6 - Genetica immunoglobuline 2009-10

49
1 Corso di Immunologia A.A. 2009-10 Genetica immunoglobuline Generation of diversity (GOD-I)

Transcript of 6 - Genetica immunoglobuline 2009-10

1

Corso di Immunologia

A.A. 2009-10

Genetica immunoglobulineGeneration of diversity (GOD-I)

2

Dreyer e Bennet ipotizzarono che le regioni V e C delle

immunoglobuline fossero codificate da 2 geni distinti e tale

ipotesi é stata confermata sperimentalmente da Tonegawa

(che nel 1976 scoprì il Riarrangiamento genico somatico,

valso il Nobel nel 1987).

Immunoglobulin GeneticsHistory

Due geni per una proteina.

The hypothesis of Dreyer and Bennet (1965): single germline genes encodeIg constant regions, whereas multiple separate V region genes encode V regions.

3

Figure 4-24Terminologia necessaria

4

Amino acid sequencing data revealed that a single C region

could be associated with many different V regions.

A single idiotype could be associated with different C regions

(eg. IgM and IgG). To explain these data it was suggested that

perhaps the two regions of the Ig molecule were coded by

separate genes and that the V and C region genes were

somehow joined before an Ig molecule was made (i.e. there

were two genes for one polypeptide).

Immunoglobulin GeneticsHistory

Due geni per una proteina.

5

This was a revolutionary concept but with the advent of

recombinant DNA technology, it has been shown to be the

correct.

The Ig heavy and light chains are coded by three separate gene

families each one on a separate chromosome - one for the

heavy chain and one for each of the light chain types (kappa

and lambda).

Each of these gene families has several V region genes and one

or more C region genes.

Immunoglobulin GeneticsHistory

Due geni per una proteina.

6

Specificità antigeniche: variabilità delle sequenze aa della regione V.

Funzione effettrice e trasmissione del segnale: regione C.

Segmenti genici riuniti con la ricombinazione somatica del DNA: Riarrangiamento genico.

La regione V è soggetta a Ipermutazione somatica in seguito al legame Anticorpo-Antigene.

Switch isotipico (scambio dell’isotipo).

Concetti fondamentali

7

Immunoglobulin GeneticsHistory

• Same C region could associate with many V regions– IgG with different specificities

• Same V region could associate with many C regions– Same idiotype on IgG and IgM

• V and C regions coded by separate genes

8

Generation of diversity (1)

• I geni per le catene H, kappa e lambda (L) sono su cromosomi diversi (12, 16, 6 nel topo e 14, 2, 22 nell'uomo) e un primo livello di variabilita` consiste nella scelta di unire una particolare catena H con una L (livello a).

• I geni V sono composti di 2 subunita` per L (chiamate V e J) e di 3 per H (chiamate V, D, J, situate in quest'ordine lungo il cromosoma). La subunita` J e` posta a valle di V ed a monte di C: la sua funzione e` di congiungere (Joining) V a C. La subunita` D prende il nome da "Diversity". Recenti approssimazioni suggeriscono che vi sono circa 300 geni VH, 300 Vk, 2 Vl (questo spiega in parte perche` la maggior parte delle Ig sono composte dalla catena L kappa e non L lambda), 20 geni DH, 5 geni JH, Jk e Jl. Quindi tramite ricombinazione casuale possiamo ottenere milioni di catene (livello b) con diverse regioni V.

9

Generation of diversity (2)• Nelle cellule non differenziate i geni che codificano per V, J e

C (catene L) e i geni che codificano per V, J, D e C (catene H)sono distanti ed il differenziamento comporta una delezione di gran parte del DNA frapposto con finale riarrangiamento dei geni V, J, D e C che verranno a trovarsi vicino ma non attigui per la presenza di introni. (1 evento di ricombinazione per catene L e 2 per catene H).

