Antenne%planari%altamente%direttive% … ESA-ESOC . Danilo Saccoccioni . DISF ... Badrul Alam . PhD...

45
Antenne planari altamente direttive per investigazioni in spazio aperto e in scenari extraterrestri P. Baccarelli, V. Ferrara, F. Frezza, P. Simeoni, N.Tedeschi Primo Workshop Nazionale "La Componentistica Nazionale perlo Spazio: Stato dell’arte, Sviluppi e Prospettive",ASI Roma, Sala Auditorium, 1820 gennaio 2016

Transcript of Antenne%planari%altamente%direttive% … ESA-ESOC . Danilo Saccoccioni . DISF ... Badrul Alam . PhD...

Antenne  planari  altamente  direttive  per  investigazioni  in  spazio  apertoe  in  scenari  extraterrestri

P.  Baccarelli,  V.  Ferrara,  F.  Frezza,  P.  Simeoni,  N.  Tedeschi

Primo  Workshop  Nazionale  "La  Componentistica  Nazionale  per  lo  Spazio:  Stato  dell’arte,  Sviluppi  e  Prospettive",  ASI  Roma,  Sala  Auditorium,  18-­20  gennaio  2016

Electromagnetic Fields 2 Group People and Research topics

Electromagnetic Fields 2 Lab. website: http://labcem2.diet.uniroma1.it Prof. Fabrizio Frezza website: http://labcem2.diet.uniroma1.it/fabriziofrezza

18/01/2016 CEM2Group Pagina 3

People (1) The Team

Fabrizio Frezza, PhD Full Professor

Nicola Tedeschi, PhD Research Associate

Marco Muzi, PhD Research Associate

Roberto Laurita, PhD NTT DATA Company

Marco Tannino, PhD Vatican Radio

Fabio Mangini, PhD Research Associate

Muhammad Khalid PhD Student

Carlo Santini PhD Student

Vincenzo Ferrara Associate Professor

Fabrizio Timpani PhD Student

Simone Chicarella Technician

Santo Prontera PhD Student

Emiliano Sassolini PhD Student

Patrizio Simeoni PhD Student

Endri Stoja, PhD Epoka University Assistant Professor

Pietro Paolo Di Gregorio PhD Student

Enrico Lia PhD Student

Maria Denise Astorino PhD Student

18/01/2016 CEM2Group Pagina 4

Felice Maria Vanin, PhD ESA-ESTEC

Fabio Pelorossi PhD Student ESA-ESOC

Danilo Saccoccioni DISF - SISRI

Alessandro Palombo, PhD Research Associate

Fabrizio De Paolis, PhD ESA-ECSAT

People (2) The Others

Vincenzo Schena PhD Student Thales Alenia Space

Vincenzo Pascale PhD Student Space Engineering

Giuseppe Cotignola PhD Student NeCS-Servizi

Laura Rivaroli Restorer

Lorenzo Dinia PhD Student

Antonella De Ninno ENEA - Frascati

Marco C. Web Master

Badrul Alam PhD Student

Andrea Veroli PhD Student

18/01/2016 CEM2Group Pagina 6

EM-Fields Laboratory Available facilities (1)

Hardware •Radar GPR GSSI (Geophysical Survey Systems, Inc.) SIR 2000 with an antenna Radar Team SUB-ECHO HBD 300.

•Indoor and outdoor experimental facilities for underground measurements (at Cisterna di Latina site).

•Shielded anechoic chamber Emerson&Cuming with automatic positioning system for antenna measurements. •PNA Agilent E8363B (10 MHz-40 GHz), with time-domain option (010), calibration kit for rectangular waveguide WR-90 (8.2-12.4 GHz) Agilent X11644A, electronic calibration kit Agilent N4691B (3.5 mm, 300 kHz - 26.5 GHz). •Vector network analyzer, model HP8530A, suitable for antennas measurements.

•Portable field meters PMM 8053A (with probes EP330, EP33M, EHP50C) and Wandel & Goltermann EMR 300 (with probe Type 18), covering the whole band 5 Hz - 3 GHz. •Mixed analog-digital oscilloscope Tektronics MSO 2012. Software •Agilent 85071E, software for measuring the dielectric properties of materials.

•Comsol Multiphysics, with RF and AC/DC modules.

•Mathematica Personal Grid.

•Intel Visual Fortran with IMSL Numerical Library.

•Ansys HFSS, Designer, etc… .

•CST Studio Suite.

•FEKO.

•LabVIEW.

18/01/2016 CEM2Group Pagina 7

EM-Fields Laboratory Available facilities (2)

18/01/2016 CEM2Group Pagina 8

Research topics

Scattering by 2D/3D buried objects in lossy media

Metamaterials

Leaky-Wave Antennas

18/01/2016 CEM2Group Pagina 9

Scattering by Buried Objects Cylindrical Structures (1)

Wave Decomposition: • Incident • Reflected •Transmitted • Scattered • Scattered-Reflected • Scattered-Transmitted ?

