algebrica del lavoro tecnico e del lavoro di pulsione

)d(pdp

ddddd -LLLL * vL =���

����

ρ−=+=

mentre il lavoro tecnico è, ovviamente, la differenza algebrica tra il lavoro termodinamico ed il lavoro di

pulsione

)v(LLL * pddp

ddddd LL +=���

����

ρ+=−=

p

A

B

Page 16: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

IRA 16

A questo punto si può ottenere, a partire dalla (2), l’equazione che viene convenientemente utilizzata quando si

descrivono i sistemi aperti. La (2):

dQ + dL = du�+ dEpot + dEcin

essendo: ���

����

ρ− p

ddd L=L diventa:

dQ + dL ��

���

ρ− p

d = du�+ dEpot + dEcin

e definendo la funzione di stato entalpia, h:

dh = du + d ��

���

p= du + d(pv)

possiamo scrivere infine:

dQ + dL = dh�+ dEpot + dEcin (2*)

La (2*) è l’eq.ne dell’energia nella forma utile per i sistemi aperti con una sola sezione d’ingresso e una di

uscita; in essa compare esplicitamente il lavoro tecnico in luogo del lavoro termodinamico.

Per passare dalla (2) alla (2*) è necessario, come regola mnemonica, sostituire al lavoro termodinamico il

lavoro tecnico ed all’energia interna l’entalpia.

Ricordiamo che l’errore che si può commettere confondendo i due tipi di lavoro può anche essere dell’infinito per cento.

Se, ad esempio, l’elica non fosse presente il lavoro tecnico sarebbe nullo; quello termodinamico avrebbe l’espressione consueta ed in generale sarebbe ≠ 0

L = 0 ma: L*AB =

B

B

A

A ppρρ

− ; L = L +L*AB = L*

AB

errore relativo εrelat = ∞=+

0

L0 *

100 AB % !

In una trasformazione reversibile il lavoro termodinamico è sempre dato da

dLrev

= - pdv = - p d ���

����

ρ1

se dv > 0 si ha una dilatazione del fluido (dLrev

< 0)

se dv < 0 si ha una contrazione del fluido (dLrev

> 0)

mentre il lavoro tecnico reversibile è determinabile, tenendo conto del lavoro termodinamico e di quello di

pulsione dalla

dLrev

= dLrev

+ dpρ�

���

�� = - pdv + d(pv) = - pdv + pdv + vdp

Page 17: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

Appunti di Macchine 17

ovvero, in una trasformazione reversibile dLrev= vdp

se dp > 0 si ha una compressione (dLrev

>0)

se dp < 0 si ha una espansione (dLrev

<0).

Nel piano termodinamico (p, v) possiamo rappresentare, sotto forma di area, sia il lavoro termodinamico che quello tecnico (a patto di considerare le trasformazioni reversibili).

In un processo isocoro il lavoro termodinamico reversibile è nullo, mentre quello tecnico non lo è; invece, in

un processo isobaro il lavoro tecnico reversibile è nullo mentre non lo è quello termodinamico.

Se un gas perfetto subisce un processo isotermo, dove la trasformazione è rappresentabile con una iperbole

equilatera, il lavoro di pulsione complessivo è nullo

(essendo pv = p/ρ = RT = cost).

Facciamo un’ulteriore considerazione: esaminiamo un percorso ciclico

del fluido, quale quello che si realizza in un impianto dotato di tanti elementi

posti in serie e collegati tra loro mediante tubazioni percorse dal fluido, che

subisce diverse trasformazioni termodinamiche, passando da un elemento

ad un altro, e dove lo stato termodinamico finale del fluido è, al termine

delle trasformazioni, uguale a quello iniziale (ciclo termodinamico):

in questo caso � �� � =+⇔=+ 0dLd 0dd QQ L dalle quali discende che

� Ld = � Ld

N.B. In un percorso ciclico il lavoro termodinamico e quello tecnico sono uguali tra loro in quanto tutti i lavori di pulsione (pi/ρi) si elidono l’uno con l’altro. Nel computo del lavoro di ciclo, non ha senso, pertanto, distinguere il lavoro tecnico da quello termodinamico.

Trascurando i due termini dell’energia potenziale e di quella cinetica

dEpot + dEcin ≅ 0

la variazione di entalpia dh è pari alla somma del calore dQ e del lavoro tecnico dL scambiati:

dh = dQ + dL

ovvero, integrando su una qualsiasi trasformazione aperta:

∆h = Q + L

In definitiva, la variazione di entalpia misura il totale scambio di energia tra il sistema aperto e l’esterno; nel

caso di un sistema chiuso tale funzione spetta invece alla funzione di stato energia interna.

A ≡ B

p

v

Lrev tecnico

Lrev termodinamico

1

2

Page 18: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

IRA 18

Esaminiamo il caso in cui il fluido entri ed esca attraverso più sezioni, come può avvenire, ad es., negli

scambiatori di calore, in reattori chimici o in altre apparecchiature. In questo caso non conviene usare l’energia

specifica (cioè riferita al Kg di fluido) ma è utile moltiplicarla per la portata massica di fluido e l’ultima formula

assume, nel caso più generale, per un generico sistema aperto, la seguente forma, alla quale si può pervenire

considerando il volume di controllo occupato dal sistema aperto e delimitato dalle sezioni di ingresso (i) e da quelle

di uscita (j) ed effettuando il bilancio energetico del sistema con modalità euleriane:

( )( )

���

����

�−

+−

+−=+

��

����

ii

ij

jj

i iij jj

i iij jj

cM

cM

gzMgzM

MM

22+

+

21

1

22

2

1122

1122 hhPϕ

dove ϕ è la potenza termica scambiata e P la potenza meccanica; se il sistema è stazionario (funzionamento a

regime) si ha: M Mjj i2 1i� �= cioè la somma delle portate massiche entranti eguaglia quella delle uscenti. Si è

indicato con (j) la generica sezione di uscita e con (i) la generica di ingresso.

Gli organi preposti a fungere da scambiatori di calore non sono, in genere, destinati a scambiare con l’esterno

anche lavoro; la variazione di entalpia misura, allora, il solo scambio di calore. Così pure, gli organi destinati a

scambio di lavoro non sono di solito destinati contemporaneamente a scambio di calore, anche se non sempre

sono assimilabili ad adiabatici. Le macchine, soprattutto se di dimensioni medio-grandi, possono ritenersi, con

buona approssimazione, adiabatiche poiché il calore scambiato è modesto rispetto al lavoro trasferito all’esterno

(basso valore del rapporto: superficie di scambio/volume della macchina).

Alcuni esempi notevoli li abbiamo quindi nelle

macchine adiabatiche, dove ∆h ≅ L

negli scambiatori di calore, dove ∆h ≅ Q

in un condotto rigido ed adiabatico, dove ∆h ≅ 0

Esistono, tuttavia, molti esempi di macchina o componenti di macchina nei quali i due termini macroscopici

dEpot e dEcin non sono affatto trascurabili risultando, talvolta, addirittura dominanti (in particolare dEcin, come

accade sovente negli elementi delle turbomacchine).

In una turbomacchina motrice, ogni stadio è costituito dallo statore (elemento fisso) e dal rotore (elemento

mobile): nel 1°, (statore), l’energia potenziale (di pressione) del fluido viene convertita, in parte e con un certo

rendimento, in energia cinetica, mentre nel 2°, (rotore), detta energia viene nuovamente trasformata, in parte e

ancora con un certo rendimento, in energia meccanica utile.

11 12

21 22 ϕ

P

(i)

(j)

Page 19: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

Appunti di Macchine 19

In effetti, in uno stadio di macchina motrice avviene la doppia conversione energetica:

per lo statore (che nelle macchine motrici è costituito da ugelli) per la (2*), si può scrivere, tenendo conto che

0cdcddEd

0dQ

0dE0dL

cinpot =+=+

=

≅=

hh

In uno stadio di turbomacchina operatrice, in cui lo statore prende il nome di diffusore, avviene la duplice

conversione:

Si tratta, in ambedue i casi, di “turbomacchine” che sfruttano la variazione dell’energia cinetica del fluido per

produrre (nella motrice) o consumare (nella operatrice) energia meccanica; il termine energia cinetica è, dunque,

in questi casi, essenziale ai fini della funzione della macchina!

Osserviamo che, nei due casi precedentemente esaminati, la sequenza delle conversioni energetiche è

opposta: nel 1° caso (macchina motrice) si ha produzione di energia meccanica a spese del potenziale

energetico del fluido; nel 2° caso (macchina operatrice) l’energia meccanica consumata conferisce un

incremento del potenziale energetico del fluido.

Stadio = rotore + statore

Energia potenziale fluido

Energia meccanica

Energia cinetica fluido

rotore statore

(diffusore)

Statore (ugello)

rotore Energia potenziale fluido

Energia cinetica fluido

Energia meccanica

stadio = statore + rotore

Page 20: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

IRA 20

Si esamina, ora, sempre da un punto di vista macchinistico ed impiantistico, il 2°°°° principio della

Termodinamica. Ricordiamo che il 1° principio è il principio di conservazione dell’energia, mentre il 2°°°° principio è

quello che stabilisce la direzione dell’evoluzione dell’energia a seguito di una qualsiasi trasformazione o processo

termodinamico.

Possiamo esprimere il 2°°°° principio attraverso più enunciati diversi ma equivalenti fra loro; i più noti ed importanti sono:

“Non è possibile realizzare un trasferimento di calore (energia termica) da un

corpo ad una certa temperatura ad un altro a temperatura superiore a meno

che non si intervenga dall’esterno con una opportuna azione compensatrice 6”

(enunciato di Clausius7)

“È impossibile realizzare un ciclo motore che sia monotermodiabatico

(ovvero in cui il fluido scambi calore con una sola sorgente a temperatura

definita)”

(enunciato di Lord Kelvin8)

Quest’ultima è la formulazione più eloquente dal punto di vista delle applicazioni impiantistiche. Al 2°°°° principio è direttamente collegata l’introduzione della funzione di stato entropia S (riferita all’unità di

massa del fluido) il cui differenziale è dato da:

dd d dSQT

QT

QT

rev i= = +

dove dQi = (dQi)I + (dQi)II è la somma dei calori di irreversibilità di prima e di seconda specie

precedentemente introdotti, dQ è la quantità di calore effettivamente scambiata dal fluido con l’esterno e dQrev

è la quantità di calore che verrebbe scambiata con l’esterno qualora la trasformazione avvenisse per via reversibile. T è sempre la temperatura assoluta.

Ricordando che dQrev

+ dLrev

= dh

ed anche che dQrev

+ dLrev

= du

possiamo scrivere

Td

Td

Td

Td

d LS revrev hLu −=−= ed infine

−=

+=

Tdp

Td

dS

Tpd

Td

dS

vh

vu

queste espressioni dell’entropia sono fondamentali ed ampiamente utilizzate nei pratici calcoli impiantistici.

6 Ovvero “Non è possibile un trasferimento SPONTANEO di energia termica da un corpo più freddo ad uno più caldo”. 7 Rudolf Julius Emanuel Clausius, (1822-1888), fisico tedesco. 8 William Thomson (nominato Lord Kelvin), (1824 - 1907), fisico inglese, nato a Belfast, Irlanda.

Page 21: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

Appunti di Macchine 21

Il concetto di RENDIMENTO

Definiamo il rendimento di un ciclo termodinamico motore, cioè di un ciclo produttore di energia, come

η = =LQ Q1 1

dove i termini energetici sono riferiti all’unità di massa, Q1 è il valore (positivo) del calore entrante nel sistema

attraverso le sorgenti superiori, mentre il lavoro (qui inteso in valore assoluto) è indifferentemente quello tecnico o

quello termodinamico dal momento che ci riferiamo all’intero ciclo.

La precedente si può anche scrivere η =−

= −1 2

1

2

1

1Q Q

Q

Q

Q

essendo L = L = Q1 _ Q2

dove Q2 è il valore assoluto del calore che il sistema cede all’esterno attraverso le sorgenti inferiori.

Conseguentemente, la perdita di rendimento, θ, è η−=θ= 1QQ

1

2

dove θ può esprimersi come prodotto di tre termini, ciascuno dei quali tiene conto di tre distinti effetti

termodinamici, i quali comportano, singolarmente, una perdita di rendimento:

1) Effetto Carnot9;

2) Effetto di molteplicità delle sorgenti;

3) Effetto Clausius o di irreversibilità.

9 Nicolas Léonard Sadi Carnot (1796-1832), scienziato francese.

Page 22: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

IRA 22

1) Effetto Carnot

In un ciclo di Carnot, ovvero in un ciclo reversibile che operi tra le due medesime temperature assolute T1 e

T2 , rispettivamente massima e minima, del ciclo considerato, si definisce perdita di rendimento (o effetto Carnot):

1)(<c TT

TT

QQ

1

2

1

2

1c

2c

�S�S ===θ

Si deduce che, fissate due temperature estreme T1 e T2, il ciclo di massimo rendimento, evolvente tra tali temperature, è quello di Carnot. In altre parole un qualsiasi ciclo termodinamico ha rendimento non superiore a

quello di un ciclo di Carnot, ηC, evolvente tra le medesime temperature estreme, T1 e T2.