• Il complesso V-J-(D)-C viene trascritto in un lungo pre-mRNAche a livello nucleare viene modificato mediante taglio degli introni e ricongiunzione (splicing) (livello c). Il meccanismo con cui V-J e V-D-J si uniscono e` dovuto alla presenza, immediatamente dopo e prima di ciascun segmento genico, di sequenze omologhe di 7 (eptamero) e di 9 (nonamero) basi che risultando complementari consentiranno l'unione V-J, V-D-J. Dodici basi dopo l'eptamero e prima del nonamero e 23 basi presenti dopo il nonamero e prima dell'eptamerorappresentano i corrispettivi segnali di giunzione.

10

Figure 4-5Affinchè i riarrangiamenti del DNA avvengano nei punti giusti delle sequenze V, D, o J:

Ci sono sequenze segnale di ricombinazione (RSS), adiacentI alle sequenze codificanti per i segmenti V, D, e J.

La ricombinazione avviene fra geni sullo stesso cromosoma, secondo la regola 12/23.

(La giunzione V(D)J è imprecisa e aggiunge ulteriore variabilità alla sequenza della regione V.)

Giunzione V(D)J(mediata da RAG1/2, geni che attivano la ricombinazione)

11

Generation of diversity (3)

• La diversita` anticorpale e` inoltre aumentata considerevolmente dal fatto che si verificano slittamenti di alcuni nucleotidi nelle giunzioni V-D-J e V-J, con conseguente creazione di diverse sequenze amminoacidiche. Questi slittamenti modificano solo di 1-2 aminoacidi la regione variabile, sufficiente per alterare la conformazione deldominio V e quindi il legame Ag-Ig (livello d).

• I geni V vanno incontro a mutazione somatica nel corso della proliferazione cellulare indotta dall'interazione con l' antigene molto piu` frequentemente dei geni C. Le mutazioni somatiche (livello e) avvengono principalmente per le IgG ed IgA e sono responsabili della modificazione dell'affinita` per l' antigene delle Ig.

12

Questi livelli di diversita` (a, b, c, d, e) portano a produrre almeno 100 miliardi di molecole Ig diverse partendo da un limitatissimo numero di geni.

Generation of diversity (3.1)

13

Generation of diversity (4)Schema dei livelli che portano alla Diversita` anticorpale.

a) combinazione H-Lb) grande numero dei geni VH, DH, JH, VL, JLc) meccanismi ricombinatoriali (VH x DH x JH; VL x

JL) (combinatorial association of V-J and VDJ joining)

d) slittamenti giunzionali (VH-DH; DH-JH; VL-JL)(junctional diversity mediated by errors and N-region insertion of Non-templated nucleotides)

e) mutazione somatica (somatic mutation)

f) Multispecificity (cross reaction between antigenic determinants of similar structure)

14

Commutazione di classe (1)• Commutazione di classe: la capacità dei linfociti B di

esprimere sulla membrana IgM ed IgD, cioè di esprimere Ig con diversa regione C ma con la stessa regione V(medesimo allotipo ed idiotipi ma diverso isotipo).

• Riarrangiamenti (che consentono la commutazione di classe): consistono nel trasferimento delle sequenze geniche V-D-J da Cm ad altre sequenze C che codificano per gli altri isotipi di catene pesanti. Tali fenomeni coinvolgono la ricombinazione di speciali segmenti, chiamati regioni " Switch" (regioni S), che precedono di circa 2-3 kbp ogni gene CH eccetto Cd. Ciascun gene CH é costituito da tanti esoni quanti sono i singoli domini che costituiscono le porzioni costanti delle catene pesanti ( 3 per IgG, IgA, IgD e 4 per IgM ed IgE). Tra gli esoni CH1 e CH2 dei geni Cg sono presenti delle porzioni geniche H (hinge) che codificano per la regione cerniera.

15

Commutazione di classe (2)Sono stati proposti due meccanismi molecolari per spiegare la

commutazione di classe e quindi la ricombinazione S-S:1) in seguito a delezione di materiale genico (evento

unidirezionale ed irreversibile)2) con scambio tra cromatidi fratelli e quindi introduzione di più

copie di geni C senza eliminazione di materiale genetico. Le interazioni specifiche tra differenti regioni S possono essere

attivate da proteine che riconoscono sequenze specifiche delle regioni S.

