Robustezza Strutturale

Post on 15-Apr-2017

345 views 3 download

Transcript of Robustezza Strutturale

ROBUSTEZZA STRUTTURALE

Franco BontempiProfessore Ordinario di Tecnica delle Costruzioni

Facolta’ di Ingegneria Civile e IndustrialeSapienza Universita’ di Roma

franco.bontempi@uniroma1.it

Requisiti

2

Requisiti strutturali

Condizioni• di esercizio: Rigidezza•

Condizioni• ultime: Resistenza•

Stabilita• ’

Duttilita• ’

Durabilita• ’

Condizioni• estreme:Robustezza•

Resilienza•

Configurazione• nominaledella struttura

Configurazione• danneggiatadella struttura

3

Robustezza / Durabilita’

4

RESILIENCE

5

Definizioni

6

Levels of Structural Crisis

Usu

al

UL

S &

SL

S

Ve

rifi

ca

tio

n F

orm

at

Structural Robustness

Assessment

1st level:

Material

Point

2nd level:

Element

Section

3rd level:

Structural

Element

4th level:

Structural

System 7

8

Structural Robustness (1)

ATTRIBUTES

RELIABILITY

AVAILABILITY

SAFETY

MAINTAINABILITY

INTEGRITY

SECURITY

FAILURE

ERROR

FAULT

permanent interruption of a system ability

to perform a required function

under specified operating conditions

the system is in an incorrect state:

it may or may not cause failure

it is a defect and represents a

potential cause of error, active or dormant

THREATS

NEGATIVE CAUSEST

RU

CT

UR

AL

QU

AL

ITY

more robust

less robust

Capacity of a construction to show • regular decrease of its structural quality due to negative causes.

It implies: •

some smoothness of the decreasea) of structural performance due to negative events (intensive feature); some limited spatial spreadb) of the rupture (extensive feature).

9

Structural Robustness (2)

1010

Compartimentazione

11

12

13

Es.

14

es.

15

16

17

18

19

1846

RUNAWAY (1)

effect

time 20

EFFECT

RU

NA

WAY

(2)

21

222222

Connessione

Es.

23

24

25

26

27

Bad vs Good CollapseSTRUCTURE

& LOADSCollapse

Mechanism

NO SWAY

“IMPLOSION”OF THE

STRUCTURE

“EXPLOSION”OF THE

STRUCTURE

is a process in which

objects are destroyed by

collapsing on themselves

is a process

NOT CONFINED

SWAY

28

29

30

31

WTC 7

Simulated exterior buckling of WTC 7 during the collapse.

32

Es.

33

34

Es.

35

36

37

Bad vs Good CollapseSTRUCTURE

& LOADSCollapse

Mechanism

NO SWAY

“IMPLOSION”OF THE

STRUCTURE

“EXPLOSION”OF THE

STRUCTURE

is a process in which

objects are destroyed by

collapsing on themselves

is a process

NOT CONFINED

SWAY

38

• Capacity of a construction to show regular decrease of its structural quality due to negative causes.

• It implies: a) some smoothness of the decrease of

structural performance due to negative events (intensive feature);

b) some limited spatial spread of the rupture (extensive feature).

39

Structural Robustness (2)

40

Structural Robustness (1)

ATTRIBUTES

RELIABILITY

AVAILABILITY

SAFETY

MAINTAINABILITY

INTEGRITY

SECURITY

FAILURE

ERROR

FAULT

permanent interruption of a system ability

to perform a required function

under specified operating conditions

the system is in an incorrect state:

it may or may not cause failure

it is a defect and represents a

potential cause of error, active or dormant

THREATS

NEGATIVE CAUSEST

RU

CT

UR

AL

QU

AL

ITY

more robust

less robust

Analisi

41

Levels of Structural Crisis

Usu

al

UL

S &

SL

S

Veri

fica

tio

n F

orm

at

Structural Robustness

Assessment

1st level:

Material

Point

2nd level:

Element

Section

3rd level:

Structural

Element

4th level:

Structural

System42

Risposta strutturale e formati di verifica

43

44

Materiale

45

Sezione

46

Momento–curvatura sezione

47

Elemento

SMEARED:Plasticita’

diffusa

LUMPED:Plasticita’

Concentrata

1

48

Momento–curvatura sezione: idealizzazione

2

1 2+ = CERNIERA PLASTICA

49

1/ψ

Interazione M-N

50

Interazione M-N

51

52

53

54

55

56

57

58

59

Carico imposto

60

Carico / Spostamento imposto (1)

61

Carico / Spostamento imposto (2)

62

Carico / Spostamento imposto (3)

63

Push-over (1)

64

Push-down (1)

65

66

Es.

67

68

Applicazione

69

https://en.wikipedia.org/wiki/B-25_Empire_State_Building_crash

htt

p:/

/gal

lery

hip

.co

m/p

lan

e-

cras

he

s-in

to-e

mp

ire

-sta

te-

bu

ildin

g.h

tml

https://en.wikipedia.org/wiki/2002_Pirelli_Tower_airplane_crash

93

Esempio: edificio alto

Costruzioni Metalliche franco.bontempi@uniroma1.it

94Oct-16

D0

Es.

D1 D2

Scenari (1-2)

96

D3 D4

Scenari (3-4)

97

Modalità di collasso (1-2)

D1 D2 9898

Modalità di collasso (3-4)

D3 D4 9999

0

4

Lo scenario D4

è quello più cattivo:

l’elemento strutturale

critico individuato è la

colonna più esterna!

100

Sintesi dei risultati: elemento critico

100

Modellazione edificio alto

Scenario 1

(1 asta

eliminata)

Scenario 2

(3 aste

eliminate)

Scenario 3

(5 aste

eliminate)

Scenario 4

(7 aste

eliminate)

Scenari di danneggiamento

Collasso secondo scenario 1

Collasso secondo scenario 2

Collasso secondo scenario 3

Collasso secondo scenario 4

Moltiplicatore Ultimo e sua variazione

4,053,57

3,192,64 2,40

0,480,86

1,41 1,65

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

D0 D1 D2 D3 D4

Scenario di danneggiamento

uDelta F

F

Sintesi dei risultati

Δ u

u

Progetto

109

Design Strategy #1: CONTINUITY

110

Design Strategy #2: SEGMENTATION

PROGETTAZIONE STRUTTURALE ANTINCENDIO

112Costruzioni Metalliche franco.bontempi@uniroma1.it

112Oct-16

Es.

113Costruzioni Metalliche franco.bontempi@uniroma1.it

113Oct-16

114Costruzioni Metalliche franco.bontempi@uniroma1.it

114Oct-16

115Costruzioni Metalliche franco.bontempi@uniroma1.it

115Oct-16

Es.

Stiffener, bulkhead & deck layout

118

Hull sections with and without the outer hull

119

USS San Francisco after collision with an underwater mountain

120

Es.

Es.

http://pressurevesseltech.asmedigitalcollection.asme.org/article.aspx?articleid=16970

68#

Definizioni: compartimentazione

• CAPACITÀ DI COMPARTIMENTAZIONE IN CASO D’INCENDIO: attitudine di un elemento costruttivo a conservare, sotto l’azione del fuoco, oltre alla propria stabilità, un sufficiente isolamento termico ed una sufficiente tenuta ai fumi e ai gas caldi della combustione, nonché tutte le altre prestazioni se richieste.

• COMPARTIMENTO ANTINCENDIO: parte della costruzione organizzata per rispondere alle esigenze della sicurezza in caso di incendio e delimitata da elementi costruttivi idonei a garantire, sotto l’azione del fuoco e per un dato intervallo di tempo, la capacità di compartimentazione.

Esempi

128

Es.