2) Effetto di molteplicità delle sorgenti

Consideriamo ancora un ciclo reversibile, che evolve tra le temperature T1 e T2, “dialogando” con un numero

qualsivoglia (anche infinito) di sorgenti esterne e calcoliamo la perdita di rendimento

Sono indicati con (1) e (2) rispettivamente il percorso del ciclo con assorbimento di calore e quello con cessione

di calore.

Calcoliamo la perdita di rendimento di un Ciclo reversibile che approssimi il Ciclo reale nel suo percorso

termodinamico:

�S T�S T

dST

dT

m1

m2

)1(

'

)2(

''

rev1

rev2rev

S

QQ ===

�θ dove

[ ][ ]''

max''

min

'max

'min

,

,

TTTT

TTTT

2m2

1m1

=∈

=∈è

ovvero m1

m2rev T

T=θ

che, in forma più utile, diventa θξθ =⋅= cM.S.1

2

11m

22mrev

TT

TTT

T

per il teorema

della media

rapporto tra le temperature assolute medie delle

sorgenti inferiori e superiori

dQrev = TdS

ciclo qualsiasi inscritto in un ciclo di CARNOT

T

S ∆S

T1

2 3

1 4 T2

Q1c

Q2c

ciclo di Carnot 1-2-3-4

Q1 < Q

1c

Q2 > Q

2c

perdita di rendimento di

Carnot

Q2rev

(1)

(2)

A

B

Q1rev

T1

T2

T

S

T’

T’’

temp. max delle

sorgenti superiori

temp. min. delle

sorgenti inferiori

Gli scambi di calore tra il fluido e

l’esterno avvengono in “gamme”

di temperature e in genere non a

temperatura costante.

Page 23: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

Appunti di Macchine 23

avendo posto TTTT

1m1

2m2M.S. =ξ , termine chiaramente 1≥ perché il numeratore è certamente 1≥ ed il

denominatore è certamente 1≤ . Sarà ovviamente anche θθ ≥ crev e quindi ηrev ≤ ηc.

1M.S. ≥ξ è il coefficiente o fattore di molteplicità delle sorgenti.

Ciò significa che in un ciclo che presenti molteplicità di sorgenti (gli scambi termici avvengono in genere a

temperature variabili) il rendimento si allontana tanto più da quello del Ciclo di Carnot, quanto minore è il rapporto

fra la temperatura media e la massima delle sorgenti superiori e quanto maggiore è il rapporto fra la temperatura

media e la minima delle inferiori; in altri termini, quanto maggiori sono i “range” nei quali sono distribuite le

temperature delle sorgenti superiori e le temperature delle sorgenti inferiori, sempre a parità di temperatura

massima T1 e minima T2.

3) Effetto Clausius

L’effetto Clausius tiene conto delle irreversibilità (di sola prima specie, essendo assenti quelle di seconda specie

trattandosi di un ciclo termodinamico, ove le reazioni chimiche non posso essere presenti). Consideriamo la perdita

di rendimento di un ciclo reale

QQ

1r

2rr =θ

ed essendo ( )

TQ

TQ

TQ

Iirev ddddS +== possiamo scrivere che ( )

IiQSTQ ddd −=

e quindi i valori assoluti di Q1r e Q2r saranno espressi da:

)2(

)1(

iI)2(r2

iI)1(r1

Q

QQ

TdSQ

TdS

+=

−=

Di conseguenza:

CLAUSIUSM.S.CLAUSIUS ���QQ1

QQ1

TT

�STQ1

�STQ1

TT

Q�ST

�STcrev

1reviI

2reviI

m1

m2

m1iI

m2iI

m1

m2

iIm1

iIm2r

(1)

(2)

(1)

(2)

(1)

(2)Q

θ=θ=−+

=−+

=−+

è evidente che il fattore di Clausius è 1CLAUSIUS >ξ e che θθ > revr , ovvero ηr < ηrev.

In un ciclo motore reale la perdita totale è, dunque, il prodotto di tre fattori distinti che possono,

convenientemente, essere determinati individualmente. Sia M.S.ξ che CLAUSIUSξ maggiorano la perdita di rendimento

rispetto a cθ (perdita di Carnot).

L’effetto Clausius cresce a misura che le SORGENTI ENTROPICHE interne al ciclo si fanno via via più

cospicue. Il coefficiente di Clausius, CLAUSIUSξ , può, dunque, definirsi GRADO di IRREVERSIBILITA’ del ciclo, ed

aumenta in funzione delle irreversibilità tendendo ad assumere valore 1 per un ciclo reversibile.

Se si vuole aumentare il rendimento termodinamico di una macchina termica, occorre, innanzitutto, minimizzare

– compatibilmente con le tecnologie disponibili - il valore di cθ (cioè il rapporto TT 12 ) ed inoltre realizzare

un’ottimizzazione progettuale ai fini di minimizzare sia M.S.ξ che CLAUSIUSξ nel rispetto dei vincoli tecnici ed

economici certamente presenti.

>1

<1

Page 24: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

IRA 24

Facciamo un esempio in cui l’effetto Clausius è concentrato nelle due trasformazioni adiabatiche (compressione

1-2 ed espansione 3-4) in un ciclo derivato da un ciclo di Carnot.

Il rendimento reale sarà sempre

rr 1 θ−=η

dove

( )��

���

� ++=++=θS

SS�

�S�1

TT

�ST�S�S�T ba

1

2

1

ba2r

scomponendo le perdite nei tre contributi individuati precedentemente, possiamo scrivere che 1

2c T

T=θ

(perdita di Carnot)

)TT ; T(T 1 1m12 m2M.S. ===ξ (sorgenti inferiori e superiori a temperatura costante)

SSS

1 baCLAUSIUS ∆

∆+∆+=ξ

Si nota come le irreversibilità di prima specie si “pagano” alle sorgenti inferiori, come incremento di

)SS(TQQ ba22rev2r ∆+∆+= rispetto al caso reversibile e a parità di 1rev11r QSTQ =∆= .

1

2 3

4 T2

T1

Q1

Q2

T

S ∆S ∆Sa ∆Sb

Adiabatiche ma non

reversibili

Page 25: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

Appunti di Macchine 25

Si utilizzi il 2° principio della termodinamica per ricavare, a partire dalla forma “termica” (2*), l’equazione

dell’energia in forma “meccanica”. La forma “termica”, per un sistema aperto, è quella sinora considerata:

dQ + dL = dh + dEpot + dEcin

Se in seno al fluido avviene una reazione chimica (ad es. una combustione), allora scriviamo

ξξ ��

��

ϑϑ+= dhhh t

t dd dove ��

����

ϑξϑ=−=ξ�

��

ϑξϑ

diQd d tII

t )( uh

da cui )iQ(dddIIt −= hh

Nel caso in cui d IIiQ( ) ≠ 0 , la precedente assume la forma:

dQ + dL = dht + dEpot +dEcin (1)

ovvero

dQ + d(Qi)II + dL = dh + dEpot + dEcin (1’)

La (1), scritta per un sistema aperto, indica che, a parità di variazione di stato del fluido, nonché a parità di

lavoro tecnico scambiato con l’esterno, la presenza del termine d(Qi)II altera il bilancio dell’energia termica

(calore).

Facciamo riferimento, per trattare il caso più generale, all’equazione del bilancio energetico secondo

l’espressione (1), che tiene conto della reazione chimica che si svolge eventualmente in seno al fluido.

Ricordiamo che la variazione elementare di entropia è data da:

Tid

Tid

Td

Td

dS)()( QQQQ IIIrev ++==

(2)

e che

hddd revrev LQ =+ (3)

dove dh è l’effettiva variazione di entalpia termodinamica.

Lungo la trasformazione reversibile equivalente vale la T S Qd d rev= e anche la hddLd revrevQ =+

per cui revdLdTdS −= h

ma, dato che �

dpddpddQ

dpdpd -��L revrev h-h == ==

e dato che )Q)Q(QQ id(iddd IIIrev −−=

ovvero: )Q)QQ i(di(ddp

ddIII

−−ρ

−= h

Page 26: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

IRA 26

sostituendo in (1) si avrà:

cinpotIIIIIdEdEi(ddi(did

dpdd )Q)Q)Q(L ++−=−−

ρ−+ hh

ed infine:

)QEEL i(ddddp

dIcinpot +++

ρ= (4)

che rappresenta per l’appunto l’equazione dell’energia in forma meccanica. In maniera analoga, per un sistema

chiuso si otterrebbe:

)QE i(dddEpddIcinpot +++ν−=L

Questa espressione è del tutto generale ed utile per trovare un riscontro chiaro sul fatto che il d(Qi)I influisce

sul bilancio del lavoro, mentre ciò non accade per il d(Qi)II che incide, invece, sul bilancio del calore.

Le due forme dell’equazione dell’energia, quella termica (1) e quella meccanica (4), per la loro provenienza sono

perfettamente equivalenti. Quale delle due è più utile nella pratica? A seconda dei casi potrà essere più

conveniente l’una o l’altra forma.

La (1) ci dice che l’energia fornita al fluido determina complessivamente un aumento globale di entalpia,

di energia potenziale e di energia cinetica oppure che l’energia sottratta al fluido determina una

diminuzione globale di entalpia, di energia potenziale e di energia cinetica.

La (4) ci dice che il lavoro meccanico compiuto sul fluido (caso di una macchina operatrice) ne incrementa

il patrimonio energetico globale in termini di pressione, di energia potenziale e di energia cinetica, mentre

una parte di questo lavoro viene spesa a causa del calore d’irreversibilità di prima specie (sempre positivo)

ovvero che il lavoro meccanico (in valore assoluto) compiuto dal fluido (caso di una macchina motrice) ne

decrementa il patrimonio energetico globale in termini di pressione, di energia potenziale e di energia

cinetica, mentre una ulteriore parte di questo lavoro viene dissipata a causa del calore d’irreversibilità di

prima specie.

In altri termini, le irreversibilità di prima specie si pagano sempre o “in termini di maggiore lavoro speso

(macchine operatrici)” o “di minore lavoro reso (macchine motrici)” per unità di massa del fluido.

dLp > 0

lavoro passivo,

(purtroppo sempre

positivo)

[dLp = (dQi)I]

Page 27: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

Appunti di Macchine 27

Anche per il lavoro termodinamico si può definire l’espressione

)QE i(dddEpddIcinpot +++ν−=L (5)

dove: dEpot = gdz

dEcin = d cdc2c

2

=��

��

Nel caso di lavoro tecnico nullo, quando il fluido non è a contatto con superfici mobili, trascurando il termine

d(Qi)I, nel caso ideale di assenza d’irreversibilità di prima specie (lavoro passivo nullo) dalla (4) si ottiene la nota

equazione di BERNOULLI10; se invece è presente il termine d(Qi)I si avrà l’equazione di BERNOULLI in forma

generalizzata:

Integrando, se è ρ=cost (liquido) e d(Qi)I = 0, si perviene alla costanza del trinomio di Bernoulli, soddisfatta, per

l’appunto, nel caso di fluido incomprimibile ed in assenza di dissipazioni.

10 Daniel Bernoulli, (Groninga 1700 - Basilea 1782), scienziato svizzero nato in Olanda.

cost�

pgz

2c2

=++

)d(Qcdcgdz�

dp0 Ii+++=

Page 28: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

IRA 28

Rendimento di un Ciclo

Analizziamo il modello fisico-matematico di un ciclo produttore di lavoro e ricaviamo il rendimento

termodinamico, η, del ciclo stesso esaminando i tre casi che seguono:

1) ciclo ideale 2) ciclo limite 3) ciclo reale

questi tre riferimenti corrispondono a tre livelli crescenti di approssimazione alla realtà.

Il 1° modello descrive il ciclo termodinamico percorso da un fluido ideale (inteso come gas ideale) che evolve in

una macchina (o meglio in un impianto) ideale o perfetta, ovvero priva di irreversibilità di 1a specie. Il ciclo ideale si

può attribuire soltanto a cicli descritti da gas, prevedendo sovente drastiche semplificazioni per il fluido, dovendo

valere la

RTp =ρ

con cp e cv costanti; ricordiamo che MR=R varia da gas a gas.

Il fatto che tutti gli organi costituenti l’impianto siano considerati privi di irreversibilità di 1a specie conduce ad

ignorare completamente l’effetto Clausius.

È, chiaramente, impossibile avere un fluido reale che, nelle applicazioni pratiche della tecnica, si comporti come ideale; i casi più prossimi sono quelli degli impianti motori a gas, dove il fluido è assimilabile ad un gas perfetto (ARIA), mentre l’approssimazione a gas ideale (sottoinsieme dei gas perfetti) è più discutibile, perché i calori specifici non si possono ritenere costanti, a rigore, salvo il caso di gas monoatomici.