Ogni singolo clone linfocitario può commutare più volte fino all'espressione di IgA, il cui gene é ultimo nella regione C (organizzazione genica del topo).

La commutazione di classe sembra essere regolata da fattori solubili prodotti dai linfociti T (linfochine e citochine).

16

Commutazione Ig-membrana - Ig-secretoria (Igm-Igs).

Le Ig di membrana sono ancorate alla cellula grazie alla presenza nella porzione carbossiterminale di 41 aa idrofobici. Quando un linfocita B in seguito alla interazione con l'antigeneinizia a secernere Ig, avviene un fenomeno di "switch" che coinvolge la processazione dell’RNA trascritto. Quindi se la trascrizione si arresta in corrispondenza di una piccola porzione S, si ottiene una Ig secretoria, mentre se la trascrizione procede, la saldatura rimuove S e si avrà una Ig di membrana.

Nella plasmacellula esiste un meccanismo in grado di far bloccare la trascrizione ad S in modo da avere Ig di tipo secretorio.

17

Immunoglobulin GeneticsGerm line gene organization

• The organization of the kappa and lambda light chain genes in the germ line or undifferentiated cells:

18

Immunoglobulin GeneticsGerm line gene organization

Lambda light chains

• The lambda gene family is composed of 4 Cregion genes, one for each subtype of 8 chain, and approximately 30 V region genes. Each of the V region genes is composed of two exons, one (L) that codes for a leader region and the other (V) that codes for most of the variable region. Upstream of each of the C genes there is and additional exon called J (joining). The L, V, J and C exons are separated by introns (intervening non-coding sequences).

19

Immunoglobulin GeneticsGerm line gene organization

Kappa light chains

• The kappa light chain gene family contains only one C region gene, since there is only one type of kappa light chain. There are many V region genes (approximately 250) each of which has a leader exon and a V exon. In the 6 gene family there are several J exons located between the V and C genes.

20

Light Chain Gene FamiliesGerm line gene organization

J 1 C1

E

J 2 C2

E

J 3 C3

E

J 4 C4

EP

L V 1

P

L V n

P

L V 2

Lambda light chain genes; n=30

P

L V 1

P

L V n

P

L V 2 J 2 J 3 J 5 C

E

J 1 J 4

Kappa light chain genes; n=300

21

• As a cell differentiates into a mature B cell that will

make a light chain, there is a rearrangement of

the various genetic segments (‘exon’).

• As a cell commits to become a B cell making a

light chain, there is a rearrangement of the genes

at the DNA level such that one of the V genes is

brought next to one of the J regions.

Light Chain Gene FamiliesGene rearrangement and expression

22

• This occurs by a recombination event which

removes the ‘intron’ between the V and J regions.

The selection of which V gene is used is not

totally random; there is some preference for the

use of V genes nearest to the J regions. With time

all V genes can be used so that all combinations

of V genes and J regions can be generated.

Light Chain Gene FamiliesGene rearrangement and expression

23

Light Chain Gene FamiliesGene rearrangement and expression

L V 1 L V nL V 2 J 2 J 3 J 5 CJ 1 J 4

DNAP PP E

P P E

L V 1 L J 5 CV 2 J 4

DNA

DNA Rearrangement

V CJ

V C

Protein

Transport to ER

Protein

TranslationCL V J

E

L V CJ

RNA

Transcription

Primary transcript

CL V JRNA Processing

RNAmRNA

Kappa light chain genes; n=300

24

J1

C1

E

J2

C2

E

J3

C3

E

J4

C4

EP

L V1

P

L Vn

P

L V2

Lambda light chain

L V 1 L V nL V 2 J 2 J 3 J 5 CJ 1 J 4

DNAP PP E

P P E

L V 1 L J 5 CV 2 J 4

DNA

DNA Rearrangement

V CJ

V C

Protein

Transport to ER

Protein

TranslationCL V J

E

L V CJ

RNA

Transcription

Primary transcript

CL V JRNA Processing

RNAmRNA

Kappa light chain

Light Chain Gene Families

25

• A consequence of this DNA rearrangement is that

the gene becomes transcriptionally active

because a promoter (P), which is associated with

the V gene, is brought close to an enhancer (E),

which is located in the intron between the J and C

regions.

