La Geochimica usa i metodi della chimica per studiare i processi e la storia della Terra. La...

Post on 01-May-2015

215 views 1 download

Transcript of La Geochimica usa i metodi della chimica per studiare i processi e la storia della Terra. La...

La Geochimica usa i metodi della chimica per studiare i processi e la

storia della Terra.

La Geochimica degli isotopi stabili utilizza gli isotopi non-radioattivi

naturali (elementi con peso atomico < 40), comuni e presenti sia

nei cicli inorganici che biologici.

H, C, O e S sono particolarmente importanti per le SdT perché

partecipano alla formazione delle rocce, al ciclo idrologico e ai

processi vitali.

GEOCHIMICA DEGLI ISOTOPI STABILIGEOCHIMICA DEGLI ISOTOPI STABILI

Review:Composizione di un atomo:

- X protoni (+) + X elettroni (-) + Y neutroni (senza carica)

- Massa di un protone: ~1000 volte quella di un e-

- Massa di un neutrone = massa di un protone

- Numero di protoni (N) = numero atomico (Z)

Isotopi:

- Atomi con uguale Z/N ma diverso numero di neutroni masse differenti

- Gli isotopi stabili non decadono

- Gli isotopi “leggeri” sono più comuni di quelli “pesanti”

- Il comportamento di isotopi/molecole isotopiche dipende dalla loro massa

Isotopi di H, O e C

Si conoscono 15 isotopi dell’O. Di questi, solo tre sono stabili:16O (99.8 %) 17O (0.03 %) 18O (0.17 %)

Oltre al 14C (radioattivo), il C ha due isotopi stabili:12C (98.9 %) 13C (1.1 %)

Oltre a 3H (Trizio, radioattivo), l’H ha due isotopi stabili:1H (99.98 %) 2H (Deuterio: 0.02 %)

Le miscele isotopiche sono molecole (es. H2O) con diverse configurazioni possibili:

HH16O HD16O DD16O

DD17O DD18O HD17O

HD18O HH17O HH18O

Le proprietà di queste molecole non sono identiche:

Proprietà H2O D2O

Vapor pressure: 23.756 20.544 Torr

Melting pt.: 0.00 3.82˚C

Boiling pt.: 100 101.42˚C

Latent heat of fusion: 1436 @ 0˚C 1515 @ 3.82˚C

In natura, le molecole con più di un isotopo raro sono pochissime

MISCELE ISOTOPICHE

Le proprietà dei vari isotopi di uno stesso elemento sono quindi

molto simili, ma non identiche, e possono determinare

FRAZIONAMENTO ISOTOPICO.

E’ un processo di “separazione” fra gli isotopi di uno stesso

elemento durante processi chimici, fisici e biologici, che risulta in

una diversa concentrazione finale delle varie specie isotopiche.

IL FRAZIONAMENTO ISOTOPICO

E’ funzione della massa isotopica, che influenza le proprietà

termodinamiche dei composti molecolari, e può avvenire

tramite:

FRAZIONAMENTO ISOTOPICO DI EQUILIBRIO - Dipende da

differenti proprietà termodinamiche delle molecole isotopiche;

FRAZIONAMENTO ISOTOPICO CINETICO - Dipende dalla velocità

media degli isotopi “leggeri” rispetto a quelli “pesanti”.

FRAZIONAMENTO ISOTOPICO: CAUSE

Riguarda sistemi in equilibrio che coinvolgono uno o più elementi comuni, es:

fase 1 fase 2

La differente composizione isotopica di fasi diverse (es. vapore-

solido-liquido) dipende dalla solidità dei legami chimici, più deboli

fra isotopi “leggeri” rispetto a quelli fra isotopi “pesanti”.

Questa differenza di comportamento varia con la temperatura (è

massima alle basse temperature).

FRAZIONAMENTO ISOTOPICO DI EQUILIBRIO

C16O2 2H218OC18O2 2H2

16O

L’intensità del frazionamento di equilibrio dipende dalle specie

chimiche coinvolte: il frazionamento è più intenso per gli isotopi

che hanno maggiori differenze relative di massa.