For six days in January 1998, freezing rain coated Ontario, Quebec and New Brunswick with 7-11 cm (3-4 in) of ice. Trees and hydro wires fell and utility poles and transmission towers came down causing massive power outages, some for as long as a month. It was the most expensive natural disaster in Canada. According to Environment Canada, the ice storm of 1998 directly affected more people than any other previous weather event in Canadian history.

Es.

htt

ps:

//ca

lifo

rnia

wat

erb

log.

com

/2

01

6/0

5/0

1/t

he

-co

llap

se-o

f-w

ate

r-ex

po

rts-

los-

ange

les-

19

14

/

Es.

http://urbanplanet.info/architecture/paris-air-terminal-collapse-report-france/

Es.

http://www.wise-uranium.org/img/stavaa.gif

Es.

Bonus track

163

Es.

http://www.confederationbridge.com/about/confederation-bridge/design.html

https://www.tuhh.de/sdb/starossek/Veroeffentlichungen/Dateien/Progressive%20collapse%20of%20bridges%20(Uwe%20

Starossek).pdf

Es.

1) Minimum number of removed hangers and most sensitive location for the triggering of the progressive collapse: the bridge results to be more sensible to the damage at mid-span, where the removal of just 5 hanger for the symmetrical rupture and 7 hangers for the asymmetrical rupture is needed in order to trigger the collapse propagation.Shifting the initial damage location aside (about at 1/3 of the span) the asymmetrical rupture of 9 hangers is required for the collapse propagation, while moving the initial damage near the tower even the asymmetrical removal of 12 hangers has no global effects on the structure and very 7 hangers must be symmetrically removed on both sides in order to trigger the propagation of the ruptures on the adjoining hangers.

2) Preferential direction for the collapse propagation: to the higher damage sensibility of the bridge central zone counterpoises a lower acceleration of the collapse progression triggered by central ruptures, with respect to that one triggered by lateral ruptures.This effect is due to the particular configuration of the structural system that requires a growing hanger length from the centre to the sides of the bridge: when a chain rupture trigger, the ultimate elongation required to the hangers adjoining the failed ones increases as the collapse propagates (because the unsupported deck length also increases).If the initial damage occurs at mid-span, it involves the shortest hangers and the collapse propagation is partially slowed down from the growing element ductility of sideward hangers. On the contrary, a more intense initial damage is required sideways to trigger chain ruptures, but then the hanger breakdowns speeds up when moving toward the centre, where the hanger length decreases.

3) Qualitative measure that could possibly lead the collapse to an halt: in the case of a central rupture a closer increment in the section of the hangers (that remain instead the same for about 5/6 of the span length) could possibly provide for a collapse standstill. In

the case of a chain rupture triggered in a lateral zone the preferential direction showed by the progressive collapse would probably make less effective such a measure.

3) Qualitative measure that could possibly lead the collapse to an halt: in the case of a central rupture a closer increment in the section of the hangers (that remain instead the same for about 5/6 of the span length) could possibly provide for a collapse standstill. In the case of a chain rupture triggered in a lateral zone the preferential direction showed by the progressive collapse would probably make less effective such a measure.

4) Sensibility to modality of damage (asymmetrical or symmetrical failure): another consideration about the possible collapse standstill concerns the higher susceptibility of the bridge to an unsymmetrical hanger failure than to a symmetrical one: in the last case the symmetrical hinge formations determines a symmetrical moment increment on the

deck box-girders, thus possibly allowing for an early deck segment detachment that would arrest the collapse

4) Sensibility to modality of damage (asymmetrical or symmetrical failure): another consideration about the possible collapse standstill concerns the higher susceptibility of the bridge to an unsymmetrical hanger failure than to a symmetrical one: in the last case the symmetrical hinge formations determines a symmetrical moment increment on the deck box-girders, thus possibly allowing for an early deck segment detachment that would arrest the collapse