Light Chain Gene FamiliesGene rearrangement and expression

26

• As transcription initiates from the promoter a pre-

mRNA is made which contains sequences from

the L, V, J and C regions as well as sequences for

the introns between L and V and between J and

C. This pre-mRNA is processed (spliced) in the

nucleus and the introns are removed. The

resulting mRNA has the L, V J and C exons

contiguous.

Light Chain Gene FamiliesGene rearrangement and expression

27

• The mRNA is translated in the cytoplasm and the

leader is removed as the protein is transported

into the lumen of the endoplasmic reticulum.

• The light chain is assembled with a heavy chain in

the endoplasmic reticulum and the Ig is secreted

via the normal route of secretory proteins.

Light Chain Gene FamiliesGene rearrangement and expression

28

Heavy Chain Gene FamilyGerm line gene organization

Heavy chain genes; Vn=1000, Dn=15

P

L V1

P

L Vn

P

L V2 D2 D3D1 Dn

C C C3

CC2

C1

C4

C1

C2

J2 J3 J5J1 J4

E

CH1 H CH2 CH3 CH4

29

P

L V1 P

L VnP

L V2

D2 D3

D1 Dn

C CJ2

J3

J5

J1

J4 E

DJ rearrangement

P

LP

LP

LE

DNA

VDJ rearrangement

EP

LP

L DNA

Transcription

E Primary transcript E

J4

D2

V2

C CJ5

L C CJ5

L D2

J4

V2

RNA Processing

AnmRNA for C

CL DJV CL DJVAnmRNA for C

Translation

C heavy chain

CL DJV CL DJV

C heavy chain

Transport to ER

C heavy chainV C

CDJV CDJV

C heavy chainV C

RNA

30

• In the heavy chain gene family there are many C genes,

one for each class and subclass of Ig. Each of the C

genes is actually composed of several exons, one for each

domain and another for the hinge region. In the heavy

chain gene family there are many V region genes, each

composed of a leader and V exon.

Heavy Chain Gene FamilyGerm line gene organization

31

• In addition to several J exons, the heavy chain gene

family also contains several additional exons called the D

(Diversity) exons.

Heavy Chain Gene FamilyGerm line gene organization

32

Heavy Chain Gene FamilyGene rearrangement and expression

P

L V1

P

L Vn

P

L V2 D2 D3D1 Dn C CJ2 J3 J5J1 J4

E

DJ rearrangement

P

L Vn

P

L V1

P

L V2 D2D1 C CJ5J4

EDNA

VDJ rearrangement

D2 C CJ5J4

EP

L V1

P

L V2

DNA

Transcription

D2 C CJ5J4

E

L V2

RNAPrimary transcript

33

As a cell commits to become a B cell making a heavy chain,

there are two rearrangements at the DNA level.

• 1) One of the D regions is brought next to one of the J

regions and then one of the V genes is brought next to the

rearranged DJ region.

• 2) This occurs by two recombination events which remove

the introns between the V, D and J regions. As with the light

chains the selection of the heavy chain V gene is not totally

random but eventually all of the V genes can be used.

Heavy Chain Gene FamilyGerm line gene organization

34

Figure 4-2

35

Heavy Chain Gene FamilyGerm line gene organization

•As DNA rearranges and genes becomes transcriptionally active, a pre-mRNA is made, like for the light chains, but here it contains also the D sequence among V and J (L, V, D, J C).

• The pre-mRNA is processed (spliced).

•The pre-mRNA can be processed in two ways, one to bring the VDJ next to the C gene and the other to bring the VDJ next to the C* gene. The resulting mRNAs have the L, V, D, J and C: or C* exons contiguous and will code for a mu and a gamma chain, respectively.

• Finally, the V region of the mature heavy chain is coded for bysequences in the V gene, D region and J region and the C region by sequences in the C gene.