Es., è molto maggiore fra H e D che nel caso di O, i cui isotopi

hanno minori differenze di massa (1/8).

FRAZIONAMENTO ISOTOPICO DI FRAZIONAMENTO ISOTOPICO DI EQUILIBRIOEQUILIBRIO

F kx

u m1m2m1 m2

Massa ridotta

f 1

2k

u

MOLECOLA / OSCILLATORE ARMONICO

A parità di condizioni P-T, le molecole isotopiche con massa maggiore possiedono:

- una minore frequenza di vibrazione;

- una minore velocità.

Secondo la Meccanica quantistica, ogni molecola sottoposta ad un moto oscillatorio armonico possiede un’energia potenziale che cambia, secondo un pattern di salti discreti (=quantici), con la sua frequenza di vibrazione.

hfnEp 21

Doveh = costante di Planck (6.6 x 10-34 J)f = frequenza vibrazionalen = livello vibrazionale (si tratta di salti quantici, quindi è un numero intero)

f 1

2k

u

hfnEp 21

PUNTI CHIAVE:

Il minimo livello vibrazionale

(n=0) NON corrisponde a Ep = 0;

questo stato è detto ZERO POINT

ENERGY (o GROUND ENERGY).

ZERO POINT ENERGY

CAVEATIl modello dell’Oscillatore Armonico Semplice (OSA), rappresentato

da una parabola che contiene infiniti salti quantici equispaziati di Ep,

è irrealistico per le molecole, poichè:

- consente l’ipotesi di Ep = ∞ ;

- non prevede l’eventualità che la molecola si possa dissociare

(=rottura dei legami).

Più realistico è il Potenziale di Morse : una curva asimmetrica che

prevede, oltre una Ep critica, la dissociazione della molecola.

kJ/mol

Nel Potenziale di Morse, i salti quantici non sono equispaziati ma si assottigliano verso l’alto (avvicinandosi ad Ep di dissociazione). Si noti come il fondo della buca di potenziale NON corrisponda ad Ep = 0 !

RIASSUMENDO:

Le frequenze vibrazionali di una molecola dipendono dal tipo di legame (~costante elastica) e dalla massa degli atomi coinvolti.

Se uno degli atomi viene sostituito con un suo isotopo più pesante (= incremento di massa ridotta), la frequenza vibrazionale della molecola decresce.

La presenza di isotopi pesanti diminuisce la ZPE della molecola, determinando un diverso frazionamento isotopico di equilibrio. Infatti:- nelle molecole con ZPE bassa (=più pesanti) serve molta energia per rompere i legami: sono molecole stabili e lente;- le molecole con ZPE alta (=più leggere) si dissociano più facilmente, e sono quindi coinvolte in modo preferenziale nelle reazioni chimiche: sono molecole più instabili e veloci.

Per questi motivi, le differenze in ZPE influenzano anche il frazionamento isotopico cinetico.

Comportamento differenziale indipendente dai legami chimici.

In un gas, le molecole isotopicamente più leggere si muovono più rapidamente. Il frazionamento isotopico risultante è detto frazionamento isotopico cinetico.

Il frazionamento cinetico avviene in processi unidirezionali (di non-equilibrio).

Questo tipo di frazionamento si verifica in molte reazioni geochimiche, durante le quali gli isotopi più “leggeri” reagiscono più rapidamente e si concentrano nel prodotto finale (es. evaporazione, condensazione, etc.).

FRAZIONAMENTO ISOTOPICO CINETICO

COME MISURARE LE CONCENTRAZIONI ISOTOPICHE?COME MISURARE LE CONCENTRAZIONI ISOTOPICHE?

Per misurare le concentrazioni degli isotopi di uno specifico elemento (ad esempio ossigeno o carbonio) vengono usati strumenti sofisticati denominati spettrometri di massa, che separano le molecole dei gas in base alla loro massa.