( ) nimik rn n

me J e θρ

+∞⋅

=−∞

= ∑

i(1) ( ) nmmn m n

mc H e θρ

+∞

=−∞∑

N cylinders N reference systems ⇔

Dissipative media

The representation of these fields requires the plane-wave spectrum of

cylindrical functions.

18/01/2016 CEM2Group Pagina 12

The shape is different, the procedure is the same. Incident and scattered fields can be represented with the spherical-wave vector functions:

(1) (1)

1

(3) (3)

1

( ) ( )

( ) ( )

q

pq pqi pq pqq p q

q

pq pqs pq pqq p q

E a M r b N r

E c M r d N r

= =−

= =−

= +

= +

∑ ∑

∑ ∑

( ) ( ) ( )(1) ,pq q pqM r j mρ θ ϕ= ( ) ( ) ( )

( )( )(1) 1, ,qq

pq pq pq

jjN r p n

ρρθ ϕ θ ϕ

ρ ρ ρ

∂ = +∂

( ) ( ) ( )(3) (1) ,pq q pqM r h mρ θ ϕ=

( ) ( ) ( )( )

( )(1)(1)

(3) 1, ,qqpq pq pq

hhN r p n

ρρθ ϕ θ ϕ

ρ ρ ρ

∂ = +∂

( ),pqp θ ϕ( ), ,pqn θ ϕ( ), ,pqm θ ϕ

are the Tesseral Vector Functions. They are orthogonal

to one another!!

They are strongly connected with the Tesseral Scalar Function: ( ) ( ), cosp ippq qY P e ϕθ ϕ θ=

Scattering by Buried Objects Spherical Structures (1)

18/01/2016 CEM2Group Pagina 16

Metamaterials

Surfaces (FSS)

Bulk Substrates (EBG & PBG)

Structures that possess a spatial periodicity.

They can be 2D or 3D structures, with 1D, 2D, or 3D periodicity.

Analysis techniques: • Method of Moments with the Floquet analysis • Finite-Difference Time-Domain Method

18/01/2016 CEM2Group Pagina 15

1

2

3

Particles homogenization

Mixture homogenization

Measurement of permittivity with a coaxial probe

4 Estimation of the biomass and morphology

Post-processing (inversion 1,2)

Measure

Biomass Morphology

CellTer – Italian Space Agency (ASI) research project 3D evaluation techniques of cellular growth and morphology in microgravity conditions through electromagnetic diffraction

On COST Action TU1208“Civil Engineering Applications of

Ground Penetrating Radar”

COST Action TU1208: Basic Information

Chair of the ActionLara Pajewski (IT)“Roma Tre” [email protected]

Vice-Chair of the ActionAndreas Loizos (EL)National Technical University of Athens

Science & Administrative OfficersThierry Goger & Carmencita Malimban (BE)COST Office

Start date – End date4th April 2013 – 3rd April 2017

You can still join the Action !!

Website of COST Action TU1208: www.GPRadar.euDownload the MoU at www.cost.eu/domains_actions/tud/Actions/TU1208

COST & NNC Participants20 COST Countries• Austria• Belgium• Croatia• Czech Republic• Finland• France• Germany• Greece• Italy• Latvia• Malta• Macedonia• The Netherlands• Norway• Poland• Portugal• Spain• Switzerland• Turkey• United Kingdom

1 Near NeighbourCountry

• Armenia

Non-COST Participants

• Australia• Hong Kong• Japan• U.S.A.

Project 1.1

Project 1.2

WG1Novel GPR Instrumentation

Design, realization and optimization of innovative GPRequipment for the monitoring of critical transportinfrastructures (pavements, bridges and tunnels)

Development and definition of advanced testing,calibration and stability procedures and protocols, forGPR equipment

ChairGuido Manacorda (IT)IDS Ingegneria dei Sistemi

Vice-ChairLuca Gamma (CH)Scuola Universitaria Professionaledella Svizzera Italiana

Working Group 1

Innovative inspection procedures for effective GPR surveying of …

Project 2.1 …critical transport infrastructures (pavements, bridges and tunnels)

Project 2.2 …buildings

Project 2.3 …underground utilities and voids, with a focus to urban areas

Project 2.4 …construction materials and structures

Project 2.5 Determination, by using GPR, of the volumetric water content in structures, sub-structures, foundations and soil

WG2GPR Surveying of Pavements,

Bridges, Tunnels, Buildings –Utility and Void Sensing

ChairChristina Plati (EL)National Technical University Athens

Vice-ChairXavier Derobert (FR)IFSTTAR

Working Group 2

Project 3.1 Development of new methods for the solution of forward electromagnetic scattering problems by buried structures