36

Heavy Chain Gene FamilyGene rearrangement and expression

EPrimary transcript

E

J4D2V2 C CJ5L C CJ5L D2 J4V2

RNA Processing

An

mRNA for C

CL DJV CL DJV

An

mRNA for C

Translation

C heavy chain

CL DJV CL DJV

C heavy chain

Transport to ER

C heavy chainV C

CDJV CDJV

C heavy chain

V C

37

Origin of Antibody DiversityCurrent concepts

• Our current thinking is that both the germ line and somatic mutation theories have some merit. It is thought that antibody diversity is generated by the following mechanisms.

1 - Large number of V genesa) 30 lambda V genesb) 300 kappa V genesc) 1000 heavy chain V genes

38

Origin of Antibody DiversityCurrent concepts

2 - V-J and V-D-J joiningThe region where the light chain V gene and J region or the

heavy chain V gene and D and J regions come together is in the 3rd hypervariable region. Since it is random which V and which J or D regions come together, there is a lot of diversity that can be generated by V-J and V-D-J joining.

39

Origin of Antibody DiversityCurrent concepts

3 - Junctional diversityInaccuracies in V-J and V-D and D-J recombination.

Recombination between V-J and V-D-J is not always perfect and additional diversity can arise by errors that occur in the recombination event that brings the V region next to the J or D regions or the D region next to the J region.

It is estimated that these inaccuracies can triple the diversitygenerated by V-J and V-D-J joining. The diversity generated by this mechanisms is occurring in the 3rd hypervariable region and thus, is directly affecting the combining site of the Ab.

40

Origin of Antibody DiversityCurrent concepts

• Multiple V genes

• V-J and V-D-J joining• Junctional diversity• N region insertions

– Amino acid sequences not encoded in the germ line (Non-templatednucleotides)

D region

T GGC CC

Pro Trp

C C C C C C

V gene

T GG

D region

C C C C C C

V gene

T GG

C GGC CC

Pro Arg

C C C C C C

V gene

T GG

D region

C GCC CC

Pro Pro

41

Origin of Antibody DiversityCurrent concepts

4 - N region insertionAt the junction between D and J segments there is often an

insertion of a series of nucleotides which is catalyzed by the enzyme terminal transferase. (Terminal transferasecatalyzes the radom polymerization of nucleotides into DNA without the need for a template). This leads to further diversity in the 3rd hypervariable region.

42

Origin of Antibody DiversityCurrent concepts

5 - Somatic mutationThere is evidence that somatic mutations are occurring in the

V gene, particularly in the place that codes for the 2nd hypervariable region. Thus, somatic mutation probably contributes to Ab diversity to some extent.

43

Origin of Antibody DiversityCurrent concepts

6 - Combinatorial association (of H and L chains).Any individual B cell has the potential to make any one of the

possible heavy chains and any one of the possible light chains. Thus, different combinations of heavy and light chains within an individual B cell adds further diversity.

44

Origin of Antibody DiversityCurrent concepts

7 - MultispecificityDue to cross reactions between antigenic determinants of

similar structure an antibody can often react with more than one antigenic determinant. This is termed multispecificity. (which contributes to Ab diversity).

45

Generation of DiversityB cell receptor

(Immunoglobulin)

Heavy Light

V gene segments 1000 300 D gene segments 15 -

J gene segments 4 4

N region insertion ++ -

Junctional diversity +++ +

Somatic mutation + +

V x D x J 1000 x 15 x 4

V x J 300 x 4

Total 6 x 104 1.2 x 103

Combinatorial association 7.2 x 107 • Ag independent process • Clonal selection

These calculations do not take into consideration the contributions of lambda light

chains, somatic mutation junctional diversity, N region insertions or multispecificity.

46

Figure 4-9Ipermutazione somatica

47

Generation of Diversity

The process of gene rearrangement of the heavy and light chains and the combinatorial association of these chains occurs during B cell development and is independent of antigen.

Clones of B cells expressing all of the possible antibody specificities are produced during development and antigen simply selects those clones which have the appropriate receptor (Ipermutazione somatica). The selected clones are then activated, proliferate and differentiate into antibody secreting plasma cells (antigen-dependent event).

48

Figure 4-13Generation of Diversity

49

How do you consider the Ig GOD?

Polyallelic?

Polygenic?