Per misurare le concentrazioni isotopiche di un certo elemento in una certa sostanza, questo deve essere in fase gassosa

Es.: per misurare gli isotopi di O e C nella calcite, si analizza la CO2 prodotta dalla reazione fra calcite e acido fosforico (H3PO4):

3CaCO3 + 2H3PO4 3CO2 + 3H2O + Ca3(PO4)2

Ciascuna molecola di CO2 avrà diversi pesi molecolari ( parametro misurato nello spettrometro di massa) in base alle specie isotopiche di O e di C presenti. Le configurazione più comuni della CO2 sono:

12C16O16O (peso molecolare 44), di gran lunga la più comune;

13C16O16O (peso molecolare 45);

12C18O16O (peso molecolare 46).

NOTA: la concentrazione degli isotopi rari non può essere misurata come quantità assoluta. Si usa invece un rapporto fra la concentrazione isotopica del campione (RX) e la concentrazione isotopica di uno standard (Rstand)

I risultati della misura comparativa del campione con lo standard vengono espressi in notazione delta (δ), ossia la deviazione fra la misura del campione e lo standard di riferimento espressa in permil (‰).

δX = [(Rsample - R stand)/Rstand)] x 103

RSample = rapporto isotopico del campione; Rstand = r. isotopico dello standard.

δX sarà:

- positivo, se il campione è arricchito in isotopi “pesanti” rispetto allo standard;

- negativo, se il campione è arricchito in isotopi “leggeri” rispetto allo standard.

CONCENTRAZIONI ISOTOPICHE: LA NOTAZIONE CONCENTRAZIONI ISOTOPICHE: LA NOTAZIONE δδ

1)(

)(1000

standard

sample

sample

16

18

16

18

18

OOOO

O

Immaginiamo una scatola piena di palline bianche (leggere e veloci) e alcune palline di colore nero (più lente e pesanti).

Supponiamo che il rapporto standard fra palline bianche e nere sia 900:100:

Tuttavia, nella nostra scatola contiamo 102 palline nere su una popolazione di 1000:

1000102

AR

1000100

StdR

Possiamo quindi calcolare la deviazione fra lo standard e il contenuto della nostra scatola, che è:

Ricordando che R è il rapporto fra palline nere e il totale della popolazione, otteniamo:

3101)(

std

sample

R

R‰

201011000/1001000/102

)( 3

A

A questo punto, mescoliamo e rovesciamo metà delle palline in una scatola B. Le palline bianche si muovono più rapidamente, le nere rimangono sul fondo. La popolazione è quindi di 500 palline di cui 49 nere, ossia 98 nere su 1000.

In questo caso:

3101)(

std

sample

R

R‰

201011000/1001000/98

)( 3

B

201011000/1001000/102

)( 3

A

201011000/1001000/98

)( 3

B

Riassumendo, i valori relativi ai due campioni A e B sono così definiti:

A B RARB

A B 102 /100098 /1000

1.0408

Definiamo il fattore di frazionamento () fra i due campioni A e B:

Da cui ricaviamo il frazionamento isotopico (ε) fra i due campioni:

‰BA

40)ln(1000

I risultati sono riferiti a standard internazionali:

H, Owater Standard Mean Ocean WaterStandard Mean Ocean Water (SMOW)

C, Ocarb Pee Dee BelemnitePee Dee Belemnite (PDB)

N AtmosferaAtmosfera

S El Canyon Diablo meteorite (CD)El Canyon Diablo meteorite (CD)

STANDARD DI RIFERIMENTO STANDARD DI RIFERIMENTO

Per le misure di C e O nella calcite si usa come standard la PDB (composizione isotopica di Belemnitella americana del Cretaceo superiore della PeeDee Fm., SC), o la VPDB (corrispettivo artificiale).

Per misurare H e O nell’acqua, lo standard è lo SMOW, la composizione isotopica dell’acqua oceanica (perfettamente tarata su campione conservato presso l’International Atomic Energy Agency di Vienna).

CONVERSIONICONVERSIONIMisure riferite a standard diversi possono essere convertite fra loro, es.:

δ 18Ocalc vs. SMOW = 1.03 δ 18Ocalc vs. PDB + 30.86