È opportuno ricordare che nel ciclo ideale sono escluse anche le irreversibilità di 2a specie essendo il fluido in

gioco un gas ideale di composizione chimica invariabile. Questo motivo inserisce un’ulteriore restrizione:

supponendo che in un impianto vi sia una reazione di combustione, il modello del ciclo ideale non può a rigore

applicarsi.

Si potrebbe effettuare la sostituzione del calore di 2a specie prodotto dalla reazione di combustione con un

equivalente calore, Qequiv, fittiziamente scambiato con l’esterno attraverso una superficie opportuna

Qequiv = (Qi)II = - L + ∆Epot +∆Ecin

tuttavia permarrebbe la contraddizione con quella che è l’”essenza” del ciclo ideale, in seno al quale il fluido non

muta la propria costituzione perché non è ammessa alcuna reazione chimica nell’evolvere del fluido.

Concludendo, possiamo affermare che il Ciclo IDEALE non ha, dunque, considerevoli POSSIBILITA’ di

APPLICAZIONE ma è utile per descrivere qualitativamente le trasformazioni che possono avvenire in un impianto e

il relativo bilancio energetico, qualora il fluido presente nell’impianto sia un gas.

calore Qequiv fittiziamente scambiato con l’esterno attraverso una superficie opportuna

valendo questa equazione di stato, il gas è PERFETTO

se vale anche questa condizione, il gas è IDEALE

Page 29: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

Appunti di Macchine 29

Il 2° modello, quello del Ciclo LIMITE, è uno strumento di calcolo molto valido perché è il ciclo descritto in un

impianto ancora perfetto, privo cioè di irreversibilità di 1a specie, da un fluido reale (lo stesso che si utilizza nel

Ciclo REALE).

Se nell’impianto avvengono reazioni chimiche, il modello del Ciclo LIMITE non trascura le irreversibilità di 2a

specie effettivamente presenti, appunto perché il fluido è reale e può mutare la propria composizione chimica nel

periodo in cui esso evolve attraverso la sequenza delle trasformazioni costituenti il ciclo.

Questo modello di Ciclo è utile per la valutazione previsionale dell’efficienza massima concepibile di un impianto.

Poiché la diversità fra il Ciclo LIMITE e quello REALE è dovuta alla presenza di irreversibilità di 1a specie, il Ciclo

LIMITE rappresenta il “limite” di quello “reale” al tendere a zero delle irreversibilità di 1a specie.

Nella misura in cui l’impianto reale viene perfezionato, il rendimento interno (rapporto tra il rendimento reale e

quello limite) aumenta tendendo all’unità; da cui il nome di ciclo limite, “limite” verso il quale tende il ciclo reale a

seguito di graduali miglioramenti nella realizzazione tecnica dell’impianto. Verificando, in sede di collaudo, il

rendimento reale dell’impianto e confrontandolo con il suo rendimento limite si avrà una misura del livello tecnico-

tecnologico dell’impianto (grado di “bontà” dell’impianto, come si usava dire in passato).

Nella definizione di ciclo limite vi è, tuttavia, una contraddizione: non possiamo, infatti, supporre tutte nulle le

irreversibilità di 1a specie, anche facendo riferimento ad una tecnologia perfetta, prescindendo dalla viscosità del

fluido che è modellato come reale. Possono, infatti, al limite, ipotizzarsi nulli i fattori di perdita delle irreversibilità di

1a specie legati alla costruzione dell’impianto, ma non si può estendere questa possibilità alla viscosità del fluido. In

altre parole il fluido non è perfettibile mentre lo è la macchina in virtù della continua evoluzione della tecnica.

Gli effetti della viscosità del fluido (reale), secondo la convenzione del ciclo limite, si “scaricano” sull’impianto,

costituendo, cioè, un ulteriore fattore di perdita ad esso legato, assimilabile agli altri fattori dipendenti dalla

tecnologia dell’impianto stesso. In definitiva, nel ciclo limite il modello assunto per il fluido è quello reale, facendo

però astrazione della viscosità, assimilata a nulla, i cui effetti vengono “addebitati” al ciclo reale nel computo delle

sue irreversibilità.

Il modello di Ciclo REALE è quello descritto dal fluido reale nella macchina reale, o, meglio nell’impianto reale.

La differenza, rispetto al Ciclo LIMITE, risiede nelle imperfezioni dell’impianto, al quale convenzionalmente si

imputano tutte le sorgenti di irreversibilità di 1a specie, nonché la non perfetta adiabaticità delle trasformazioni

destinate a scambi di lavoro, che si considerano abitualmente isoentropiche in sede limite.

Page 30: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

IRA 30

Il Rendimento del Ciclo REALE può essere definito nel modo seguente

ηr = ηl ηi

Dal momento che ηllll è calcolabile mentre ηi è valutabile su impianti già costruiti, possiamo individuare il

rapporto

ηηη =

l

ri < 1

che, tenendo conto delle perdite interne (effetto Clausius) dell’impianto, fornisce la misura di quanto questo si

differenzia dalla perfezione (a cui corrisponderebbe ηi = 1).

Spesso, lo studio del ciclo reale non viene affrontato per via numerica, perché troppo oneroso dal punto di vista

computazionale, ma lo si valuta in sede di collaudo; evidentemente si verificherà che:

ηηη >>rid l

Adottando macchine (e impianti) dello stesso tipo, ovvero di un certo livello tecnologico, ηi assume valori che si

discostano di pochissimo tra loro. In virtù di questa circostanza, per prevedere ηr, in sede di progetto, conviene

spesso calcolare ηl e moltiplicarlo per il rendimento interno di impianti simili già realizzati, anziché avventurarsi,

nell’intento di ricavare direttamente ηr, nella costruzione di modelli matematici estremamente costosi sia in termini

di lavoro di allestimento che di tempo di calcolo (run-time). Si pensi, a proposito, che in un impianto i componenti da

simulare possono essere molto numerosi ed il modello fine di alcuni di essi (ad es. turbomacchine, scambiatori,

condensatori, generatori di vapore, camere di combustione, etc.) può essere complicatissimo e pesantissimo in

termini di oneri di elaborazione.

rendimento interno dell’impianto (ovvero della macchina), valutabile su impianti costruiti rendimento del ciclo

limite (calcolabile)

Page 31: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

Appunti di Macchine 31

Il vapor d’acqua

PIANI DI RAPPRESENTAZIONE TERMODINAMICA 11

Prima di iniziare lo studio degli impianti motori a vapore, ci occuperemo del comportamento termodinamico del

fluido operante in tali impianti: il VAPOR d’ACQUA.

Nel caso di un vapore non si può fare riferimento ad un modello di gas ma, piuttosto, alla effettiva equazione di

stato del vapore, oppure alle TABELLE del vapore.

I piani termodinamici cui faremo riferimento sono: piano (p-v), piano entropico (T, S), piano entalpico (o piano

di Mollier12 per il vapore acqueo) (h, S).

NB. Il piano (p-v) mal si presta alle discussioni sulle trasformazioni dei vapori perché le variazioni di volume specifico, nel campo del vapore rispetto a quelle nel campo del liquido (pressoché incomprimibile), sono ENORMI e costringono ad impiegare SCALE DIVERSE

nelle varie zone del piano. Inoltre il piano (p-v) è scarsamente utile, come si vedrà meglio in seguito, ai fini dei bilanci energetici.

SISTEMI LIQUIDO-VAPORE

La regola delle fasi di GIBBS13-HELMHOLTZ14 fornisce la varianza di un sistema, cioè il numero di informazioni

indispensabile per definire lo stato e quindi il numero di grandezze di stato di cui occorre conoscere il valore per

caratterizzare termodinamicamente un fluido:

ν = N - f + 2 dove N è il numero di componenti indipendenti del sistema ed f il numero delle fasi presenti. Il

componente indipendente è un’unica sostanza di ben definita struttura chimica. Se il fluido è solo aria, N = 1, se

invece è aria umida, cioè una miscela di aria ed acqua, N = 2.

La fase è uno stato di aggregazione: aeriforme, liquido, solido, fisicamente identificabile, presente nel sistema.

Nel caso di un gas è N = 1 ed f = 1, segue che ν = 2.

11

Soltanto le TRASFORMAZIONI REVERSIBILI sono, a rigore, rappresentabili, perché in caso di IRREVERSIBILITA’ non è definibile uno

STATO GLOBALE del fluido, ma soltanto STATI ISTANTANEI LOCALI. 12 Richard Mollier, (1863-1935), matematico, fisico ed ingegnere meccanico, tedesco. 13 Josiah Willard Gibbs, (1839-1903), fisico e chimico, americano. 14 Hermann Ludwig Helmholtz, (1821-1894), scienziato e chirurgo, tedesco.

curva o campana di Andrews

all’interno della quale le

isoterme sono anche isobare

C, punto critico:

Tc = temperatura critica = 374,2 °C = 647,36 K

pc = pressione critica = 221,2 bar (22,12 MPa)

ρ = densità critica = 325,73 kg/m3

Page 32: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

IRA 32

Nel caso del vapore saturo, sistema acqua-vapore, N = 1 ed f = 2, segue che ν = 1, mentre nel campo del

surriscaldato, la mancanza della fase liquida riporta la varianza ν = 2, come nel campo dell’acqua liquida, per la

mancanza della fase aeriforme.

Nel caso di aria umida, sistema aria-vapore, i componenti sono 2 e la fase 1, soltanto quella aeriforme. La

formula precedente dà ν = 3 ma bisogna ricordare che disponiamo già di una informazione che è quella

riguardante il rapporto in massa vapore/aria o il rapporto tra le rispettive pressioni parziali, così la varianza ritorna

ad essere ν = 2.

Piano T, S (piano entropico)

nell’ultimo grafico si individuano le seguenti zone:

* , zona del liquido

, zona del vapore surriscaldato

, zona del vapore saturo

+

Te

p

temperatura di

equilibrio

S

T isobara critica

C

p = cost

piano entropico (T - S)

∗ • +

P ≈ ke Te5

T

S

1

2

3

4 isoterma critica

≈ asse di simmetria

curva di Andrews

curva limite

inferiore

273,16 K = 0 °C

CAMPI DI ESISTENZA:

LIQUIDO

VAPORE SATURO

(ovvero vapore alla “minima temperatura compatibile con la sua pressione”, ovvero “in equilibrio termodinamico con il liquido”)

VAPORE SURRISCALDATO (vapore a temperatura superiore a quella di equilibrio per la pressione attuale)

GAS

(aeriforme a temperatura superiore a quella critica)

1

2

3

4

curva limite

superiore

Page 33: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

Appunti di Macchine 33

tgα =∂∂

hS

Tp

���

��� = : la pendenza delle rette isotermobariche del vapore saturo è crescente con p (ovvero con T),

esprimendo la temperatura assoluta.

TABELLE DEL VAPOR D’ACQUA

Si hanno 2 tipi di TABELLE; la 1a si riferisce al vapore SATURO (v = 1) (entro la campana di Andrews15), dove si riportano le seguenti grandezze:

p T hLIQ hSAT SLIQ SSAT vLIQ

16 vSAT

talvolta è riportata anche la differenza, r = hSAT - hLIQ (calore di vaporizzazione)

e la differenza ∆S = SSAT - SLIQ .

Normalmente le tabelle del vapore saturo, per comodità dell’utente, sono ripetute due volte:la prima con step

regolare di p, la seconda con step regolare di T.

15 Thomas Andrews, (1813-1885), fisico e chimico irlandese. 16 Talvolta è riportata la ρ (ρLIQ e ρSAT).

Piano entalpico o Piano di Mollier per il vapore acqueo

C , flesso

α

p = cost

T = cost

tratto prossimo ad una retta, curva limite inferiore ma anche inviluppo delle rette isotermobariche ovvero delle ISOBARE nel campo del SATURO

h

S

nel campo del SURRISCALDA-TO le ISOTERME (che si rac-cordano con le ISOTERMOBA-RICHE nel campo del VAPORE SATURO) tendono ad assumere un andamento parallelo all’asse delle ascisse tanto + quanto + accentuato è il SURRISCAL-DAMENTO ovvero quanto + il vapore tende verso il comportamento del GAS PERFETTO

la tangente trigonometrica di α misura la temperatura assoluta

rette isotermobariche che all’interno della campana divergono muovendosi dal basso verso l’alto (α crescente)

Page 34: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

IRA 34

La 2a tabella (che occupa un grande numero di pagine) si riferisce al vapore surriscaldato ed al liquido (v = 2)

(entrambi al di fuori della campana di Andrews):

1

1,1

1,2

100

110

120

NB. all’interno di ciascun riquadro si riportano i valori dell’entalpia, dell’entropia e del volume specifico (ovvero della densità) nelle

condizioni di temperatura e di pressione che interessano, che vengono posti sulle righe e sulle colonne della tabella.

Si ha, nel campo del vapore saturo:

LiqSatLiqtot

vap

vapliq

vap r doverx xMM

MMM hhhh −=+==

+= ; S

rxTLiqS= +

dove x (compreso tra 0 ed 1) è il titolo del vapore (frazione in massa del vapore rispetto alla massa totale) ed r il

calore di vaporizzazione dell’acqua, alla temperatura corrispondente.