Project 3.2 Development of new methods for the solution of inverse electromagnetic scattering problems by buried structures

Project 3.3 Development of intrinsic models for describing near-field antenna effects, including antenna-medium coupling, for improved radar data processing using full-wave inversion

Project 3.4 Shape-reconstruction and quantitative estimation of electromagnetic and physical properties from GPR data

Project 3.5 Development of advanced data processing techniques

WG3EM Methods for Near Field Scattering Problems – Data

Processing Techniques

ChairAntonis Giannopoulos (UK)University of Edinburgh

Working Group 3

18/01/2016 CEM2Group Pagina 26

Leaky-Wave Antennas

The electric field of a plane wave with: k iβ α= +

0 ,ik rE E e ⋅=

0α =

0β α⋅ =

(homogeneous waves)

(inhomogeneous waves)

surface wave (proper)

leaky wave (improper)

In a lossless medium holds:

α

β

βα

In open waveguides, Leaky modes are related to radiation losses.

18/01/2016 CEM2Group Pagina 28

a

b w y

x

z

P.E.C.

TE1,0

da'

c

FDTD method applied to study Leaky-Wave Antennas

Leaky-Wave Antennas Microwave frequencies

18/01/2016 CEM2Group Pagina 29

Leaky-Wave Antennas Optical frequencies

18/01/2016 Pagina 30

European School of Antennas (ESoA) course on: Leaky waves and periodic structures for antenna applications

CEM2Group

4th Edition of the Course: Rome, April 14-17, 2014

www.esoa-web.org

Temperature Sensor

Moisture Sensor

Level and pressure detectors with

energy harvesting

Microcontroller PIC and Transceiver

GPS navigation

data

Remote sensing

WSN – Smart Objects Each node includes: • one or more sensors • a microcontroller • a power source • a communication device.

Input interface of Information System GIS

Image sensor for target detection

WSN and/or Remote Sensing for monitoring of a scenario

18/01/2016 CEM2Group Pagina 34

18/01/2016 CEM2Group Pagina 37

Principal collaborations • Department of Engineering (at Roma Tre University)

• Department of Radio Science and Engineering (at Aalto University, Finland)

• Humanitarian Demining Laboratory (at “La Sapienza” University)

Non-­uniformwave propagationin  lossy media  

Homogeneous  plane  waves

x

y

1ε 2 2 2jε ε εʹ′ ʹ′ʹ′= −

• First  medium  is  lossless,  second    medium  is  dissipative

• Homogeneous   incident  wave

• Incident  angle  

• The  transmitted  wave  is  attenuated  in  a  direction  perpendicular  to  the  interface  

Inhomogeneous  plane  waves

What  if  the  incident  wave  is  inhomogeneous?   (i.e.  Leaky  wave)    

x

y

1ε 2 2 2jε ε εʹ′ ʹ′ʹ′= −

• The  incident  wave  presents  attenuation    perpendicular  to  the  phase  (energy)  propagation  direction

• The  transmitted  wave  presents  attenuation  in  a  direction  not  perpendicular  to  the  interface

• The  transmitted  angles  and  magnitudes  can  be  computed  analytically.

Total  transmissionin  lossy media

The  conditions  on  such  angles  to  obtain  the  total  transmission  are:

where          and                are  the  principal  arguments  

of  the  complex  numbers                                            and                                                                ,    respectively    

If  the  first  medium  is  dissipative,  the  incident  wave  is  characterized,  as  seen  before,  by  two independent angles

Total  transmissionin  lossy media

The  conditions  on  such  angles  to  obtain  the  total  transmission  are:

where          and                are  the  principal  arguments  

of  the  complex  numbers                                            and                                                                ,    respectively    

If  the  first  medium  is  dissipative,  the  incident  wave  is  characterized,  as  seen  before,  by  two independent angles

The  conditions  are  of  extreme  interest  because  they  reduce  to  the  well  known  total  transmission  condition  when  the  two  media  become  lossless

Total  transmissionin  lossy media

The  conditions  in  this  case  assume  the  following  form:

If  the  first  medium  is  lossless,  the  incident  wave  is  characterized  just  by  the  magnitude  of  the  phase  vector  and  the  incident  angle  (this  is  because  the  angle  between  the  constant-­

phase  and  constant-­amplitude  planes  is  fixed  by  the  dispersion  equation)

where            is  the  complex  number    

x

y

1ε 2 2 2jε ε εʹ′ ʹ′ʹ′= −

Results

A  2D  view  of  the  magnetic  field  (perpendicular  to  the  plane  of  incidence)

Total  transmission  between  two  lossless  dielectric  (no  reflected  wave)

Maximum  transmission  between a  lossless and  

a  lossy medium  

Total  transmissionbetween a  lossless and  

a  lossy medium

Results

Comparisons:  homogeneous vs.  inhomogeneous   incident  wave

Seawater  – Wet  Sand  interface Air  -­ Seawater

(Solid  line) (Dashed  line)

Research  objectivesThe  experimental  verification  of  the  theory  requires  to  generate  a  leaky  wave  with  the  appropriate  characteristics.