NB. Per capire l’enorme interesse pratico del PIANO di MOLLIER basta pensare che gli scambi di LAVORO e di CALORE si valutano come

variazioni di ENTALPIA del fluido evolvente. Le tabelle (disponibili su supporto cartaceo e su supporto elettronico) sostituiscono ai fini

pratici l’eq.ne di stato del fluido, che è rappresentabile analiticamente con espressioni molto complesse (alcune inseriscono parecchie

decine di costanti !) valide, ciascuna, in ristrette zone del campo (p, T).

In pratica, si usano prevalentemente le tabelle per calcoli manuali e prevalentemente le formule per calcoli automatici.

p T

h , S e v (oppure ρ)

Page 35: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

Appunti di Macchine 35

IMPIANTI MOTORI A VAPORE

Costituiscono la prima famiglia di impianti motori termici tradizionali, destinati soprattutto alla produzione di

potenza meccanica da utilizzare per la produzione di potenza elettrica, accoppiando alla turbina un alternatore. Si

tratta di impianti a circuito chiuso nei quali si realizza un ciclo termodinamico in senso stretto, descritto dal fluido

motore (H2O).

Iniziamo studiando il circuito dell’impianto a vapore elementare, ovvero l’impianto a vapore di struttura più

semplice fra quelle concepibili per vapore surriscaldato (Ciclo di Hirn17).

Il Generatore di Vapore, G.V. è un particolare sistema scambiatore di calore nel quale il

fluido riceve calore a spese di una combustione esterna e, chiaramente, l’ambiente che contiene

il fluido motore (sistema ACQUA--VAPORE) è separato da quello più ampio, in cui avviene la

combustione, dalle PARETI METALLICHE attraverso le quali avviene lo scambio di calore.

Queste, per MOTIVI FUNZIONALI e COSTRUTTIVI, nonché per elevare al massimo il rapporto

SUPERFICIE--VOLUME del sistema acqua-vapore, sono in prevalenza TUBIERE.

17 Gustave Adolphe Hirn, (1815-1890), scienziato francese.

sorgenti termiche inferiori (CATATERMICHE)

Z

P.E.

P.A.

punto (4’)

riferito allo stato reale

punto (3)

punto (2)

punto (1)

S

V

E

p >> pa

0*

T

U

C

flangia di accoppiamento turbina-utilizzatore: (è indicato un alternatore)

punto (0)

H2O di refrigerazione

Q2

Q1

sorgenti termiche superiori (ANATERMICHE)

∆t ≅ 10 °C

pozzo caldo” (depressione)

pompa di alimento

pompa di estrazione

Generatore di Vapore (suddiviso in tre elementi essenziali) costituito da FASCI TUBIERI collegati da COLLETTORI

SERBATOIO o bacino di alimentazione o polmone dell’acqua di alimento (ipotizzato a cielo aperto)

CICLO DI HIRN

S

V G.V.

E

Page 36: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

IRA 36

Il Generatore di Vapore è costituito da tre elementi principali:

Economizzatore dell’acqua di alimento: l’acqua viene riscaldata fino alla temperatu-ra di

vaporizzazione (LIQUIDO SATURO), almeno nei grandi impianti, alla pressione di esercizio (quella

di equilibrio) ed a spese dei cascami di calore contenuti nei FUMI CALDI.

Vaporizzatore o BOLLITORE: avviene la vaporizzazione completa dell’acqua (cioè il LIQUIDO

SATURO diventa VAPORE SATURO); il vapore saturo, pressoché secco, è contenuto in un

CORPO CILINDRICO posto nella parte alta del generatore.

Surriscaldatore: avviene il surriscaldamento, a pressione costante, fino ad una temperatura che è la

massima nell’ambito del ciclo. Il VAPORE SATURO è prelevato dal CORPO CILINDRICO.

Le due pompe, P.E. e P.A., conducono l’acqua di alimento alla pressione di esercizio che vige in caldaia. Il

vapore surriscaldato giunge alla turbina, T, dove espande in condizioni pressoché adiabatiche producendo la

potenza meccanica che è poi convertita nell’alternatore in potenza elettrica. Nell’espansore, T, il fluido subisce

un aumento del suo volume specifico ed una contemporanea riduzione di pressione e temperatura. Data

l’adiabaticità dell’espansione e la circostanza che il ∆Ecin tra monte e valle della turbina è di regola trascurabile, alla

CADUTA di ENTALPIA del vapore, tra le sezioni 3 e 4’ del circuito, corrisponde un pari importo di lavoro tecnico

prodotto.

Il Condensatore, C, è un particolare scambiatore di calore di grande volume (ospita fluido di bassissima

densità), disposto immediatamente a valle della turbina (per non creare CONTROPRESSIONI allo scarico di

quest’ultima), nel quale, entro fasci di tubi paralleli, fluisce la cospicua portata di acqua di refrigerazione (sono molto

costosi i Condensatori AEROTERMI, ai quali si ricorre in caso di carenza di acqua refrigerante) destinata alla

sottrazione del calore (Q2) dal fluido evolvente che deve condensare completamente. L’acqua di refrigerazione

proviene da una grande sorgente naturale (mare, fiume, lago).

Nel Condensatore la condensazione del vapore è totale; il fluido ne esce allo stato liquido pressoché saturo e in

depressione, poiché il condensatore funziona a pressioni dell’ordine di 4÷5 centesimi della pressione ambiente,

ovvero alla pressione di equilibrio corrispondente alla temperatura di esercizio che è di alcuni gradi superiore alla

temperatura dell’acqua di refrigerazione. La condensa viene estratta dal “pozzo caldo” (nella parte inferiore del C.)

dalla pompa di estrazione, P.E. ed immessa in un polmone (immaginato a cielo aperto in questo impianto

elementare), che funge da “volano” di massa liquida dell’intero impianto. Da questo punto l’acqua di alimento, per

raggiungere la Caldaia, G.V., dove vige una pressione molto elevata, passa attraverso una pompa di

alimentazione, P.A.. Lungo le tubazioni vi sarà, comunque, una perdita di carico nell’attraversamento P.A.→ G.V.,

di cui occorre tener conto per garantire al fluido la pressione desiderata all’ingresso del G.V..

Il G.V. lo si può considerare uno scambiatore di calore costituito da tre serie di fasci tubieri; all’interno dei tubi vi

è il passaggio dell’acqua di alimento che viene riscaldata dai gas prodotti mediante la combustione di un

combustibile industriale; i gas della combustione lambiscono i fasci tubieri del Surriscaldatore, del Vaporizzatore ed

infine dell’Economizzatore. L’Economizzatore funziona essenzialmente a convezione, mentre nel Vaporizzatore e

nel Surriscaldatore agiscono in modalità combinata sia l’irraggiamento che la convezione.

S

V

E

Page 37: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

Appunti di Macchine 37

Analizziamo le trasformazioni termodinamiche che interessano l’impianto in esame

Il piano (p-v) non è, tuttavia, molto indicativo per caratterizzare le vicissitudini termodinamiche dell’impianto; ad

es., la fase energeticamente rilevante del riscaldamento del liquido (0*-1) è poco evidenziata, mentre una

trasformazione secondaria, dal punto di vista energetico, cioè quella di compressione del liquido, è “esaltata”

(corrisponde, infatti, al tratto esteso (0 - 0*)).

1

10

102

103

104

0.001 0.01 0.1 1 10 100 v = 1/ρ (m3/kg)

p (kPa)

P.E.

P.A.

0

0’

0* 1 2 3

4 4’

(0*-1) pressoché coincidenti (fase di riscaldamento del liquido)

(1-2) completa vaporizzazione nel G.V.

(0-0*) compressione in 2 fasi nelle pompe P.E. e P.A.

condensazione completa nel Condensatore (ISOTERMOBARICA)

in questo grafico è rappresentata l’espansione del il ciclo limite (espansione 3-4) e quella del ciclo reale (espansione 3-4’) e si prescinde dalle perdite di carico nel G.V. e nel condensatore; è opportuno ricordare che le scale sono logaritmiche

DIAGRAMMA 2

1

10

102

103

104

0.001 0.01 0.1 1 10 100 v = 1/ρ (m3/kg)

p (kPa)

0

0’

0* 1 2 3

4

DIAGRAMMA 1

surriscaldamento

Page 38: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

IRA 38

È opportuno ricordare che

a) per l’INCOMPRIMIBILITA’ del liquido, le compressioni, nelle pompe P.E. e P.A., sono rappresentate da tratti prossimi alla curva limite inferiore: rispettivamente (0-0’) e (0’-0*) (diagramma 1);

b) la VAPORIZZAZIONE ed il SURRISCALDAMENTO del fluido sono isobari in sede limite; in sede reale, invece, il surriscaldamento si sviluppa a pressione lievemente decrescente per effetto delle PERDITE DI CARICO nei fasci tubieri;

c) è evidente la SCARSA SIGNIFICATIVITÀ della rappresentazione del Ciclo di Hirn nel piano (p-v) che NASCONDE la fase di riscaldamento del liquido, mettendo inutilmente in evidenza quella MECCANICA di compressione del liquido. Inoltre, essendo molto grande l’escursione del volume del fluido durante il processo, il diagramma richiede un tracciamento a “settori” e ciò rende materialmente difficile rappresentare, ad es., l’espansione; in alternativa - come appunto in figura - occorre impiegare scale logaritmiche.

Analizziamo la situazione sul piano entropico (T-S)

Nel caso del ciclo limite, l’area dello stesso computa, per unità di massa, il lavoro di ciclo prodotto (tecnico o

termodinamico) mentre ciò non accade per il ciclo reale, dovendo tener conto dei termini di irreversibilità di prima

specie, d(Qi)I .

N.B. Il lavoro di compressione del liquido nelle pompe (P.E., P.A.) è molto modesto, percentualmente, rispetto al lavoro prodotto dal vapore in turbina. Per comprenderlo, basta pensare che la quota reversibile, che è la dominante numericamente, del lavoro di compressione, è pari

a ρ

0*0 pp −

dove ρ è elevatissimo (acqua liquida), mentre la quota reversibile del lavoro di espansione è pari a � ρdp

lungo la turbina;

il valore di ρ del vapore in espansione è mediamente molto basso rispetto a quello del liquido!

273,16 K

0 K

0 0*

S

T

2 1

4

3

4’

C

le isobare, nel campo del liquido, sono tutte adagiate sulla curva limite inferiore

questa isobara è, in realtà, molto + vicina alla curva limite e, in definitiva, 0 e 0* vengono, in pratica, a coincidere. L’isobara si riferisce alla pressione d’esercizio in caldaia.

Espansione isoentropica (ciclo limite)

NOTA: nel computo delle

quantità di calore scam-biate, quali aree sottese alle trasformazioni, oc-corre trasferire l’asse delle ascisse allo zero assoluto.

Page 39: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

Appunti di Macchine 39

Tracciamo, sul Diagramma di Mollier del vapore, un impianto “sottocritico” ovvero funzionante con un vapore

surriscaldato a pressione inferiore a quella critica (pc).

Per ciascun organo costruttivo dell’impianto l’equazione dell’energia, in forma termica, trascurando i termini

macroscopici dEpot e dEcin in quanto non significativi nell’ambito di un intero componente, è la seguente

Q + L = ∆ �

ovvero QA,B + LA,B = �B - �A

dove A e B sono gli stati termodinamici che caratterizzano l’ingresso e l’uscita del fluido da ciascun organo.

È evidente, allora, l’utilità del diagramma tracciato; infatti, si ha

TURBINA e POMPE Q = 0 (organi assunti adiabatici), ∆ � = L

G.V. e CONDENSATORE L = 0 (organi destinati allo scambio di calore) ∆ � = Q

Il ∆h fornisce, quindi, una misura del totale scambio di energia specifica (calore/lavoro, per unità di massa).

3

concentrazioni di vapore (ovvero TITOLI)

=

=

−−

−−

hHhHhHhH

0

0

0

0

44

4'4

4

'4

x

x

0

0*

1

2

4 4’

C

H4 H4’

h

S

4 x4’

x4

Page 40: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

IRA 40

Ricordiamo l’equazione dell’energia in forma meccanica

dd

d d dLp

E Epot cin IQ i

= + + +ρ

( )

Integrando sulla macchina operatrice, di “estremi” A e B’, si ottiene

�+�=''

)(B

A

B

AIi

dQd

pL

ρ

ed in sede limite Lpd

A

B

= � ρ

trascurando le variazioni di energia potenziale e cinetica tra l’ingresso e l’uscita della macchina.

Per le pompe ρ∆=

liq

pompep

L con ∆p = p0* - p0 ≈ p1 - p0 �liq ≈ cost

se anziché LIQUIDO si ha VAPORE, a parità di ∆p si avrà un lavoro molto maggiore18. Rispetto al lavoro delle

turbine quello delle pompe è al massimo di solo qualche %; se, dunque, si fanno coincidere i due punti O e O* si

commette un errore massimo, nel bilancio energetico globale, di qualche %. Osserviamo che, tanto minore è la

pressione nel Condensatore, tanto più aumenta l’area del ciclo limite (cioè il lavoro) ed anche in sede di ciclo reale

si avranno analoghi benefici.

La temperatura dell’acqua condensata, nel Condensatore, è di circa 30 °C, molto prossima a quella dell’acqua

di refrigerazione proveniente, in generale, da grandi bacini naturali. Nel Generatore di Vapore la temperatura di

surriscaldamento è di circa 500-550 °C. Impiegare temperature superiori prevederebbe l’utilizzazione di tubi

realizzati con materiali di costo proibitivo per i fasci tuberi più caldi.

Scriviamo le relazioni che esprimono i bilanci di energia nell’impianto in esame

calore fornito dalle sorgenti superiori 11r03*031QQHHQ ==−≅−= hhl

dove, secondo una usuale convenzione adottata per i vapori, H indica l’entalpia del vapore e h l’entalpia del

liquido;

calore ceduto alle sorgenti inferiori xrHQ 40042⋅=−= hl

(sede limite)

xrHQ 4'004'2r⋅=−= h (sede reale)

dove r0, calore di vaporizzazione globale alla temperatura di esercizio del vapore, è pari ad hH 04− ; mentre x4’ e

x4 sono i Titoli del vapore, i cui valori sono misurati, sul diagramma entalpico, in corrispondenza ai due punti 4’ e 4

del diagramma precedente; chiaramente x4’ > x4 e ne consegue che Q2r > Q2l�

, (le irreversibilità del ciclo si

“pagano” al condensatore in termini di aumento di Q2 , ovvero di diminuzione di L a parità di Q1).

18 A causa della grande diversità di volume specifico, ovvero di densità (ρ) tra liquido e vapore, (ρLIQ >>ρVAP).

B’ ≠ B

Page 41: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

Appunti di Macchine 41

Il lavoro specifico del ciclo (per unità di massa) è, trascurando il lavoro speso per le pompe, dato dal lavoro

prodotto dalla turbina:

QQHHL2143 �� −=−≅ (sede limite)

QQHHL 2r14'3r −=−≅ (sede reale)

dove i segni di approssimazione si hanno perché si approssima P E P AL L. . . .+ ≅ 0

In termini di rendimento possiamo scrivere

h�

03

43

1

21

1 HHH

QQQ

QL

−−

=−

== ��

� (rendimento limite)

ed inoltre

h03

4'3

1

21

1 HHH

QQQ

QL rr

r� −−

=−

== (rendimento reale)

Sappiamo, poi, che ηr = ηi ηl�� dove ηi è il rendimento interno dell’impianto, ovvero il “grado di

bontà” tecnica e tecnologica dell’impianto stesso.

Nel caso dell’impianto a vapore, finora esaminato, possiamo scrivere

( )( )

( )( )iη η≅

−−

= = =3 4

3 4

H HH H

HH

T r

TT

T r

T

L

L'

∆∆

� �

che rappresenta il rendimento adiabatico della Turbina, nell’ipotesi di poter confondere19 h0 con h0*. ηi è,

dunque, il rapporto fra la variazione entalpica della Turbina, nell’espansione reale, e l’analoga variazione

nell’espansione limite.

Il risultato ηi ≡ ηT è, evidentemente, non valido nel caso in cui si tenga conto

a) delle perdite di calore verso l’esterno nei vari organi dell’impianto;

b) delle perdite di carico nei condotti (linee di trasferimento, fasci tubieri, etc.);

c) del lavoro delle pompe;

risultando, allora, il rendimento interno dell’impianto funzione del rendimento della Turbina ma anche degli altri

organi dell’impianto, comprese le tubazioni.

19 Nel piano (h - S) si è ipotizzato che la porzione di isobara, 0*1 coincide col tratto 01, cioè con il ramo della curva limite inferiore che presenta una variazione di pressione continua e rilevante. Ciò non comporta errori particolarmente notevoli sul piano delle valutazioni numeriche dei bilanci energetici, per effetto della uniforme vicinanza delle isobare fra loro nel campo del liquido.

Page 42: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

IRA 42

Valutiamo, infine, la potenza meccanica disponibile alla flangia di accoppiamento Turbina-Utilizzatore

in SEDE LIMITE HMP 4,3∆⋅=�

dove M è la portata del fluido e il ∆H è il salto entalpico limite della Turbina (isentropico);

in pratica °2

860 membro

se: P è in kW, M in kg/h, ∆H in kcal/kg;

in SEDE REALE HMP '4,3r ∆⋅=

dove M è ancora la portata del fluido e il ∆H è il salto entalpico reale della Turbina;

in pratica °2

3600 membro

se: P è in kW, M in kg/h, ∆H in kJ/kg.

A questo punto possiamo sapere quanti kg di vapore sono necessari per ottenere un kWh di energia

meccanica (da convertire in energia elettrica).

Misurando ad es. Pr in kW, ∆H in kJ/kg ed M in kg/h possiamo scrivere

che, riferito ad 1 kWh prodotto, ( )11200

36000 87 0 91= ⋅ ⋅ ÷m, , ci consente di ricavare m

m ≅ 3 ÷ 3.5 kg/kWh

Se kW

hkg 3.125

PM = significa che in gruppi da 160, 320 e 640 MW

circoleranno circa 500, 1.000 e 2.000 t/h di vapore, rispettivamente.

valore medio del ∆∆∆∆H isoentropico nei grandi impianti

rendimento adiabatico della turbina per grandi impianti

NB. Il valore di (∆∆∆∆H)S ed il corrispondente valore di m sono validi con condensatori operanti a basse pressioni e temperature; contrariamente si avrebbe un (∆∆∆∆H)S minore ed una m maggiore

( )3600

MT4,3

rH

Pη∆ ⋅⋅

=

Page 43: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

Appunti di Macchine 43

Sempre riferendosi al precedente Diagramma di Mollier, ricaviamo il rapporto tra la portata di acqua di

refrigerazione che circola nel Condensatore e la portata del fluido motore, vapore: MM O2H, imponendo il

bilancio energetico del condensatore

( ) T�cMHMO2H2OHO2H04' =−h

��� �����

ovvero ( )

1010.950.92580

Tcxr

T�cH

MM

O2O2O2O2

2

HH

4'0

HH

04'OH

� ⋅÷⋅=⋅=

−= h

essendo r0 ≈ 580 kcal/kg ≅ 2400 kJ/kg; CkJ/kg 4.186Ckcal/kg 1 00c2OH

=≈

in definitiva 55M

M OH 2 ≅

ciò significa che per ogni kg di fluido motore che circola nell’impianto occorrono più di 50 kg di acqua di

refrigerazione da far circolare nel Condensatore. Questa quantità è davvero considerevole nel caso di impianti di

grande o grandissima taglia che impongono l’onere di imponenti circuiti di refrigerazione e di una notevole spesa

per il pompaggio dell’acqua di refrigerazione.

In un impianto motore a vapore è conveniente, ai fini del miglioramento delle prestazioni, che la condensazione

del vapore avvenga alla temperatura, ovvero alla pressione più bassa possibile (il condensatore opera in condizioni

prossime all’equilibrio). Chiaramente, il parametro che condiziona lo stato del fluido al Condensatore è la

temperatura del refrigerante disponibile. Poiché, dunque, è essenziale mantenere basse T e p, nel Condensatore,

si limita l’escursione termica dell’acqua di refrigerazione a circa 10 °C, anche a prezzo di consumarne molta

(50≅≅≅≅60 kg per ogni kg di vapore condensato !), accettando l’onere di imponenti circuiti di refrigerazione, di

elevate superfici tubiere del condensatore e di una notevole potenza spesa per il pompaggio. Imponendo valori più

bassi all’escursione termica dell’acqua si sconfinerebbe in soluzioni troppo onerose in termini costruttivi e di

esercizio.

potenza termica ceduta nel condensatore dal vapore condensante potenza termica asportata

dall’acqua di refrigerazione

calore specifico dell’H2O liquida

Page 44: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

IRA 44

Ricordando che il rendimento termodinamico di questo tipo di centrali è, per grandi taglie, dell’ordine del 40 %

possiamo determinare il consumo specifico, cioè la quantità di combustibile necessaria per produrre 1 kWh.

.4 0QL

�1r

rr ≅= per Lr = 1 kWh = 860 kcal possiamo scrivere

kCal kWh 2150 2.50.41

Q1r ≅==

e, se la combustione nel Generatore di Vapore avviene con un rendimento, (il pedice b sta per l’inglese “burner”)

0.95 0.9 H ic

1rb m

Q� ÷==

bruciando gasolio con un potere calorifico inferiore di 10.000 kcal/kg ≅ 42.000 kJ/kg, per ogni kWh prodotto

dobbiamo utilizzare circa 0.23 kg di combustibile.

Considerando che il rapporto tra la massa di combustibile e la massa di vapore, per unità di lavoro prodotto, è

pari 0.08 ÷ 0.07 si vede che, per una Centrale da 640 MW, sono necessarie 150 t/h di combustibile. Se dovesse

funzionare, con un coefficiente di utilizzazione pari a 0.8, per un anno di esercizio sarebbe necessario circa un

milione di tonnellate di combustibile.

Analizziamo i parametri-chiave del Ciclo al fine di sceglierne i valori più opportuni ai fini delle prestazioni dell’impianto:

1° parametro: temperatura (o pressione) al Condensatore;

2° parametro: pressione in Caldaia (o pressione di vaporizzazione);

3° parametro: temperatura di surriscaldamento;

questi 3 parametri definiscono interamente il Ciclo Limite.

Il primo parametro non può essere modulato a piacere dal progettista, essendo vincolato alla temperatura della

sorgente naturale d’acqua impiegata per la refrigerazione e al ∆t che si impone all’H2O di refrigerazione (secondo

un compromesso tecnico-economico); per noi, dunque, questo primo parametro può ritenersi pressoché costante.

Per ciò che riguarda le condizioni del generatore di vapore, una volta fissata, al valore minimo consentito dalle

condizioni di progetto, la temperatura al condensatore, le prestazioni dell’impianto elementare in studio, in termini di

LAVORO RESO per kg di fluido evolvente e di RENDIMENTO TERMODINAMICO, dipendono dalle condizioni del

vapore all’uscita del generatore (si prescinde, discutendo in sede limite, dal rendimento dell’espansione e dalle

perdite di carico e di calore nei condotti); le variabili sono dunque, in pratica, due: la PRESSIONE di

VAPORIZZAZIONE e la TEMPERATURA di SURRISCALDAMENTO.

Si possono effettuare studi intesi ad ottimizzare le scelte di p1 (pressione di vaporizzazione) e di T3 (temperatura

di surriscaldamento), come illustrato ampiamente nel libro “Gli impianti convertitori di energia” del prof. C. Caputo.

Page 45: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

Appunti di Macchine 45

In sintesi, tuttavia, tenendo conto dell’esigenza di ottenere, a fine espansione, titoli finali x4’ sufficientemente

elevati (0.92 – 0.94) e tenendo conto del massimo di T3 intorno ai 550 °C per motivi di economia, si può dire che,

per il Ciclo di Hirn, le pressioni p1 possono raggiungere valori dell’ordine di 40 ÷ 45 bar con temperature T3

dell’ordine di 500 ÷ 550 °C.

Il titolo x4’ non deve essere inferiore ai valori indicati per evitare il danneggiamento erosivo dell’acqua liquida

sulle palettature degli ultimi stadi della turbina. D’altronde x4’ non deve essere troppo elevato, per evitare che, in

certe condizioni di esercizio, il vapore possa uscire allo scarico della turbina in condizioni di surriscaldato: ciò

provocherebbe un sovraccarico termico inaccettabile per il condensatore, che necessiterebbe di una sezione

desurriscaldante, operante con coefficienti di scambio termico globali molto bassi e potrebbe risultare anche

compromessa la stabilità di esercizio del condensatore stesso, governata dalla pressione di esercizio all’equilibrio

(in condensazione).

Nei grandi impianti si è imposta la scelta progettuale del doppio surriscaldamento; vediamo quali sono i

vantaggi. Innanzi tutto le potenze in gioco devono essere tali da giustificare l’elevato onere dei costi d’investimento

per conseguire un maggiore lavoro specifico, a parità di potenza termica fornita.

Page 46: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

IRA 46

Consideriamo un impianto in cui il vapore percorra un Ciclo di Hirn e suddividiamolo nel seguente modo:

Fissando la nostra attenzione sul ciclo reale supponiamo di suddividere l’impianto in tre impianti parziali,

interfacciati dinamicamente tra loro, nei quali circola la stessa portata, ciascuno dei quali opera secondo uno dei

cicli I, II, III che ammettono, evidentemente, trasformazioni termodinamiche comuni (adiabatiche isoentropiche)

che si svolgono, in senso opposto in due impianti contigui. I tre impianti devono, pertanto, ritenersi dinamicamente

connessi ed i lavori adiabatici isoentropici di interfaccia si elidono fra loro nel bilancio energetico globale.