We  are  analyzing     different  technologies   in  order  to  find  the  most  suitable  for  our  purpose.

Microstrip LWA  -­‐ Design

• Results  for  this  antenna  are  still  under  analysis

Leaky  Wave  antenna  Modulo  del  campo  elettriconormalizzatoRispetto al  valoreall’interfaccia.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

103

106

109

112

115

118

121

124

sigma=0 sigma=0.03 sigma=0.05 sigma=0.08

Horn  antenna  

0

0,2

0,4

0,6

0,8

1

1,2

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

103

106

109

112

115

118

121

sigma=0 sigma=0.03 sigma=0.05 sigma=0.08

Modulo  del  campo  elettriconormalizzatoRispetto al  valoreall’interfaccia.

Dipole  antenna  Modulo  del  campo  elettriconormalizzatoRispetto al  valoreall’interfaccia.

0

0,2

0,4

0,6

0,8

1

1,2

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101

105

109

113

117

121

125

129

sigma=0 sigma=0.03 sigma=0.05 sigma=0.08

Lossy Prism  -­‐ Description• Using  the  conservation  of  the  tangential  component  properties  it  is  possible  to  turn  a  homogeneous  into  a  non-­‐homogenous  plane  wave.

β3

β1

β2

α1

α2σ=0

σ=0

σ>0

1. Wave  coming  from  medium  1  (non-­‐lossy)  is  supposed  to  have  no  attenuation.

2. Attenuation  in  the  lossy medium  2  has  to  exist  and  it  must  be  normal  to  the  separation  surface.

3. Attenuation  out  of  the  medium  2  and  back  in  the  medium  1  can  only  be  normal  to  the  separation  surface  or  null.

The  lossy prism  must  be  realised  so  that  attenuation  and  phase  vector  are  normal!

Design  and  realizationof  acheap  GPR  prototype@  2.45  GHz

Radar  system  design  options

Block  diagram  of  FMCW  radar

Unit  price Quantity Total   price Model  Number Description Factory€ 13.23   2 € 26.46   OP467 OP467  low-­‐noise  quad  opamp  -­‐ sostituisce  MAX414CPD+ Analog Device€ 1.48   2 € 2.96   LM2940CT-­‐5.0-­‐ND 5V  low  dropout  regulator Texas   Instruments

€ 9.20   1 € 9.20   AD5932YRUZ Function  Generator   Chip  AD5932YRUZ,  TSSOP  16  pin  sostituisce  XR2206P-­‐F  Function  Generator  Chip Analog Device

€ 9.12   5 € 45.60   901-­‐9889-­‐RFX   SMA  bulkhead  F  solder  cup  Coaxial  Connectors  BLHD  JCK  S/CUP  Ni  -­‐ AMPHENOL  RF    901-­‐9889-­‐RFX   Mouser

€ 46.20   1 € 46.20   ZX95-­‐2536C+ 2315-­‐2536  MC  VCO,+6  dBm  Out Mini-­‐Circuits€ 14.34   1 € 14.34   VAT-­‐3+ FXD  SS  Attenuator Mini-­‐Circuits

€ 41.06   2€ 82.12  

ZX60-­‐272LN-­‐S+BROADBAND  AMPL  Gain  14  dB,  NF=1.2  dB,   IP1=  18.5  dBm

Mini-­‐Circuits

€ 35.93   1 € 35.93   ZX10-­‐2-­‐42+ PWR  SPLTR  CMBD  1900-­‐4200  Mc,  0.1dB  insertion  loss Mini-­‐Circuits€ 47.74   1 € 47.74   ZX05-­‐43MH-­‐S+ DBL  BAL  MIX  13  dBm  LO,  RF   to  LO  loss  6.1  dB,  IP1  9dBm Mini-­‐Circuits€ 6.12   4 € 24.48   SM-­‐SM50+ ADAPTER   SMA-­‐SMA  M-­‐M  barrel Mini-­‐Circuits€ 11.26   3 € 33.78   086-­‐12SM+ HFLEX  BL  CA  SM/SM  12"  SMA-­‐SMA  M-­‐M  6"  cable Mini-­‐Circuits

€ 4.00   Capacitors  € 8.00   Resistors  and  Trimmers

Subtotal € 380.81  Tax 23% € 87.59  TOTAL € 468.40  

Bill  of  Material

…+  price  of  antennas  

1.5  GHz  antenna  CST-­‐modelled geometry

Thank you for  your attention