Il rendimento termodinamico, η, dell’impianto effettivo è η = LQ1

mentre, per i tre cicli parziali, I, II e III possiamo scrivere

η

η

η

II

I

IIII

II

IIIIII

III

LQ

LQ

LQ

=

=

=

1

1

1

ed essendo: L L L LI II III= + +

si ha ���������

È utile osservare che

η η ηI II III< <

e, ricordare che

1m1

2m2M.S.

T

T

TT=ξ

Lavoro della turbina

media pesata dei rendimenti parziali, dove i pesi sono i calori Q1 forniti dalle sorgenti superiori ai singoli impianti

ciclo fortemente penalizzato dall’effetto di molteplicità delle sorgenti (ridotta la temperatura media delle sorgenti termiche superiori)

l’effetto della molteplicità delle sorgenti è favorevole; pertanto, questo ciclo è premiante ai fini di η, (elevata temperatura media delle sorgenti termiche superiori)

S

T

2 1

4

3

4’ 0

A B

I II III

Q1I

Q1II Q1III

Ciclo I - triangolare

Ciclo II - di Carnot (rettangolare)

Ciclo III - trapezio mistilineo

Q1I , calore di riscaldamento

Q1II , calore di vaporizzazione

Q1III , calore di surriscaldamento

1III1II1I

1IIIIII1IIII1II

1III1II1I

IIIIII

QQQQ�Q�Q�

QQQLLL

�++

⋅+⋅+⋅=++++=

rendimento di un ciclo di Carnot, operante tra T0 e T1, quindi massimo in tale intervallo termico

Page 47: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

Appunti di Macchine 47

Il valore di ηIII è intermedio fra il rendimento di un Ciclo di Carnot operante tra T0 e T1 e quello di un altro Ciclo

di Carnot operante tra T0 e T3.

Per enfatizzare l’utilità di ηIII si può percorrere la strada del surriscaldamento multiplo, ovvero quella di un solo

surriscaldamento, ma elevandone la temperatura. Per ridurre l’effetto negativo di ηI si può percorrere una sola

strada, quella di procedere ad una rigenerazione termica (operazione molto conveniente, anche se – come

vedremo – il grado di rigenerazione non dovrà mai essere unitario). Un limite alla possibilità di spingere al massimo

il grado di rigenerazione termica è infatti costituito dall’effetto Clausius; non conviene, cioè, come meglio vedremo in

seguito, somministrare l’intero calore di surriscaldamento del liquido per via rigenerativa.

Aumentare la temperatura massima del Ciclo di Hirn (t3, temperatura di surriscaldamento) comporta due ordini

di problemi: quello del COMPORTAMENTO oltre il limite elastico del metallo impiegato per i fasci tubieri più

caldi e quello delle CORROSIONI dovute, soprattutto, all’impiego di combustibili economici. Tali problemi sono

imponenti per valori della temperatura di surriscaldamento superiori a 550 °C, ma non conviene superare questi

valori di t3, anche per motivi inerenti alle pressioni di ottimizzazione. Eccessive pressioni in caldaia, scelte ai fini del

rendimento del Ciclo di Hirn, condurrebbero a titoli troppo bassi del vapore alla fine dell’espansione.

Soprattutto per ovviare a queste limitazioni si adottò la tecnica del DOPPIO SURRISCALDAMENTO per

gli impianti di grande e grandissima taglia. In pratica si realizzano grandi gruppi con doppio (raramente triplo) surriscaldamento e, simultaneamente, si

effettua la rigenerazione termica; negli impianti di media dimensione si adotta la tecnica, più economica, del

semplice surriscaldamento. Con il doppio surriscaldamento la pressione p1 può salire a valori da 150 bar in poi

(esistono anche soluzioni iper-critiche), mentre la pressione del secondo surriscaldamento può essere dell’ordine di

40 bar).

Page 48: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

IRA 48

La configurazione del Ciclo, nel caso di doppio surriscaldamento, è mostrata nel piano entalpico (si può operare

a pressioni molto elevate, talvolta superiori a quella critica, ottenendo un titolo conveniente alla fine dell’espansione)

Occupiamoci, ora, della RIGENERAZIONE TERMICA, grazie alla quale migliorano notevolmente le

prestazioni dei grandi impianti e, in particolare, il loro rendimento termodinamico.

L’effetto di molteplicità delle sorgenti è, nel ciclo I (triangolo mistilineo 01A) particolarmente severo, in quanto

le sorgenti anatermiche si distribuiscono, lungo la fase di riscaldamento del liquido, praticamente dalla temperatura

minima T0 alla temperatura massima T1. Il ciclo parziale I incide pesantemente sulla media pesata dei rendimenti

e si vuole, dunque, neutralizzarne, o per lo meno limitarne, l’effetto sfavorevole sul rendimento complessivo.

Osserviamo che ηI non comparirà nell’espressione di η se il calore Q1I non è prelevato dall’esterno, ma fornito

interamente per SCAMBIO INTERNO dal fluido stesso, nel corso della sua evoluzione, per via rigenerativa.

Si può, secondo una prima ipotesi, pensare di sottrarre calore al vapore durante la sua espansione ed

impiegarlo, convenientemente, per riscaldare il liquido sino alle condizioni di vaporizzazione.

S

h

0

1

2

3

3*

4* 4*’

SH (surriscaldatore)

RH (risurriscaldatore)

4’

N.B. 3 e 3* sono sulla medesima isoterma ossia t3 = t3*

Page 49: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

Appunti di Macchine 49

Facciamo riferimento ad un Ciclo di Hirn nel piano (T-S), per semplicità in sede limite.

Si suppone che la trasformazione 3 4− sia realizzata

CONGRUENTEMENTE con la trasformazione 0-1

Durante la fase di espansione possiamo procedere ad una espansione adiabatica isoentropica fino a 3 ;

l’evoluzione 3 → 4 non è adiabatica, ovvero il vapore può drenare calore verso l’esterno: possiamo pensare di

sostituire l’espansione 3 → 4 con la 3 → 4 .

Durante questa espansione, 3 → 4 , il calore asportato è uguale a quello utilizzato dall’acqua per riscaldarsi da

0 →1. L’integrale di TdS da 0 a 1 rappresenta il calore richiesto per il riscaldamento dell’acqua. L’area sottesa da

4 a 3 rappresenta il calore drenato dal vapore e ceduto all’acqua di alimento.

Un impianto del genere è, tuttavia, improponibile perché si dovrebbero avere superfici di scambio immense ai

fini di un’efficienza elevata (mai comunque unitaria) dello scambiatore rigenerativo; inoltre l’espansione 3 → 4

porterebbe il vapore a titoli inaccettabili (contenuto certamente eccessivo di liquido) per un funzionamento

accettabile della turbina.

La Rigenerazione Termica per sottrazione di calore dal vapore in espansione è, in pratica, IRREALIZABILE

e, comunque, NON CONVENIENTE. Irrealizzabile perché le superfici delle casse delle turbine di espansione

non sono sufficientemente estese – neppure praticandovi fittissime alettature – per consentire i ragguardevoli

scambi di calore richiesti; non conveniente perché il titolo del vapore, al termine dell’espansione, risulterebbe troppo

basso, compromettendo non solo, quanto meno, il rendimento interno della turbina, ma anche la sua integrità.

Infine, enormi problemi di regolazione sorgerebbero ai carichi parziali dell’impianto.

Lo stesso EFFETTO RIGENERATIVO si può ottenere, invece, SOTTRAENDO, durante la fase di

espansione, VAPORE anziché CALORE. O meglio, anziché sottrarre una parte del calore possibile all’intera

portata di vapore, si sottrae l’intero calore disponibile ad una porzione (appositamente spillata) della portata di

vapore.

Si può procedere quindi, prelevando una parte del vapore che si sta espandendo in turbina (SPILLAMENTO

del vapore) per riscaldare l’acqua di alimento; questa porzione di vapore spillato non espande in turbina e non

produce, pertanto, potenza utile, ma viene ad essere utilizzato al 100 % per scopo rigenerativo. Il vapore non

spillato continua la sua espansione INDISTURBATO, raggiungendo il TITOLO che gli compete alla fine

dell’espansione adiabatica.

T

2 1

4

3

0 A B

Q1I

Q1II Q1III

S

273,16 K 4

0 °C

0 K

3

Page 50: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

IRA 50

Quello sopra descritto è il principio della RIGENERAZIONE TERMICA a gradini, ormai universalmente

applicata negli Impianti a Vapore di media, grande e grandissima taglia.

La rappresentazione del ciclo rigenerato è riportata, ancora sul piano (T-S) (entropico), in figura:

Si definisce grado di rigenerazione (totale):

hhhh

01

01xR−−

=

il rapporto tra il calore di riscaldamento dell’acqua conferito per via rigenerativa ed il calore totale di riscaldamento

dell’acqua. Se indichiamo con λ il calore totale di riscaldamento del liquido, che è h1-h0 , si potrà scrivere:

λ−

= hh 01xR

e, definendo:

λhh )1(

iR +−= ixxi

il generico grado di rigenerazione parziale dovuto all’i.mo rigeneratore sarà, ovviamente

�=z

ii1

RR

La RIGENERAZIONE CONTINUA, come caso limite, prevede una successione infinita di prelievi di

vapore di portata infinitesima, durante l’espansione (3-4’), ciascuno dei quali eleva in misura infinitesima la

temperatura (e quindi anche l’entalpia) dell’acqua di alimento. Conseguentemente, in siffatto processo, del tutto

ipotetico, non sussisterebbero irreversibilità per ∆T finiti fra i due fluidi entranti nel generico microscambiatore e

l’effetto CLAUSIUS non entrerebbe in gioco.

0 °C ≡ 273,16 K

0 K

0

S

T

2 1

4

3

4’

x1 x2

x3

xz

X1

X2

X3

Xz

1° spillamento

2° spillamento . . ecc.

Page 51: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

Appunti di Macchine 51

Senza ricorrere alla RIGENERAZIONE CONTINUA, di fatto irrealizzabile, analoghi benefici, anche se in

misura meno elevata, sono ottenibili se gli spillamenti sono in numero (z) finito anziché infinito (ad es. z ≤ 6÷7). Si

può vedere, peraltro, che quando il numero di spillamenti è piuttosto elevato (appunto 6÷7) tale beneficio è

cospicuo e di poco aumenterebbe se, pur con notevole incremento di costi e di complicazione dell’impianto, si

aumentasse ulteriormente z.

In conseguenza di quanto detto, oggi, quasi tutti gli Impianti a Vapore di taglia elevata sono provvisti di RIGENERAZIONE a GRADINI e DOPPIO SURRISCALDAMENTO.

Raggiungere un grado di rigenerazione unitario (R = 1) non risulta conveniente, perché, nella misura in cui

all’aumentare di R, a parità di z, aumenta l’effetto (positivo) della molteplicità delle sorgenti per l’incremento della

temperatura media delle sorgenti superiori, aumenta simultaneamente l’effetto Clausius (negativo) legato al fatto

che aumenta la differenza (finita) di temperatura, ∆t, tra il vapore spillato e l’acqua di alimento entranti nel generico

rigeneratore.

Si sceglie, allora, una soluzione di compromesso.

Per z → ∞ si parla di RIGENERAZIONE CONTINUA; essa, pur se non realizzabile, è importante da un

punto di vista didattico e costituisce un tetto superiore alle prestazioni conseguibili.

Si vedrà in particolare che all’aumentare di R, per z → ∞, aumenta progressivamente il massimo rendimento

η conseguibile in quanto si risente sempre più dell’effetto migliorativo della molteplicità delle sorgenti, mentre

l’effetto Clausius tende ad attenuarsi sempre più.

Page 52: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

IRA 52

LA RIGENERAZIONE A GRADINI. GENERALITA’

L’impianto a Ciclo di Hirn dotato di rigenerazione con z gradini corrisponde al diagramma (h, S) ed allo schema

indicati nelle figure sottostanti.

λ−= 01xR

hh

Gli spillamenti di vapore sono numerati da 1 a z, da quello a pressione più elevata a quello a pressione più

bassa.

Gli scambiatori rigenerativi (rigeneratori) sono per ora tutti a miscela.

La singola pompa di ripresa (P.R.) serve a convogliare la condensa ottenuta nel rigeneratore (i), in

corrispondenza allo i-esimo scambio, allo scambiatore (i-1) (ovvero al rigeneratore contiguo operante a pressione

più elevata). Ogni rigeneratore a miscela dispone di due ingressi (uno per il vapore spillato ed uno per l’acqua di

alimento) e di un’uscita (per l’acqua d’alimento preriscaldata e mescolata alla condensa dello spillato).

Con Xi (i=1, z) si indicano i punti sulla curva di espansione ove sono posti gli spillamenti e con xi (i=1, z) i

punti corrispondenti sulla curva limite inferiore. Ai fini dei calcoli, l’acqua di alimento uscente dal generico

rigeneratore (i) è considerata liquido saturo (punto xi).

α

h

S

λ hx1

0

x2

x1

1

C

2

3

X1

X2

4 4’

λ = h1 - h 0

pSh

T ��

���

�=ϑϑ

P.E. P.R.

z 1 2 …

P.R.

P.A.

C

H2O

Rx G.V.

T

A

Rz R2 R1

Xz

xz

Page 53: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

Appunti di Macchine 53

Per R = 0 l’impianto non è rigenerato ed il rendimento avrà l’espressione usuale valida per il Ciclo di Hirn

semplice:

( ) ��HH

HH

)hf()hf(

1h

h1hh1

1

0

13

04'

03

04'0R� +

−≅+−

−−=−−−==

dove f(h) rappresenta, in funzione di h, il calore disponibile, sotto forma di differenza entalpica, nello spillamento di

1 kg di vapore; si tratta del totale calore messo a disposizione dell’acqua di alimento (dallo stato competente al

prelievo sino alla condensazione completa, secondo un processo isobaro). Dunque:

f(h) = H – h

A parità di h, f(h) avrà un valore dipendente dall’andamento della curva di espansione in turbina.

Qualora si potesse assumere:

f(h) = I = cost

si avrebbe:

I1

11

II

1��

0R�+

−=+

−==

ed il rendimento 0R� = dipenderebbe esclusivamente dal rapporto λ/I.

Ricordiamo che il Grado di Rigenerazione è la frazione di calore di riscaldamento conferita al liquido per via

rigenerativa rispetto al calore totale di riscaldamento: λ−= 0R hh

R (hR = hx1)

mentre il rendimento dell’impianto rigenerato fino ad x1 è

( ) ( ) ( )[ ]hhh

h

1x1130

04

HH

m11

−+−+−

−= 'zRη

Frazione (riferita al condensatore) di massa spillata in totale nei punti (i) di prelievo sulla curva di espansione

Page 54: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

IRA 54

Ricordando, inoltre, le precedenti definizioni, si ha:

Rλ = hx1 - h0 � (1-R) λ = h1 - hx1

( ) ( ) ( )[ ]( )

( ) ( ) ( )[ ]

( ) ( ) ��

���

� −++−≅

≅−++

−=−+−+

−−=

I�R

�R�RHmH�

11m1

11

1hfm1hf

11h1

h1

0

10

0

130

04'R z

Il valore della frazione m0 (rispetto al condensatore) della massa spillata in totale sui prelievi effettuati lungo la

linea di espansione richiede di effettuare i bilanci termici di tutti i rigeneratori.

RIGENERAZIONE CONTINUA

Un caso ”didattico” di grande interesse è quello della rigenerazione “continua”, ovvero quello di z → ∞

attraverso un passaggio al limite.

Ogni rigeneratore è un microrigeneratore a cui perviene una portata spillata infinitesima ed il numero di

rigeneratori è infinito. Il caso è privo di interesse sul piano applicativo, ma è ricco di significato sul piano

concettuale, poiché conduce alla determinazione delle prestazioni – in particolare in termini di rendimento –

dell’impianto conseguibili nelle condizioni concettualmente più favorevoli dal punto di vista dell’effetto Clausius.

Per valutare m0, massa di vapore (o meglio, frazione riferita al

condensatore) globalmente spillata in turbina, bisogna effettuare il

bilancio termico del generico microrigeneratore (z → ∞); se dm è la

massa elementare di vapore spillato, normalizzata rispetto al

condensatore, il calore disponibile sarà

dm (Hx - hx) = (1 + m) dhx

dove dhx è l’incremento di entalpia dell’acqua di alimento (di massa normalizzata, 1 + m); il 1° termine è il calore

ceduto dalla massa dm di vapore spillato nel punto generico X sulla curva di espansione, il 2° termine è il calore

assorbito dalla massa del liquido (acqua di alimento).

Possiamo allora scrivere:

)f(hhd

h

hdm1

dm

xx

x

H≅

−=

+

dove (1+m) è la massa di liquido che giunge al rigeneratore elementare generico, di cui 1 kg proviene dal

condensatore ed m conteggia le condense degli spillamenti effettuati a valle del punto X ed inviati nei

rigeneneratori posti a “monte”.

h

H

h + dh

(1 + m)

dm

(1 + m + dm)

Microrigeneratore generico

Page 55: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

Appunti di Macchine 55

Integrando la precedente si ha

��� ≅−

=+

hx

0h

hx

0h xx

x0m

0 )h(hd

hhd

m1dm

H f da cui ( ) �=+

hx

0h0 h(

hdm1ln

)f

Se fosse f(h) = I = cost sarebbe ( )I

R�I

hhm1ln 0x1

0 =−=+

e quindi:

1I

Rexpm0 −���

��

� λ=

Una volta disegnata la curva di espansione 3 → 4’, ovvero una volta definito il ciclo reale, si stabilisce una

corrispondenza biunivoca tra hx ed Hx.

Per una generica curva di espansione, la funzione f(h) ha un andamento del tipo indicato in figura:

f(h) = H - h

con entalpie misurate

sulla medesima isobara.

Questa funzione spesso si schematizza in prima approssimazione con f(h) ≅ cost = I dove I è il valore medio

della f(h), nell’intervallo [h0, h1], ricordando che f(h) dipende da FORMA e POSIZIONE della linea

d’espansione nel piano (h - S).

Con questa ipotesi si compie una analisi termodinamica semplice e significativa, ovvero si perviene a leggi

semplici, approssimate ma vicine a quelle rigorose.

In uno studio più approfondito, di solito, conviene assegnare a f(h) una forma nella quale compaiono 3 costanti

(forma polinomiale del 2° ordine), del tipo

f(h) = A + B h + C � h2

che dà luogo a errori assai contenuti. Si può utilizzare anche una legge inversa (più comoda per la soluzione

dell’integrale di 1/f(h)) del tipo:

2hh1)h(f

cba ++=

I coefficienti delle leggi di cui sopra potranno essere valutati col metodo dei minimi quadrati, rendendo minimo

l’errore quadratico medio di f(h) nell’intervallo (h0, h1).

I

f(h)

h h0 h1

non si hanno normalmente scostamenti superiori al 10 % rispetto al valore medio I

Page 56: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

IRA 56

Nel caso in cui si assuma f(h) = cost, l’espressione del rendimento diventa ovviamente:

( ) ��

���

���

���

�−=

−+∞→

I�11

I�

RRexp

11

)(zR

che mostra come tale rendimento, per un ciclo definito (p0, p1, T3 e curva di espansione assegnati), sia funzione

soltanto del Grado di Rigenerazione, R. Il massimo del rendimento si ottiene cercando il massimo del denominatore

della perdita di rendimento, che – come può verificarsi facilmente – si trova in corrispondenza di R = 1; possiamo

tracciare il grafico seguente che mostra l’andamento del guadagno relativo di rendimento all’aumentare di R da 0 a

1.

Il rendimento è sempre crescente con R, grazie al progressivo miglioramento offerto dall’effetto di molteplicità

delle sorgenti senza l’intervento dell’effetto Clausius mentre, ovviamente, non muta l’effetto Carnot. L’effetto

Clausius dominante, quello dovuto alla differenza finita di temperatura fra vapore spillato condensante ed acqua di

alimento entrante, è infatti nullo grazie al numero infinito di spillamenti (rigenerazione continua).

0 Rz 1 R

0R=ηη∆

0

0

0R =

=∞→

= ηη−η

η∆

R

R)R(z

“guadagno” di rendimento il massimo si ha per R = 1

Page 57: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

Appunti di Macchine 57

LA RIGENERAZIONE A GRADINO CON UN SOLO SPILLAMENTO DI VAPORE

Esaminiamo, quale caso particolare, un impianto dotato di

un solo rigeneratore, ovvero un solo spillamento in

corrispondenza al punto X della linea di espansione. Il

consueto diagramma (h -S) è accanto.

In generale le incognite del problema di progetto sono due

per ogni rigeneratore: portata di vapore spillato e posizione,

sulla linea di espansione (punto X), in corrispondenza della

quale si ha lo spillamento.

Lungo l’isobara Xx, la massa m di vapore spillato cede il calore m⋅(Hx- hx).

Questo calore viene somministrato al kg di liquido, in uscita dal condensatore, il quale acquista l’incremento

entalpico (hx - h0) = R λ, essendo R = (hx - h0)/(h1 - h0) = (hx - h0)/λ , per definizione di Grado di

Rigenerazione.

Cerchiamo, allora, quel valore o quei valori di X più favorevoli in termini di rendimento

( ) ( ) ( )[ ]x113

0'41z, hhhHm1

hH1

−+−+−−=η =R

Lo schema dell’impianto sarà il seguente

ed in questo caso non ci sono pompe di ripresa (P.R.), che in genere sono presenti in numero di (z-1) essendo z

il numero di rigeneratori.

1 m

massa al condensatore (= 1 kg) massa normalizzata corrispondente

all’unico spillamento effettuato

P.E. P.A.

C

H2O R

G.V.

T

A X

h

S

0

1

x [hx]

2

3

4 4’

X [Hx]

Page 58: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

IRA 58

Il bilancio termico dell’unico gradino di rigenerazione si può scrivere, per quanto già detto:

m(Hx - hx) = 1 ⋅ (hx - h0)

da cui I

R)h(f

RhHhh

mxx

0x λ≅λ=−−= dove λ = h1 - h0 ed

λ−=

−−= 0x

01

0x hhhhhh

R

si avrà allora ( ) ( ) ( )[ ]λ−++−==η

R1hfm1)h(f

11

01z,R

relazione valida per uno scambiatore a miscela20. Per f(h) = I = cost si avrà:

( )[ ] ( ) ��

���

� λ−+��

���

� λ+−=

−+��

���

� λ+−=η

λ=

IR11

IR1

11

R1I I

R1

I11z,R

dove η risulta funzione di R.

Si ha poi η = ηmax per il massimo valore del denominatore Ψ(R) della perdita di rendimento:

Ψ(R) = ( ) ��

���

� λ−+��

���

� λ+I

R11 I

R1

ovvero 21

R Rer 0dR

(R)dottimo ===Ψ

p

Se non avessimo considerato f(h) = cost avremmo

ottenuto un risultato di poco differente; sostituendo R=

0,5 si ha l’espressione di

I21

1

11 2max

��

���

� λ+−=η

Nel diagramma si vede che il valore ηmax si ha in corrispondenza al punto M che giace sulla congiungente i

punti estremi A e B.

Con un solo rigeneratore, per R crescente da 0 a ½ il rendimento cresce. Per R = 1, il guadagno di

rendimento è nullo come se non si effettuasse la rigenerazione. Quindi, la rigenerazione completa, effettuata con un

solo gradino, non apporta alcun beneficio al rendimento termodinamico del ciclo. All’aumentare di R, da 0 a 0,5

prevale il progressivo effetto positivo della molteplicità delle sorgenti. Da 0,5 a 1 prevale invece l’effetto negativo di

Clausius dovuto all’incremento del ∆T tra i fluidi entranti nel rigeneratore. Per R = 0,5 si ha il compromesso

ottimale.

20 Il RIGENERATORE a MISCELA, di notevole volume, assolve anche alla funzione di POLMONE dell’impianto e, perciò, sostituisce, tra

l’altro, il serbatoio a cielo aperto dell’impianto a circuito elementare.

1000

01 ⋅η

η−η

=

==

R

RR

0 1 R = 0,5 R A

M

B Z=∞

Z=1

Page 59: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

Appunti di Macchine 59

CENNO AI CASI DI RIGENERAZIONE A GRADINI CON PIÙ SPILLAMENTI DI VAPORE

Si supponga ancora l’impianto di base a ciclo Hirn semplice e si ipotizzi che tutti i rigeneratori siano a miscela. Il grado di rigenerazione totale R:

)hh( hh

010x1 �

�R −−= =

può essere considerato somma dei gradi di rigenerazione parziali Rk (k= 1,z):

k

z

1k

RR �=

=

essendo z il numero di spillamenti (e quindi il numero di rigeneratori presenti); il k-mo grado di rigenerazione

parziale Rk sarà ovviamente:

�R 1)(kx kx

k

hh +−=

e sarà anche: hx (z+1) = h0, avendo al solito approssimato *0h con h0.

L’espressione generale del rendimento termodinamico del ciclo sarà:

[ ]�h

h�

R)( m1

)(1

1k

z

1k

0zR,

� +��

���

� +−=

=f

f

e, ammettendo l’approssimazione:

f(h) ≈ I = cost

��

���

� +��

���

� +−=

= IR1 m1

11

��

k

z

1k

zR,

Il caso di z = 2 è particolarmente interessante dal punto di vista didattico, essendo analizzabile con facilità per

via grafica.

Dal bilancio termico dei due rigeneratori:

m2 f(hx2) = 1 × (hx2 - h0)

m1 f(hx1) = (1 + m2)(hx1 - hx2)

che, con l’ammissione semplificativa di f(h) ≈ I = cost , diventano:

m2 I ≅ R 2 λ � I

Rm 22λ=

m1 I ≅ (1 + m2) R1 λ � I

RI

R1m 121λ

��

���

� λ+=

per cui

( ) (a) I�

R1I�

R1mm1 2121 ��

���

� +��

���

� +=++

Page 60: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

IRA 60

Il grafico in figura mostra gli andamenti di m1, m2 e della loro somma al variare di R2 per un determinato valore

prefissato di R; tale grafico mostra come il massimo valore della somma (m1 + m2), e quindi anche il massimo

del rendimento si consegua, a parità di R = R1 + R2 , per R1 = R2 = R/2.

Per z qualsiasi, si dimostra facilmente21 la generalizzazione della (a)

( ) ∏� = ��

���

� λ+=+ z

1k kz

1 k IR1m1

e si perviene, per R totale prefissato, alla distribuzione ottimale dei gradi di rigenerazione parziali:

Rk = R/z

che risulta essere quella uniforme. In corrispondenza di essa, risulterà:

( ) zz

1 k I�

zR

1m1 ��

���

� +=+�

e si perviene facilmente alla condizione di rendimento ottimale assoluto per z spillamenti in corrispondenza di:

1zz

RR opt +==

tale condizione tende ad Ropt = 1 al tendere di z all’infinito, come dedotto indipendentemente analizzando

la rigenerazione continua.

21 Per maggiore dettaglio, si consulti il libro di testo “Gli impianti convertitori di energia” di C. Caputo, Casa Editrice Ambrosiana.

0 R2 ottimo R

m1

m2

m1 m2

R2

Somma delle portate normalizzate spillate m1 + m2

Page 61: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

Appunti di Macchine 61

La figura che segue mostra l’andamento del massimo guadagno di rendimento:

��

��

0

0z,R

0

opt� −=

in funzione di R rispetto al caso di ciclo non rigenerato:

+−=

1I�

11�0

nell’ipotesi di f(h) ≈ I = cost .

Si può notare che, incrementando z di uno, in corrispondenza di R=1 (rigenerazione completa) si ottiene lo stesso

vantaggio, in termini di rendimento, che si otteneva con z spillamenti e per R ottimale (R = z/(z+1) = Ropt); ciò è facilmente verificabile a mezzo di una semplice analisi energetica.

Le curve hanno un massimo per R = Ropt. A sinistra del massimo, prevale il beneficio in termini di effetto di

molteplicità delle sorgenti rispetto al nocumento in termini di effetto Clausius; a destra prevale invece il secondo. E’

infatti evidente che, a parità di z, all’aumentare di R aumenta la temperatura media delle sorgenti superiori del ciclo

(ferma rimanendo la temperatura delle sorgenti inferiori, pari alla temperatura di condensazione), mentre aumenta il

∆T finito fra la temperatura dei due fluidi entranti nel generico rigeneratore.

Il grafico dei rendimenti evidenzia anche che, all'aumentare di z, l'incremento di rendimento ottenibile con

l'aggiunta di uno spillamento è sempre più modesto. Per tale motivo non conviene incrementare il numero di

rigeneratori oltre un certo limite; per impianti di taglia (potenza nominale) molto piccola può essere presente un solo

rigeneratore (che sarà a miscela, ovvero il degassatore), mentre z sarà, in linea di massima, crescente con la taglia

dell'impianto sino a raggiungere valori di 7-8 per le taglie più elevate (molte centinaia di MW) dei gruppi a

surriscaldamenti multipli. La scelta di z va condotta nell'ambito dello studio di fattibilità tecnico-economica

dell'impianto, quale compromesso ottimale fra il guadagno conseguibile in termini di economia di esercizio (grazie

all'aumento di rendimento) e l'incremento degli oneri di investimento per la realizzazione dell'impianto, tenuto anche

Page 62: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

IRA 62

conto dell'affidabilità dell'impianto stesso che, a parità di livello tecnologico dei suoi componenti, decresce

all'aumentare del loro numero.

IL CIRCUITO DELL’ACQUA DI ALIMENTO NELLE PRATICHE APPLICAZIONI DEGLI IMPIANTI RIGENERATI

Si è fin qui ipotizzato, ai fini di disporre di un modello di calcolo semplice capace di fornire risultati in termini

espressioni semplici, generali e facilmente utilizzabili nei calcoli, di ammettere f(h) ≈ I = cost e di impiegare

rigeneratori esclusivamente a miscela. Questi ultimi presentano il vantaggio innegabile di un’altissima efficienza

termica, ma sono per contro ingombranti e pesanti, richiedono elevati spessori del mantello soprattutto per elevate

pressioni di spillamento e, infine, richiedono una pompa di ripresa, posta alla loro mandata, per convogliare l’acqua

di alimento al successivo rigeneratore, funzionante a pressione più elevata del precedente. Se z sono i rigeneratori,

l’impianto necessita di (z-1) pompe di ripresa che si aggiungono alle due pompe di base: quella di estrazione (dal

condensatore) e quella di alimento. Ogni pompa di ripresa, tra l’altro, dovrà essere dimensionata per una portata

dell’ordine della portata massima circolante nell’impianto.

Pertanto, nella pratica realizzazione degli impianti a vapore, vengono impiegati quasi esclusivamente rigeneratori

a superficie, tipicamente costruiti a fasci tubieri; dal lato mantello passa il vapore spillato e dal lato tubi l’acqua di

alimento. La condensa dello spillato di un generico rigeneratore può essere convogliata, anziché al rigeneratore

successivo a mezzo di pompa di ripresa, a quello precedente (funzionante a pressione inferiore) a mezzo di una

valvola di regolazione, come mostrano le due figure successive; la prima figura, (a), corrisponde ad un impianto a

semplice surriscaldamento (ciclo di base Hirn) e la seconda, (b), ad un impianto a doppio surriscaldamento.

Sotto il profilo dell’efficienza termica, il rigeneratore a superficie è meno vantaggioso di quello a miscela. Il

progetto di un rigeneratore a superficie, e in particolare il dimensionamento della sua superficie di scambio, è

dettato dall’assegnazione delle due differenze terminali di temperatura (v. figura):

∆t1 = te – tw out (es. 2, 1, 0, -1 gradi centigradi)

∆t2 = tc out – tw in (es. 5 gradi centigradi).

dove si è indicato con:

t = temperatura del vapore spillato (t ≥ te)

te = temperatura di equilibrio alla pressione di esercizio del

rigeneratore

tw = temperatura acqua (water) di alimento

tc = temperatura della condensa

in = indice ingresso nel rigeneratore

out = indice uscita dal rigeneratore.

I valori di ∆t1 sono dell’ordine di 2 °C per rigeneratori funzionanti a vapore saturo, possono scendere sino a -1 per spillamenti di surriscaldato (zone più alte dell’espansione).

t ≥ te

��

���

����

���

Page 63: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

Appunti di Macchine 63

Nonostante i vantaggi specifici dei rigeneratori a superficie, un rigeneratore a miscela è sempre inserito

nell’impianto (v. ancora figg. (a) e (b)). A valle di esso sarà presente una pompa che coinciderà con la pompa di

alimento. Se le condense degli spillati sono convogliate a monte, a mezzo di valvola di regolazione, nel circuito

dell’acqua di alimento saranno presenti due sole pompe: quella di estrazione, posta tra il condensatore ed il

rigeneratore a miscela (degassatore) e quella di alimento, posta tra quest’ultimo ed il generatore di vapore.

Il rigeneratore a miscela porta il nome di degassatore: operando in condizioni di equilibrio, assolve

brillantemente la funzione del degassagio del fluido, che non può essere garantita, con le desiderate tolleranze, dal

solo condensatore, ove viene operato un primo degassagio (a mezzo, ordinariamente, di eiettori funzionanti con

vapore ad elevate p e T spillato appositamente da una linea del vapore “vivo”).

Oltre a quella di rigeneratore a miscela, il degassatore assolve ad ulteriori funzioni:

� quella di degasare, asportando buona parte dell’ossigeno disciolto nell’acqua (e di altri residui gassosi),

indesiderabile sia per gli effetti della sua pressione parziale sulle prestazioni del ciclo sia per la sua

aggressività chimica nelle zone ad elevata temperatura dell’impianto;

� quella di polmone di liquido, sostituendo il serbatoio a cielo aperto dell’impianto elementare studiato in

precedenza, garantendo una stabile pressione di base dell’impianto stesso;

� quella di separatore del circuito dell’acqua di alimento in due linee: una alla pressione del degassatore

(garantita dalla pompa di estrazione) ed una alla pressione del generatore di vapore (garantita dalla

pompa di alimento), frazionando convenientemente l’altissimo ∆p del circuito dell’acqua di alimento.

Per impianti di grande taglia, il degassatore

viene realizzato secondo la configurazione a serbatoio

in pressione ad asse orizzontale e colonna a piatti (v.

fig.). La parte inferiore del serbatoio (S) è occupata dal

liquido, quella superiore dal vapore saturo in equilibrio

alla pressione di esercizio (prossima alla pressione del

vapore spillato). La colonna a piatti porta alla sua

sommità un orifizio destinato allo sfogo spontaneo dei

gas. Alla base della colonna viene convogliato il vapore

spillato, alla sommità la condensa già preriscaldata nei

rigeneratori a pressione più bassa. Il vapore,

ascendendo, condensa, la condensa, discendendo, si

riscalda e si accumula in (S). I gas incoercibili trovano

l’uscita attraverso l’orifizio superiore opportunamente

dimensionato. La pompa di alimento, come quella di estrazione, è installata sotto battente per scongiurare

l’insorgere di cavitazione. La pressione di esercizio del degassatore deve essere sufficientemente elevata per

favorire convenientemente la fuoriuscita del gas, ma non eccessivamente per non elevare troppo la pressione di

esercizio, che incide sullo spessore (e sul costo) del grande serbatoio ad asse orizzontale. In pratica, si adotta una

pressione di 4÷5 bar negli impianti a semplice surriscaldamento (fig. a) ed una di 6÷10 bar per quelli a

surriscaldamenti multipli (fig. b). Tali scelte sono dettate anche da motivi di ottimizzazione termodinamica

dell’impianto; di solito a monte ed a valle del degassatore si ha un numero di rigeneratori a superficie dello stesso

ordine, ad es. 2 o 3 negli impianti di grande taglia, per un totale massimo di 7÷8 rigeneratori o poco più.

Page 64: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

IRA 64

In diversi casi, per uno a al massimo due rigeneratori a superficie, la condensa dello spillato viene inviata, a

mezzo di pompa di ripresa, a valle anziché a monte, conseguendosi così un piccolo vantaggio in termini di

rendimento termodinamico. E’ in tale caso necessaria una pompa di ripresa, per il convogliamento della condensa

dello spillato, e non più una valvola di regolazione. Ciò comporta un maggior onere di costo dell’impianto; la

presenza della pompa richiede fra l’altro l’installazione di una seconda pompa di back-up per garantire la continuità

di funzionamento in caso di avaria della pompa stessa. Peraltro, il costo della macchina risulta più contenuto,

rispetto a quanto avviene in un impianto con rigeneratori tutti a miscela, poiché la portata della pompa di ripresa per

scambiatore a superficie è modesta, corrispondendo ad una contenuta percentuale (spillamenti) della portata

massima (di ammissione in turbina).

La fig. (b) riporta uno schema di impianto a duplice surriscaldamento in cui l’alta pressione (AP) e la media

pressione (MP) sono realizzate con un unico corpo di turbina, mentre la bassa pressione (BP) è realizzata su due

corpi (simmetrici per il bilanciamento delle spinte assiali sull’albero).

In altri casi, là dove le elevate portate lo richiedano, la crescita del volume specifico del vapore nel corso

dell’espansione impone già alla MP la realizzazione a “doppio corpo” e quella della BP a due “doppi corpi”,

ciascuno alimentato dalla mandata di un corpo di MP.

Un moderno gruppo a vapore a doppio surriscaldamento per centrale termoelettrica, dotato di appropriata

catena rigenerativa, può funzionare, a carico nominale, con un rendimento termodinamico dell'ordine del 40-42%.

Si sottolinea che l'adozione di un circuito dell'acqua di alimento semplificato (scambiatori tutti a miscela),

unitamente all'assunzione semplificativa di f(h) costante, ha permesso di condurre comodamente una facile

analisi termodinamica degli impianti, conseguendo risultati espressi da formule molto semplici e di validità del tutto

generale, con precisioni numeriche non esemplari ma tali da non stravolgere gli ordini di grandezza della realtà. Nel

caso di analisi termodinamiche fini, sia di progetto che di verifica, è ovviamente necessario fare ricorso ad un

modello fisico-matematico dell'impianto che rispetti la reale architettura del circuito dell'acqua di alimento e che

schematizzi realisticamente la legge f(h), consentendo di raggiungere, a mezzo di procedura di calcolo numerica,

risultati molto accurati per lo specifico gruppo analizzato.

Page 65: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

Appunti di Macchine 65

Fig. impianto (a).

Page 66: APPUNTI del CORSO di MACCHINE I - uniroma2.it€¦ · il compressore alternativo; di motrice, un motore a combustione interna a pistoni. ... 1 Dr Felix Wankel, (1902-1988), inventore

IRA 66

AP

MP

Pe

Pa

BP

R1

R2

R3

R4

R5R

6

R7

R8

Fig. impianto (b).